610 lines
15 KiB
C
610 lines
15 KiB
C
/*
|
|
* Copyright (C) 2004-2006 Atmel Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/init.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/console.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
#include <mach/board.h>
|
|
#include <mach/init.h>
|
|
|
|
extern int root_mountflags;
|
|
|
|
/*
|
|
* Initialize loops_per_jiffy as 5000000 (500MIPS).
|
|
* Better make it too large than too small...
|
|
*/
|
|
struct avr32_cpuinfo boot_cpu_data = {
|
|
.loops_per_jiffy = 5000000
|
|
};
|
|
EXPORT_SYMBOL(boot_cpu_data);
|
|
|
|
static char __initdata command_line[COMMAND_LINE_SIZE];
|
|
|
|
/*
|
|
* Standard memory resources
|
|
*/
|
|
static struct resource __initdata kernel_data = {
|
|
.name = "Kernel data",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_SYSTEM_RAM,
|
|
};
|
|
static struct resource __initdata kernel_code = {
|
|
.name = "Kernel code",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_SYSTEM_RAM,
|
|
.sibling = &kernel_data,
|
|
};
|
|
|
|
/*
|
|
* Available system RAM and reserved regions as singly linked
|
|
* lists. These lists are traversed using the sibling pointer in
|
|
* struct resource and are kept sorted at all times.
|
|
*/
|
|
static struct resource *__initdata system_ram;
|
|
static struct resource *__initdata reserved = &kernel_code;
|
|
|
|
/*
|
|
* We need to allocate these before the bootmem allocator is up and
|
|
* running, so we need this "cache". 32 entries are probably enough
|
|
* for all but the most insanely complex systems.
|
|
*/
|
|
static struct resource __initdata res_cache[32];
|
|
static unsigned int __initdata res_cache_next_free;
|
|
|
|
static void __init resource_init(void)
|
|
{
|
|
struct resource *mem, *res;
|
|
struct resource *new;
|
|
|
|
kernel_code.start = __pa(init_mm.start_code);
|
|
|
|
for (mem = system_ram; mem; mem = mem->sibling) {
|
|
new = alloc_bootmem_low(sizeof(struct resource));
|
|
memcpy(new, mem, sizeof(struct resource));
|
|
|
|
new->sibling = NULL;
|
|
if (request_resource(&iomem_resource, new))
|
|
printk(KERN_WARNING "Bad RAM resource %08x-%08x\n",
|
|
mem->start, mem->end);
|
|
}
|
|
|
|
for (res = reserved; res; res = res->sibling) {
|
|
new = alloc_bootmem_low(sizeof(struct resource));
|
|
memcpy(new, res, sizeof(struct resource));
|
|
|
|
new->sibling = NULL;
|
|
if (insert_resource(&iomem_resource, new))
|
|
printk(KERN_WARNING
|
|
"Bad reserved resource %s (%08x-%08x)\n",
|
|
res->name, res->start, res->end);
|
|
}
|
|
}
|
|
|
|
static void __init
|
|
add_physical_memory(resource_size_t start, resource_size_t end)
|
|
{
|
|
struct resource *new, *next, **pprev;
|
|
|
|
for (pprev = &system_ram, next = system_ram; next;
|
|
pprev = &next->sibling, next = next->sibling) {
|
|
if (end < next->start)
|
|
break;
|
|
if (start <= next->end) {
|
|
printk(KERN_WARNING
|
|
"Warning: Physical memory map is broken\n");
|
|
printk(KERN_WARNING
|
|
"Warning: %08x-%08x overlaps %08x-%08x\n",
|
|
start, end, next->start, next->end);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (res_cache_next_free >= ARRAY_SIZE(res_cache)) {
|
|
printk(KERN_WARNING
|
|
"Warning: Failed to add physical memory %08x-%08x\n",
|
|
start, end);
|
|
return;
|
|
}
|
|
|
|
new = &res_cache[res_cache_next_free++];
|
|
new->start = start;
|
|
new->end = end;
|
|
new->name = "System RAM";
|
|
new->flags = IORESOURCE_SYSTEM_RAM;
|
|
|
|
*pprev = new;
|
|
}
|
|
|
|
static int __init
|
|
add_reserved_region(resource_size_t start, resource_size_t end,
|
|
const char *name)
|
|
{
|
|
struct resource *new, *next, **pprev;
|
|
|
|
if (end < start)
|
|
return -EINVAL;
|
|
|
|
if (res_cache_next_free >= ARRAY_SIZE(res_cache))
|
|
return -ENOMEM;
|
|
|
|
for (pprev = &reserved, next = reserved; next;
|
|
pprev = &next->sibling, next = next->sibling) {
|
|
if (end < next->start)
|
|
break;
|
|
if (start <= next->end)
|
|
return -EBUSY;
|
|
}
|
|
|
|
new = &res_cache[res_cache_next_free++];
|
|
new->start = start;
|
|
new->end = end;
|
|
new->name = name;
|
|
new->sibling = next;
|
|
new->flags = IORESOURCE_MEM;
|
|
|
|
*pprev = new;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long __init
|
|
find_free_region(const struct resource *mem, resource_size_t size,
|
|
resource_size_t align)
|
|
{
|
|
struct resource *res;
|
|
unsigned long target;
|
|
|
|
target = ALIGN(mem->start, align);
|
|
for (res = reserved; res; res = res->sibling) {
|
|
if ((target + size) <= res->start)
|
|
break;
|
|
if (target <= res->end)
|
|
target = ALIGN(res->end + 1, align);
|
|
}
|
|
|
|
if ((target + size) > (mem->end + 1))
|
|
return mem->end + 1;
|
|
|
|
return target;
|
|
}
|
|
|
|
static int __init
|
|
alloc_reserved_region(resource_size_t *start, resource_size_t size,
|
|
resource_size_t align, const char *name)
|
|
{
|
|
struct resource *mem;
|
|
resource_size_t target;
|
|
int ret;
|
|
|
|
for (mem = system_ram; mem; mem = mem->sibling) {
|
|
target = find_free_region(mem, size, align);
|
|
if (target <= mem->end) {
|
|
ret = add_reserved_region(target, target + size - 1,
|
|
name);
|
|
if (!ret)
|
|
*start = target;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Early framebuffer allocation. Works as follows:
|
|
* - If fbmem_size is zero, nothing will be allocated or reserved.
|
|
* - If fbmem_start is zero when setup_bootmem() is called,
|
|
* a block of fbmem_size bytes will be reserved before bootmem
|
|
* initialization. It will be aligned to the largest page size
|
|
* that fbmem_size is a multiple of.
|
|
* - If fbmem_start is nonzero, an area of size fbmem_size will be
|
|
* reserved at the physical address fbmem_start if possible. If
|
|
* it collides with other reserved memory, a different block of
|
|
* same size will be allocated, just as if fbmem_start was zero.
|
|
*
|
|
* Board-specific code may use these variables to set up platform data
|
|
* for the framebuffer driver if fbmem_size is nonzero.
|
|
*/
|
|
resource_size_t __initdata fbmem_start;
|
|
resource_size_t __initdata fbmem_size;
|
|
|
|
/*
|
|
* "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
|
|
* use as framebuffer.
|
|
*
|
|
* "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
|
|
* starting at yyy to be reserved for use as framebuffer.
|
|
*
|
|
* The kernel won't verify that the memory region starting at yyy
|
|
* actually contains usable RAM.
|
|
*/
|
|
static int __init early_parse_fbmem(char *p)
|
|
{
|
|
int ret;
|
|
unsigned long align;
|
|
|
|
fbmem_size = memparse(p, &p);
|
|
if (*p == '@') {
|
|
fbmem_start = memparse(p + 1, &p);
|
|
ret = add_reserved_region(fbmem_start,
|
|
fbmem_start + fbmem_size - 1,
|
|
"Framebuffer");
|
|
if (ret) {
|
|
printk(KERN_WARNING
|
|
"Failed to reserve framebuffer memory\n");
|
|
fbmem_start = 0;
|
|
}
|
|
}
|
|
|
|
if (!fbmem_start) {
|
|
if ((fbmem_size & 0x000fffffUL) == 0)
|
|
align = 0x100000; /* 1 MiB */
|
|
else if ((fbmem_size & 0x0000ffffUL) == 0)
|
|
align = 0x10000; /* 64 KiB */
|
|
else
|
|
align = 0x1000; /* 4 KiB */
|
|
|
|
ret = alloc_reserved_region(&fbmem_start, fbmem_size,
|
|
align, "Framebuffer");
|
|
if (ret) {
|
|
printk(KERN_WARNING
|
|
"Failed to allocate framebuffer memory\n");
|
|
fbmem_size = 0;
|
|
} else {
|
|
memset(__va(fbmem_start), 0, fbmem_size);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_param("fbmem", early_parse_fbmem);
|
|
|
|
/*
|
|
* Pick out the memory size. We look for mem=size@start,
|
|
* where start and size are "size[KkMmGg]"
|
|
*/
|
|
static int __init early_mem(char *p)
|
|
{
|
|
resource_size_t size, start;
|
|
|
|
start = system_ram->start;
|
|
size = memparse(p, &p);
|
|
if (*p == '@')
|
|
start = memparse(p + 1, &p);
|
|
|
|
system_ram->start = start;
|
|
system_ram->end = system_ram->start + size - 1;
|
|
return 0;
|
|
}
|
|
early_param("mem", early_mem);
|
|
|
|
static int __init parse_tag_core(struct tag *tag)
|
|
{
|
|
if (tag->hdr.size > 2) {
|
|
if ((tag->u.core.flags & 1) == 0)
|
|
root_mountflags &= ~MS_RDONLY;
|
|
ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
|
|
}
|
|
return 0;
|
|
}
|
|
__tagtable(ATAG_CORE, parse_tag_core);
|
|
|
|
static int __init parse_tag_mem(struct tag *tag)
|
|
{
|
|
unsigned long start, end;
|
|
|
|
/*
|
|
* Ignore zero-sized entries. If we're running standalone, the
|
|
* SDRAM code may emit such entries if something goes
|
|
* wrong...
|
|
*/
|
|
if (tag->u.mem_range.size == 0)
|
|
return 0;
|
|
|
|
start = tag->u.mem_range.addr;
|
|
end = tag->u.mem_range.addr + tag->u.mem_range.size - 1;
|
|
|
|
add_physical_memory(start, end);
|
|
return 0;
|
|
}
|
|
__tagtable(ATAG_MEM, parse_tag_mem);
|
|
|
|
static int __init parse_tag_rdimg(struct tag *tag)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
struct tag_mem_range *mem = &tag->u.mem_range;
|
|
int ret;
|
|
|
|
if (initrd_start) {
|
|
printk(KERN_WARNING
|
|
"Warning: Only the first initrd image will be used\n");
|
|
return 0;
|
|
}
|
|
|
|
ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1,
|
|
"initrd");
|
|
if (ret) {
|
|
printk(KERN_WARNING
|
|
"Warning: Failed to reserve initrd memory\n");
|
|
return ret;
|
|
}
|
|
|
|
initrd_start = (unsigned long)__va(mem->addr);
|
|
initrd_end = initrd_start + mem->size;
|
|
#else
|
|
printk(KERN_WARNING "RAM disk image present, but "
|
|
"no initrd support in kernel, ignoring\n");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
__tagtable(ATAG_RDIMG, parse_tag_rdimg);
|
|
|
|
static int __init parse_tag_rsvd_mem(struct tag *tag)
|
|
{
|
|
struct tag_mem_range *mem = &tag->u.mem_range;
|
|
|
|
return add_reserved_region(mem->addr, mem->addr + mem->size - 1,
|
|
"Reserved");
|
|
}
|
|
__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
|
|
|
|
static int __init parse_tag_cmdline(struct tag *tag)
|
|
{
|
|
strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
|
|
return 0;
|
|
}
|
|
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
|
|
|
|
static int __init parse_tag_clock(struct tag *tag)
|
|
{
|
|
/*
|
|
* We'll figure out the clocks by peeking at the system
|
|
* manager regs directly.
|
|
*/
|
|
return 0;
|
|
}
|
|
__tagtable(ATAG_CLOCK, parse_tag_clock);
|
|
|
|
/*
|
|
* The board_number correspond to the bd->bi_board_number in U-Boot. This
|
|
* parameter is only available during initialisation and can be used in some
|
|
* kind of board identification.
|
|
*/
|
|
u32 __initdata board_number;
|
|
|
|
static int __init parse_tag_boardinfo(struct tag *tag)
|
|
{
|
|
board_number = tag->u.boardinfo.board_number;
|
|
|
|
return 0;
|
|
}
|
|
__tagtable(ATAG_BOARDINFO, parse_tag_boardinfo);
|
|
|
|
/*
|
|
* Scan the tag table for this tag, and call its parse function. The
|
|
* tag table is built by the linker from all the __tagtable
|
|
* declarations.
|
|
*/
|
|
static int __init parse_tag(struct tag *tag)
|
|
{
|
|
extern struct tagtable __tagtable_begin, __tagtable_end;
|
|
struct tagtable *t;
|
|
|
|
for (t = &__tagtable_begin; t < &__tagtable_end; t++)
|
|
if (tag->hdr.tag == t->tag) {
|
|
t->parse(tag);
|
|
break;
|
|
}
|
|
|
|
return t < &__tagtable_end;
|
|
}
|
|
|
|
/*
|
|
* Parse all tags in the list we got from the boot loader
|
|
*/
|
|
static void __init parse_tags(struct tag *t)
|
|
{
|
|
for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
|
|
if (!parse_tag(t))
|
|
printk(KERN_WARNING
|
|
"Ignoring unrecognised tag 0x%08x\n",
|
|
t->hdr.tag);
|
|
}
|
|
|
|
/*
|
|
* Find a free memory region large enough for storing the
|
|
* bootmem bitmap.
|
|
*/
|
|
static unsigned long __init
|
|
find_bootmap_pfn(const struct resource *mem)
|
|
{
|
|
unsigned long bootmap_pages, bootmap_len;
|
|
unsigned long node_pages = PFN_UP(resource_size(mem));
|
|
unsigned long bootmap_start;
|
|
|
|
bootmap_pages = bootmem_bootmap_pages(node_pages);
|
|
bootmap_len = bootmap_pages << PAGE_SHIFT;
|
|
|
|
/*
|
|
* Find a large enough region without reserved pages for
|
|
* storing the bootmem bitmap. We can take advantage of the
|
|
* fact that all lists have been sorted.
|
|
*
|
|
* We have to check that we don't collide with any reserved
|
|
* regions, which includes the kernel image and any RAMDISK
|
|
* images.
|
|
*/
|
|
bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE);
|
|
|
|
return bootmap_start >> PAGE_SHIFT;
|
|
}
|
|
|
|
#define MAX_LOWMEM HIGHMEM_START
|
|
#define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM)
|
|
|
|
static void __init setup_bootmem(void)
|
|
{
|
|
unsigned bootmap_size;
|
|
unsigned long first_pfn, bootmap_pfn, pages;
|
|
unsigned long max_pfn, max_low_pfn;
|
|
unsigned node = 0;
|
|
struct resource *res;
|
|
|
|
printk(KERN_INFO "Physical memory:\n");
|
|
for (res = system_ram; res; res = res->sibling)
|
|
printk(" %08x-%08x\n", res->start, res->end);
|
|
printk(KERN_INFO "Reserved memory:\n");
|
|
for (res = reserved; res; res = res->sibling)
|
|
printk(" %08x-%08x: %s\n",
|
|
res->start, res->end, res->name);
|
|
|
|
nodes_clear(node_online_map);
|
|
|
|
if (system_ram->sibling)
|
|
printk(KERN_WARNING "Only using first memory bank\n");
|
|
|
|
for (res = system_ram; res; res = NULL) {
|
|
first_pfn = PFN_UP(res->start);
|
|
max_low_pfn = max_pfn = PFN_DOWN(res->end + 1);
|
|
bootmap_pfn = find_bootmap_pfn(res);
|
|
if (bootmap_pfn > max_pfn)
|
|
panic("No space for bootmem bitmap!\n");
|
|
|
|
if (max_low_pfn > MAX_LOWMEM_PFN) {
|
|
max_low_pfn = MAX_LOWMEM_PFN;
|
|
#ifndef CONFIG_HIGHMEM
|
|
/*
|
|
* Lowmem is memory that can be addressed
|
|
* directly through P1/P2
|
|
*/
|
|
printk(KERN_WARNING
|
|
"Node %u: Only %ld MiB of memory will be used.\n",
|
|
node, MAX_LOWMEM >> 20);
|
|
printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
|
|
#else
|
|
#error HIGHMEM is not supported by AVR32 yet
|
|
#endif
|
|
}
|
|
|
|
/* Initialize the boot-time allocator with low memory only. */
|
|
bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
|
|
first_pfn, max_low_pfn);
|
|
|
|
/*
|
|
* Register fully available RAM pages with the bootmem
|
|
* allocator.
|
|
*/
|
|
pages = max_low_pfn - first_pfn;
|
|
free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
|
|
PFN_PHYS(pages));
|
|
|
|
/* Reserve space for the bootmem bitmap... */
|
|
reserve_bootmem_node(NODE_DATA(node),
|
|
PFN_PHYS(bootmap_pfn),
|
|
bootmap_size,
|
|
BOOTMEM_DEFAULT);
|
|
|
|
/* ...and any other reserved regions. */
|
|
for (res = reserved; res; res = res->sibling) {
|
|
if (res->start > PFN_PHYS(max_pfn))
|
|
break;
|
|
|
|
/*
|
|
* resource_init will complain about partial
|
|
* overlaps, so we'll just ignore such
|
|
* resources for now.
|
|
*/
|
|
if (res->start >= PFN_PHYS(first_pfn)
|
|
&& res->end < PFN_PHYS(max_pfn))
|
|
reserve_bootmem_node(NODE_DATA(node),
|
|
res->start,
|
|
resource_size(res),
|
|
BOOTMEM_DEFAULT);
|
|
}
|
|
|
|
node_set_online(node);
|
|
}
|
|
}
|
|
|
|
void __init setup_arch (char **cmdline_p)
|
|
{
|
|
struct clk *cpu_clk;
|
|
|
|
init_mm.start_code = (unsigned long)_stext;
|
|
init_mm.end_code = (unsigned long)_etext;
|
|
init_mm.end_data = (unsigned long)_edata;
|
|
init_mm.brk = (unsigned long)_end;
|
|
|
|
/*
|
|
* Include .init section to make allocations easier. It will
|
|
* be removed before the resource is actually requested.
|
|
*/
|
|
kernel_code.start = __pa(__init_begin);
|
|
kernel_code.end = __pa(init_mm.end_code - 1);
|
|
kernel_data.start = __pa(init_mm.end_code);
|
|
kernel_data.end = __pa(init_mm.brk - 1);
|
|
|
|
parse_tags(bootloader_tags);
|
|
|
|
setup_processor();
|
|
setup_platform();
|
|
setup_board();
|
|
|
|
cpu_clk = clk_get(NULL, "cpu");
|
|
if (IS_ERR(cpu_clk)) {
|
|
printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
|
|
} else {
|
|
unsigned long cpu_hz = clk_get_rate(cpu_clk);
|
|
|
|
/*
|
|
* Well, duh, but it's probably a good idea to
|
|
* increment the use count.
|
|
*/
|
|
clk_enable(cpu_clk);
|
|
|
|
boot_cpu_data.clk = cpu_clk;
|
|
boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
|
|
printk("CPU: Running at %lu.%03lu MHz\n",
|
|
((cpu_hz + 500) / 1000) / 1000,
|
|
((cpu_hz + 500) / 1000) % 1000);
|
|
}
|
|
|
|
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
|
|
*cmdline_p = command_line;
|
|
parse_early_param();
|
|
|
|
setup_bootmem();
|
|
|
|
#ifdef CONFIG_VT
|
|
conswitchp = &dummy_con;
|
|
#endif
|
|
|
|
paging_init();
|
|
resource_init();
|
|
}
|