linux-sg2042/drivers/mmc/host/sdhci-acpi.c

1113 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Secure Digital Host Controller Interface ACPI driver.
*
* Copyright (c) 2012, Intel Corporation.
*/
#include <linux/bitfield.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/compiler.h>
#include <linux/stddef.h>
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/delay.h>
#include <linux/dmi.h>
#include <linux/mmc/host.h>
#include <linux/mmc/pm.h>
#include <linux/mmc/slot-gpio.h>
#ifdef CONFIG_X86
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/iosf_mbi.h>
#include <linux/pci.h>
#endif
#include "sdhci.h"
enum {
SDHCI_ACPI_SD_CD = BIT(0),
SDHCI_ACPI_RUNTIME_PM = BIT(1),
SDHCI_ACPI_SD_CD_OVERRIDE_LEVEL = BIT(2),
};
struct sdhci_acpi_chip {
const struct sdhci_ops *ops;
unsigned int quirks;
unsigned int quirks2;
unsigned long caps;
unsigned int caps2;
mmc_pm_flag_t pm_caps;
};
struct sdhci_acpi_slot {
const struct sdhci_acpi_chip *chip;
unsigned int quirks;
unsigned int quirks2;
unsigned long caps;
unsigned int caps2;
mmc_pm_flag_t pm_caps;
unsigned int flags;
size_t priv_size;
int (*probe_slot)(struct platform_device *, struct acpi_device *);
int (*remove_slot)(struct platform_device *);
int (*free_slot)(struct platform_device *pdev);
int (*setup_host)(struct platform_device *pdev);
};
struct sdhci_acpi_host {
struct sdhci_host *host;
const struct sdhci_acpi_slot *slot;
struct platform_device *pdev;
bool use_runtime_pm;
bool is_intel;
bool reset_signal_volt_on_suspend;
unsigned long private[] ____cacheline_aligned;
};
enum {
DMI_QUIRK_RESET_SD_SIGNAL_VOLT_ON_SUSP = BIT(0),
DMI_QUIRK_SD_NO_WRITE_PROTECT = BIT(1),
};
static inline void *sdhci_acpi_priv(struct sdhci_acpi_host *c)
{
return (void *)c->private;
}
static inline bool sdhci_acpi_flag(struct sdhci_acpi_host *c, unsigned int flag)
{
return c->slot && (c->slot->flags & flag);
}
#define INTEL_DSM_HS_CAPS_SDR25 BIT(0)
#define INTEL_DSM_HS_CAPS_DDR50 BIT(1)
#define INTEL_DSM_HS_CAPS_SDR50 BIT(2)
#define INTEL_DSM_HS_CAPS_SDR104 BIT(3)
enum {
INTEL_DSM_FNS = 0,
INTEL_DSM_V18_SWITCH = 3,
INTEL_DSM_V33_SWITCH = 4,
INTEL_DSM_HS_CAPS = 8,
};
struct intel_host {
u32 dsm_fns;
u32 hs_caps;
};
static const guid_t intel_dsm_guid =
GUID_INIT(0xF6C13EA5, 0x65CD, 0x461F,
0xAB, 0x7A, 0x29, 0xF7, 0xE8, 0xD5, 0xBD, 0x61);
static int __intel_dsm(struct intel_host *intel_host, struct device *dev,
unsigned int fn, u32 *result)
{
union acpi_object *obj;
int err = 0;
obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), &intel_dsm_guid, 0, fn, NULL);
if (!obj)
return -EOPNOTSUPP;
if (obj->type == ACPI_TYPE_INTEGER) {
*result = obj->integer.value;
} else if (obj->type == ACPI_TYPE_BUFFER && obj->buffer.length > 0) {
size_t len = min_t(size_t, obj->buffer.length, 4);
*result = 0;
memcpy(result, obj->buffer.pointer, len);
} else {
dev_err(dev, "%s DSM fn %u obj->type %d obj->buffer.length %d\n",
__func__, fn, obj->type, obj->buffer.length);
err = -EINVAL;
}
ACPI_FREE(obj);
return err;
}
static int intel_dsm(struct intel_host *intel_host, struct device *dev,
unsigned int fn, u32 *result)
{
if (fn > 31 || !(intel_host->dsm_fns & (1 << fn)))
return -EOPNOTSUPP;
return __intel_dsm(intel_host, dev, fn, result);
}
static void intel_dsm_init(struct intel_host *intel_host, struct device *dev,
struct mmc_host *mmc)
{
int err;
intel_host->hs_caps = ~0;
err = __intel_dsm(intel_host, dev, INTEL_DSM_FNS, &intel_host->dsm_fns);
if (err) {
pr_debug("%s: DSM not supported, error %d\n",
mmc_hostname(mmc), err);
return;
}
pr_debug("%s: DSM function mask %#x\n",
mmc_hostname(mmc), intel_host->dsm_fns);
intel_dsm(intel_host, dev, INTEL_DSM_HS_CAPS, &intel_host->hs_caps);
}
static int intel_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct device *dev = mmc_dev(mmc);
struct sdhci_acpi_host *c = dev_get_drvdata(dev);
struct intel_host *intel_host = sdhci_acpi_priv(c);
unsigned int fn;
u32 result = 0;
int err;
err = sdhci_start_signal_voltage_switch(mmc, ios);
if (err)
return err;
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
fn = INTEL_DSM_V33_SWITCH;
break;
case MMC_SIGNAL_VOLTAGE_180:
fn = INTEL_DSM_V18_SWITCH;
break;
default:
return 0;
}
err = intel_dsm(intel_host, dev, fn, &result);
pr_debug("%s: %s DSM fn %u error %d result %u\n",
mmc_hostname(mmc), __func__, fn, err, result);
return 0;
}
static void sdhci_acpi_int_hw_reset(struct sdhci_host *host)
{
u8 reg;
reg = sdhci_readb(host, SDHCI_POWER_CONTROL);
reg |= 0x10;
sdhci_writeb(host, reg, SDHCI_POWER_CONTROL);
/* For eMMC, minimum is 1us but give it 9us for good measure */
udelay(9);
reg &= ~0x10;
sdhci_writeb(host, reg, SDHCI_POWER_CONTROL);
/* For eMMC, minimum is 200us but give it 300us for good measure */
usleep_range(300, 1000);
}
static const struct sdhci_ops sdhci_acpi_ops_dflt = {
.set_clock = sdhci_set_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
};
static const struct sdhci_ops sdhci_acpi_ops_int = {
.set_clock = sdhci_set_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.hw_reset = sdhci_acpi_int_hw_reset,
};
static const struct sdhci_acpi_chip sdhci_acpi_chip_int = {
.ops = &sdhci_acpi_ops_int,
};
#ifdef CONFIG_X86
static bool sdhci_acpi_byt(void)
{
static const struct x86_cpu_id byt[] = {
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
{}
};
return x86_match_cpu(byt);
}
static bool sdhci_acpi_cht(void)
{
static const struct x86_cpu_id cht[] = {
X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
{}
};
return x86_match_cpu(cht);
}
#define BYT_IOSF_SCCEP 0x63
#define BYT_IOSF_OCP_NETCTRL0 0x1078
#define BYT_IOSF_OCP_TIMEOUT_BASE GENMASK(10, 8)
static void sdhci_acpi_byt_setting(struct device *dev)
{
u32 val = 0;
if (!sdhci_acpi_byt())
return;
if (iosf_mbi_read(BYT_IOSF_SCCEP, MBI_CR_READ, BYT_IOSF_OCP_NETCTRL0,
&val)) {
dev_err(dev, "%s read error\n", __func__);
return;
}
if (!(val & BYT_IOSF_OCP_TIMEOUT_BASE))
return;
val &= ~BYT_IOSF_OCP_TIMEOUT_BASE;
if (iosf_mbi_write(BYT_IOSF_SCCEP, MBI_CR_WRITE, BYT_IOSF_OCP_NETCTRL0,
val)) {
dev_err(dev, "%s write error\n", __func__);
return;
}
dev_dbg(dev, "%s completed\n", __func__);
}
static bool sdhci_acpi_byt_defer(struct device *dev)
{
if (!sdhci_acpi_byt())
return false;
if (!iosf_mbi_available())
return true;
sdhci_acpi_byt_setting(dev);
return false;
}
static bool sdhci_acpi_cht_pci_wifi(unsigned int vendor, unsigned int device,
unsigned int slot, unsigned int parent_slot)
{
struct pci_dev *dev, *parent, *from = NULL;
while (1) {
dev = pci_get_device(vendor, device, from);
pci_dev_put(from);
if (!dev)
break;
parent = pci_upstream_bridge(dev);
if (ACPI_COMPANION(&dev->dev) && PCI_SLOT(dev->devfn) == slot &&
parent && PCI_SLOT(parent->devfn) == parent_slot &&
!pci_upstream_bridge(parent)) {
pci_dev_put(dev);
return true;
}
from = dev;
}
return false;
}
/*
* GPDwin uses PCI wifi which conflicts with SDIO's use of
* acpi_device_fix_up_power() on child device nodes. Identifying GPDwin is
* problematic, but since SDIO is only used for wifi, the presence of the PCI
* wifi card in the expected slot with an ACPI companion node, is used to
* indicate that acpi_device_fix_up_power() should be avoided.
*/
static inline bool sdhci_acpi_no_fixup_child_power(struct acpi_device *adev)
{
return sdhci_acpi_cht() &&
acpi_dev_hid_uid_match(adev, "80860F14", "2") &&
sdhci_acpi_cht_pci_wifi(0x14e4, 0x43ec, 0, 28);
}
#else
static inline void sdhci_acpi_byt_setting(struct device *dev)
{
}
static inline bool sdhci_acpi_byt_defer(struct device *dev)
{
return false;
}
static inline bool sdhci_acpi_no_fixup_child_power(struct acpi_device *adev)
{
return false;
}
#endif
static int bxt_get_cd(struct mmc_host *mmc)
{
int gpio_cd = mmc_gpio_get_cd(mmc);
if (!gpio_cd)
return 0;
return sdhci_get_cd_nogpio(mmc);
}
static int intel_probe_slot(struct platform_device *pdev, struct acpi_device *adev)
{
struct sdhci_acpi_host *c = platform_get_drvdata(pdev);
struct intel_host *intel_host = sdhci_acpi_priv(c);
struct sdhci_host *host = c->host;
if (acpi_dev_hid_uid_match(adev, "80860F14", "1") &&
sdhci_readl(host, SDHCI_CAPABILITIES) == 0x446cc8b2 &&
sdhci_readl(host, SDHCI_CAPABILITIES_1) == 0x00000807)
host->timeout_clk = 1000; /* 1000 kHz i.e. 1 MHz */
if (acpi_dev_hid_uid_match(adev, "80865ACA", NULL))
host->mmc_host_ops.get_cd = bxt_get_cd;
intel_dsm_init(intel_host, &pdev->dev, host->mmc);
host->mmc_host_ops.start_signal_voltage_switch =
intel_start_signal_voltage_switch;
c->is_intel = true;
return 0;
}
static int intel_setup_host(struct platform_device *pdev)
{
struct sdhci_acpi_host *c = platform_get_drvdata(pdev);
struct intel_host *intel_host = sdhci_acpi_priv(c);
if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_SDR25))
c->host->mmc->caps &= ~MMC_CAP_UHS_SDR25;
if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_SDR50))
c->host->mmc->caps &= ~MMC_CAP_UHS_SDR50;
if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_DDR50))
c->host->mmc->caps &= ~MMC_CAP_UHS_DDR50;
if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_SDR104))
c->host->mmc->caps &= ~MMC_CAP_UHS_SDR104;
return 0;
}
static const struct sdhci_acpi_slot sdhci_acpi_slot_int_emmc = {
.chip = &sdhci_acpi_chip_int,
.caps = MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE |
MMC_CAP_HW_RESET | MMC_CAP_1_8V_DDR |
MMC_CAP_CMD_DURING_TFR | MMC_CAP_WAIT_WHILE_BUSY,
.flags = SDHCI_ACPI_RUNTIME_PM,
.quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_NO_LED,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_STOP_WITH_TC |
SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400,
.probe_slot = intel_probe_slot,
.setup_host = intel_setup_host,
.priv_size = sizeof(struct intel_host),
};
static const struct sdhci_acpi_slot sdhci_acpi_slot_int_sdio = {
.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
SDHCI_QUIRK_NO_LED |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
.quirks2 = SDHCI_QUIRK2_HOST_OFF_CARD_ON,
.caps = MMC_CAP_NONREMOVABLE | MMC_CAP_POWER_OFF_CARD |
MMC_CAP_WAIT_WHILE_BUSY,
.flags = SDHCI_ACPI_RUNTIME_PM,
.pm_caps = MMC_PM_KEEP_POWER,
.probe_slot = intel_probe_slot,
.setup_host = intel_setup_host,
.priv_size = sizeof(struct intel_host),
};
static const struct sdhci_acpi_slot sdhci_acpi_slot_int_sd = {
.flags = SDHCI_ACPI_SD_CD | SDHCI_ACPI_SD_CD_OVERRIDE_LEVEL |
SDHCI_ACPI_RUNTIME_PM,
.quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_NO_LED,
.quirks2 = SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON |
SDHCI_QUIRK2_STOP_WITH_TC,
.caps = MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_AGGRESSIVE_PM,
.probe_slot = intel_probe_slot,
.setup_host = intel_setup_host,
.priv_size = sizeof(struct intel_host),
};
#define VENDOR_SPECIFIC_PWRCTL_CLEAR_REG 0x1a8
#define VENDOR_SPECIFIC_PWRCTL_CTL_REG 0x1ac
static irqreturn_t sdhci_acpi_qcom_handler(int irq, void *ptr)
{
struct sdhci_host *host = ptr;
sdhci_writel(host, 0x3, VENDOR_SPECIFIC_PWRCTL_CLEAR_REG);
sdhci_writel(host, 0x1, VENDOR_SPECIFIC_PWRCTL_CTL_REG);
return IRQ_HANDLED;
}
static int qcom_probe_slot(struct platform_device *pdev, struct acpi_device *adev)
{
struct sdhci_acpi_host *c = platform_get_drvdata(pdev);
struct sdhci_host *host = c->host;
int *irq = sdhci_acpi_priv(c);
*irq = -EINVAL;
if (!acpi_dev_hid_uid_match(adev, "QCOM8051", NULL))
return 0;
*irq = platform_get_irq(pdev, 1);
if (*irq < 0)
return 0;
return request_threaded_irq(*irq, NULL, sdhci_acpi_qcom_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
"sdhci_qcom", host);
}
static int qcom_free_slot(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sdhci_acpi_host *c = platform_get_drvdata(pdev);
struct sdhci_host *host = c->host;
struct acpi_device *adev;
int *irq = sdhci_acpi_priv(c);
adev = ACPI_COMPANION(dev);
if (!adev)
return -ENODEV;
if (!acpi_dev_hid_uid_match(adev, "QCOM8051", NULL))
return 0;
if (*irq < 0)
return 0;
free_irq(*irq, host);
return 0;
}
static const struct sdhci_acpi_slot sdhci_acpi_slot_qcom_sd_3v = {
.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION,
.quirks2 = SDHCI_QUIRK2_NO_1_8_V,
.caps = MMC_CAP_NONREMOVABLE,
.priv_size = sizeof(int),
.probe_slot = qcom_probe_slot,
.free_slot = qcom_free_slot,
};
static const struct sdhci_acpi_slot sdhci_acpi_slot_qcom_sd = {
.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION,
.caps = MMC_CAP_NONREMOVABLE,
};
struct amd_sdhci_host {
bool tuned_clock;
bool dll_enabled;
};
/* AMD sdhci reset dll register. */
#define SDHCI_AMD_RESET_DLL_REGISTER 0x908
static int amd_select_drive_strength(struct mmc_card *card,
unsigned int max_dtr, int host_drv,
int card_drv, int *host_driver_strength)
{
struct sdhci_host *host = mmc_priv(card->host);
u16 preset, preset_driver_strength;
/*
* This method is only called by mmc_select_hs200 so we only need to
* read from the HS200 (SDR104) preset register.
*
* Firmware that has "invalid/default" presets return a driver strength
* of A. This matches the previously hard coded value.
*/
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104);
preset_driver_strength = FIELD_GET(SDHCI_PRESET_DRV_MASK, preset);
/*
* We want the controller driver strength to match the card's driver
* strength so they have similar rise/fall times.
*
* The controller driver strength set by this method is sticky for all
* timings after this method is called. This unfortunately means that
* while HS400 tuning is in progress we end up with mismatched driver
* strengths between the controller and the card. HS400 tuning requires
* switching from HS400->DDR52->HS->HS200->HS400. So the driver mismatch
* happens while in DDR52 and HS modes. This has not been observed to
* cause problems. Enabling presets would fix this issue.
*/
*host_driver_strength = preset_driver_strength;
/*
* The resulting card driver strength is only set when switching the
* card's timing to HS200 or HS400. The card will use the default driver
* strength (B) for any other mode.
*/
return preset_driver_strength;
}
static void sdhci_acpi_amd_hs400_dll(struct sdhci_host *host, bool enable)
{
struct sdhci_acpi_host *acpi_host = sdhci_priv(host);
struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host);
/* AMD Platform requires dll setting */
sdhci_writel(host, 0x40003210, SDHCI_AMD_RESET_DLL_REGISTER);
usleep_range(10, 20);
if (enable)
sdhci_writel(host, 0x40033210, SDHCI_AMD_RESET_DLL_REGISTER);
amd_host->dll_enabled = enable;
}
/*
* The initialization sequence for HS400 is:
* HS->HS200->Perform Tuning->HS->HS400
*
* The re-tuning sequence is:
* HS400->DDR52->HS->HS200->Perform Tuning->HS->HS400
*
* The AMD eMMC Controller can only use the tuned clock while in HS200 and HS400
* mode. If we switch to a different mode, we need to disable the tuned clock.
* If we have previously performed tuning and switch back to HS200 or
* HS400, we can re-enable the tuned clock.
*
*/
static void amd_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_acpi_host *acpi_host = sdhci_priv(host);
struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host);
unsigned int old_timing = host->timing;
u16 val;
sdhci_set_ios(mmc, ios);
if (old_timing != host->timing && amd_host->tuned_clock) {
if (host->timing == MMC_TIMING_MMC_HS400 ||
host->timing == MMC_TIMING_MMC_HS200) {
val = sdhci_readw(host, SDHCI_HOST_CONTROL2);
val |= SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, val, SDHCI_HOST_CONTROL2);
} else {
val = sdhci_readw(host, SDHCI_HOST_CONTROL2);
val &= ~SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, val, SDHCI_HOST_CONTROL2);
}
/* DLL is only required for HS400 */
if (host->timing == MMC_TIMING_MMC_HS400 &&
!amd_host->dll_enabled)
sdhci_acpi_amd_hs400_dll(host, true);
}
}
static int amd_sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
int err;
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_acpi_host *acpi_host = sdhci_priv(host);
struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host);
amd_host->tuned_clock = false;
err = sdhci_execute_tuning(mmc, opcode);
if (!err && !host->tuning_err)
amd_host->tuned_clock = true;
return err;
}
static void amd_sdhci_reset(struct sdhci_host *host, u8 mask)
{
struct sdhci_acpi_host *acpi_host = sdhci_priv(host);
struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host);
if (mask & SDHCI_RESET_ALL) {
amd_host->tuned_clock = false;
sdhci_acpi_amd_hs400_dll(host, false);
}
sdhci_reset(host, mask);
}
static const struct sdhci_ops sdhci_acpi_ops_amd = {
.set_clock = sdhci_set_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = amd_sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
};
static const struct sdhci_acpi_chip sdhci_acpi_chip_amd = {
.ops = &sdhci_acpi_ops_amd,
};
static int sdhci_acpi_emmc_amd_probe_slot(struct platform_device *pdev,
struct acpi_device *adev)
{
struct sdhci_acpi_host *c = platform_get_drvdata(pdev);
struct sdhci_host *host = c->host;
sdhci_read_caps(host);
if (host->caps1 & SDHCI_SUPPORT_DDR50)
host->mmc->caps = MMC_CAP_1_8V_DDR;
if ((host->caps1 & SDHCI_SUPPORT_SDR104) &&
(host->mmc->caps & MMC_CAP_1_8V_DDR))
host->mmc->caps2 = MMC_CAP2_HS400_1_8V;
/*
* There are two types of presets out in the wild:
* 1) Default/broken presets.
* These presets have two sets of problems:
* a) The clock divisor for SDR12, SDR25, and SDR50 is too small.
* This results in clock frequencies that are 2x higher than
* acceptable. i.e., SDR12 = 25 MHz, SDR25 = 50 MHz, SDR50 =
* 100 MHz.x
* b) The HS200 and HS400 driver strengths don't match.
* By default, the SDR104 preset register has a driver strength of
* A, but the (internal) HS400 preset register has a driver
* strength of B. As part of initializing HS400, HS200 tuning
* needs to be performed. Having different driver strengths
* between tuning and operation is wrong. It results in different
* rise/fall times that lead to incorrect sampling.
* 2) Firmware with properly initialized presets.
* These presets have proper clock divisors. i.e., SDR12 => 12MHz,
* SDR25 => 25 MHz, SDR50 => 50 MHz. Additionally the HS200 and
* HS400 preset driver strengths match.
*
* Enabling presets for HS400 doesn't work for the following reasons:
* 1) sdhci_set_ios has a hard coded list of timings that are used
* to determine if presets should be enabled.
* 2) sdhci_get_preset_value is using a non-standard register to
* read out HS400 presets. The AMD controller doesn't support this
* non-standard register. In fact, it doesn't expose the HS400
* preset register anywhere in the SDHCI memory map. This results
* in reading a garbage value and using the wrong presets.
*
* Since HS400 and HS200 presets must be identical, we could
* instead use the the SDR104 preset register.
*
* If the above issues are resolved we could remove this quirk for
* firmware that that has valid presets (i.e., SDR12 <= 12 MHz).
*/
host->quirks2 |= SDHCI_QUIRK2_PRESET_VALUE_BROKEN;
host->mmc_host_ops.select_drive_strength = amd_select_drive_strength;
host->mmc_host_ops.set_ios = amd_set_ios;
host->mmc_host_ops.execute_tuning = amd_sdhci_execute_tuning;
return 0;
}
static const struct sdhci_acpi_slot sdhci_acpi_slot_amd_emmc = {
.chip = &sdhci_acpi_chip_amd,
.caps = MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE,
.quirks = SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE |
SDHCI_QUIRK_32BIT_ADMA_SIZE,
.quirks2 = SDHCI_QUIRK2_BROKEN_64_BIT_DMA,
.probe_slot = sdhci_acpi_emmc_amd_probe_slot,
.priv_size = sizeof(struct amd_sdhci_host),
};
struct sdhci_acpi_uid_slot {
const char *hid;
const char *uid;
const struct sdhci_acpi_slot *slot;
};
static const struct sdhci_acpi_uid_slot sdhci_acpi_uids[] = {
{ "80865ACA", NULL, &sdhci_acpi_slot_int_sd },
{ "80865ACC", NULL, &sdhci_acpi_slot_int_emmc },
{ "80865AD0", NULL, &sdhci_acpi_slot_int_sdio },
{ "80860F14" , "1" , &sdhci_acpi_slot_int_emmc },
{ "80860F14" , "2" , &sdhci_acpi_slot_int_sdio },
{ "80860F14" , "3" , &sdhci_acpi_slot_int_sd },
{ "80860F16" , NULL, &sdhci_acpi_slot_int_sd },
{ "INT33BB" , "2" , &sdhci_acpi_slot_int_sdio },
{ "INT33BB" , "3" , &sdhci_acpi_slot_int_sd },
{ "INT33C6" , NULL, &sdhci_acpi_slot_int_sdio },
{ "INT3436" , NULL, &sdhci_acpi_slot_int_sdio },
{ "INT344D" , NULL, &sdhci_acpi_slot_int_sdio },
{ "PNP0FFF" , "3" , &sdhci_acpi_slot_int_sd },
{ "PNP0D40" },
{ "QCOM8051", NULL, &sdhci_acpi_slot_qcom_sd_3v },
{ "QCOM8052", NULL, &sdhci_acpi_slot_qcom_sd },
{ "AMDI0040", NULL, &sdhci_acpi_slot_amd_emmc },
{ "AMDI0041", NULL, &sdhci_acpi_slot_amd_emmc },
{ },
};
static const struct acpi_device_id sdhci_acpi_ids[] = {
{ "80865ACA" },
{ "80865ACC" },
{ "80865AD0" },
{ "80860F14" },
{ "80860F16" },
{ "INT33BB" },
{ "INT33C6" },
{ "INT3436" },
{ "INT344D" },
{ "PNP0D40" },
{ "QCOM8051" },
{ "QCOM8052" },
{ "AMDI0040" },
{ "AMDI0041" },
{ },
};
MODULE_DEVICE_TABLE(acpi, sdhci_acpi_ids);
static const struct dmi_system_id sdhci_acpi_quirks[] = {
{
/*
* The Lenovo Miix 320-10ICR has a bug in the _PS0 method of
* the SHC1 ACPI device, this bug causes it to reprogram the
* wrong LDO (DLDO3) to 1.8V if 1.8V modes are used and the
* card is (runtime) suspended + resumed. DLDO3 is used for
* the LCD and setting it to 1.8V causes the LCD to go black.
*/
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo MIIX 320-10ICR"),
},
.driver_data = (void *)DMI_QUIRK_RESET_SD_SIGNAL_VOLT_ON_SUSP,
},
{
/*
* The Acer Aspire Switch 10 (SW5-012) microSD slot always
* reports the card being write-protected even though microSD
* cards do not have a write-protect switch at all.
*/
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "Aspire SW5-012"),
},
.driver_data = (void *)DMI_QUIRK_SD_NO_WRITE_PROTECT,
},
{
/*
* The Toshiba WT8-B's microSD slot always reports the card being
* write-protected.
*/
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
DMI_MATCH(DMI_PRODUCT_NAME, "TOSHIBA ENCORE 2 WT8-B"),
},
.driver_data = (void *)DMI_QUIRK_SD_NO_WRITE_PROTECT,
},
{} /* Terminating entry */
};
static const struct sdhci_acpi_slot *sdhci_acpi_get_slot(struct acpi_device *adev)
{
const struct sdhci_acpi_uid_slot *u;
for (u = sdhci_acpi_uids; u->hid; u++) {
if (acpi_dev_hid_uid_match(adev, u->hid, u->uid))
return u->slot;
}
return NULL;
}
static int sdhci_acpi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct sdhci_acpi_slot *slot;
struct acpi_device *device, *child;
const struct dmi_system_id *id;
struct sdhci_acpi_host *c;
struct sdhci_host *host;
struct resource *iomem;
resource_size_t len;
size_t priv_size;
int quirks = 0;
int err;
device = ACPI_COMPANION(dev);
if (!device)
return -ENODEV;
id = dmi_first_match(sdhci_acpi_quirks);
if (id)
quirks = (long)id->driver_data;
slot = sdhci_acpi_get_slot(device);
/* Power on the SDHCI controller and its children */
acpi_device_fix_up_power(device);
if (!sdhci_acpi_no_fixup_child_power(device)) {
list_for_each_entry(child, &device->children, node)
if (child->status.present && child->status.enabled)
acpi_device_fix_up_power(child);
}
if (sdhci_acpi_byt_defer(dev))
return -EPROBE_DEFER;
iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!iomem)
return -ENOMEM;
len = resource_size(iomem);
if (len < 0x100)
dev_err(dev, "Invalid iomem size!\n");
if (!devm_request_mem_region(dev, iomem->start, len, dev_name(dev)))
return -ENOMEM;
priv_size = slot ? slot->priv_size : 0;
host = sdhci_alloc_host(dev, sizeof(struct sdhci_acpi_host) + priv_size);
if (IS_ERR(host))
return PTR_ERR(host);
c = sdhci_priv(host);
c->host = host;
c->slot = slot;
c->pdev = pdev;
c->use_runtime_pm = sdhci_acpi_flag(c, SDHCI_ACPI_RUNTIME_PM);
platform_set_drvdata(pdev, c);
host->hw_name = "ACPI";
host->ops = &sdhci_acpi_ops_dflt;
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0) {
err = -EINVAL;
goto err_free;
}
host->ioaddr = devm_ioremap(dev, iomem->start,
resource_size(iomem));
if (host->ioaddr == NULL) {
err = -ENOMEM;
goto err_free;
}
if (c->slot) {
if (c->slot->probe_slot) {
err = c->slot->probe_slot(pdev, device);
if (err)
goto err_free;
}
if (c->slot->chip) {
host->ops = c->slot->chip->ops;
host->quirks |= c->slot->chip->quirks;
host->quirks2 |= c->slot->chip->quirks2;
host->mmc->caps |= c->slot->chip->caps;
host->mmc->caps2 |= c->slot->chip->caps2;
host->mmc->pm_caps |= c->slot->chip->pm_caps;
}
host->quirks |= c->slot->quirks;
host->quirks2 |= c->slot->quirks2;
host->mmc->caps |= c->slot->caps;
host->mmc->caps2 |= c->slot->caps2;
host->mmc->pm_caps |= c->slot->pm_caps;
}
host->mmc->caps2 |= MMC_CAP2_NO_PRESCAN_POWERUP;
if (sdhci_acpi_flag(c, SDHCI_ACPI_SD_CD)) {
bool v = sdhci_acpi_flag(c, SDHCI_ACPI_SD_CD_OVERRIDE_LEVEL);
err = mmc_gpiod_request_cd(host->mmc, NULL, 0, v, 0);
if (err) {
if (err == -EPROBE_DEFER)
goto err_free;
dev_warn(dev, "failed to setup card detect gpio\n");
c->use_runtime_pm = false;
}
if (quirks & DMI_QUIRK_RESET_SD_SIGNAL_VOLT_ON_SUSP)
c->reset_signal_volt_on_suspend = true;
if (quirks & DMI_QUIRK_SD_NO_WRITE_PROTECT)
host->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
}
err = sdhci_setup_host(host);
if (err)
goto err_free;
if (c->slot && c->slot->setup_host) {
err = c->slot->setup_host(pdev);
if (err)
goto err_cleanup;
}
err = __sdhci_add_host(host);
if (err)
goto err_cleanup;
if (c->use_runtime_pm) {
pm_runtime_set_active(dev);
pm_suspend_ignore_children(dev, 1);
pm_runtime_set_autosuspend_delay(dev, 50);
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
}
device_enable_async_suspend(dev);
return 0;
err_cleanup:
sdhci_cleanup_host(c->host);
err_free:
if (c->slot && c->slot->free_slot)
c->slot->free_slot(pdev);
sdhci_free_host(c->host);
return err;
}
static int sdhci_acpi_remove(struct platform_device *pdev)
{
struct sdhci_acpi_host *c = platform_get_drvdata(pdev);
struct device *dev = &pdev->dev;
int dead;
if (c->use_runtime_pm) {
pm_runtime_get_sync(dev);
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
}
if (c->slot && c->slot->remove_slot)
c->slot->remove_slot(pdev);
dead = (sdhci_readl(c->host, SDHCI_INT_STATUS) == ~0);
sdhci_remove_host(c->host, dead);
if (c->slot && c->slot->free_slot)
c->slot->free_slot(pdev);
sdhci_free_host(c->host);
return 0;
}
static void __maybe_unused sdhci_acpi_reset_signal_voltage_if_needed(
struct device *dev)
{
struct sdhci_acpi_host *c = dev_get_drvdata(dev);
struct sdhci_host *host = c->host;
if (c->is_intel && c->reset_signal_volt_on_suspend &&
host->mmc->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_330) {
struct intel_host *intel_host = sdhci_acpi_priv(c);
unsigned int fn = INTEL_DSM_V33_SWITCH;
u32 result = 0;
intel_dsm(intel_host, dev, fn, &result);
}
}
#ifdef CONFIG_PM_SLEEP
static int sdhci_acpi_suspend(struct device *dev)
{
struct sdhci_acpi_host *c = dev_get_drvdata(dev);
struct sdhci_host *host = c->host;
int ret;
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
ret = sdhci_suspend_host(host);
if (ret)
return ret;
sdhci_acpi_reset_signal_voltage_if_needed(dev);
return 0;
}
static int sdhci_acpi_resume(struct device *dev)
{
struct sdhci_acpi_host *c = dev_get_drvdata(dev);
sdhci_acpi_byt_setting(&c->pdev->dev);
return sdhci_resume_host(c->host);
}
#endif
#ifdef CONFIG_PM
static int sdhci_acpi_runtime_suspend(struct device *dev)
{
struct sdhci_acpi_host *c = dev_get_drvdata(dev);
struct sdhci_host *host = c->host;
int ret;
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
ret = sdhci_runtime_suspend_host(host);
if (ret)
return ret;
sdhci_acpi_reset_signal_voltage_if_needed(dev);
return 0;
}
static int sdhci_acpi_runtime_resume(struct device *dev)
{
struct sdhci_acpi_host *c = dev_get_drvdata(dev);
sdhci_acpi_byt_setting(&c->pdev->dev);
return sdhci_runtime_resume_host(c->host, 0);
}
#endif
static const struct dev_pm_ops sdhci_acpi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(sdhci_acpi_suspend, sdhci_acpi_resume)
SET_RUNTIME_PM_OPS(sdhci_acpi_runtime_suspend,
sdhci_acpi_runtime_resume, NULL)
};
static struct platform_driver sdhci_acpi_driver = {
.driver = {
.name = "sdhci-acpi",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.acpi_match_table = sdhci_acpi_ids,
.pm = &sdhci_acpi_pm_ops,
},
.probe = sdhci_acpi_probe,
.remove = sdhci_acpi_remove,
};
module_platform_driver(sdhci_acpi_driver);
MODULE_DESCRIPTION("Secure Digital Host Controller Interface ACPI driver");
MODULE_AUTHOR("Adrian Hunter");
MODULE_LICENSE("GPL v2");