linux-sg2042/drivers/power/supply/axp288_fuel_gauge.c

1156 lines
31 KiB
C

/*
* axp288_fuel_gauge.c - Xpower AXP288 PMIC Fuel Gauge Driver
*
* Copyright (C) 2014 Intel Corporation
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/regmap.h>
#include <linux/jiffies.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/mfd/axp20x.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/iio/consumer.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#define CHRG_STAT_BAT_SAFE_MODE (1 << 3)
#define CHRG_STAT_BAT_VALID (1 << 4)
#define CHRG_STAT_BAT_PRESENT (1 << 5)
#define CHRG_STAT_CHARGING (1 << 6)
#define CHRG_STAT_PMIC_OTP (1 << 7)
#define CHRG_CCCV_CC_MASK 0xf /* 4 bits */
#define CHRG_CCCV_CC_BIT_POS 0
#define CHRG_CCCV_CC_OFFSET 200 /* 200mA */
#define CHRG_CCCV_CC_LSB_RES 200 /* 200mA */
#define CHRG_CCCV_ITERM_20P (1 << 4) /* 20% of CC */
#define CHRG_CCCV_CV_MASK 0x60 /* 2 bits */
#define CHRG_CCCV_CV_BIT_POS 5
#define CHRG_CCCV_CV_4100MV 0x0 /* 4.10V */
#define CHRG_CCCV_CV_4150MV 0x1 /* 4.15V */
#define CHRG_CCCV_CV_4200MV 0x2 /* 4.20V */
#define CHRG_CCCV_CV_4350MV 0x3 /* 4.35V */
#define CHRG_CCCV_CHG_EN (1 << 7)
#define CV_4100 4100 /* 4100mV */
#define CV_4150 4150 /* 4150mV */
#define CV_4200 4200 /* 4200mV */
#define CV_4350 4350 /* 4350mV */
#define TEMP_IRQ_CFG_QWBTU (1 << 0)
#define TEMP_IRQ_CFG_WBTU (1 << 1)
#define TEMP_IRQ_CFG_QWBTO (1 << 2)
#define TEMP_IRQ_CFG_WBTO (1 << 3)
#define TEMP_IRQ_CFG_MASK 0xf
#define FG_IRQ_CFG_LOWBATT_WL2 (1 << 0)
#define FG_IRQ_CFG_LOWBATT_WL1 (1 << 1)
#define FG_IRQ_CFG_LOWBATT_MASK 0x3
#define LOWBAT_IRQ_STAT_LOWBATT_WL2 (1 << 0)
#define LOWBAT_IRQ_STAT_LOWBATT_WL1 (1 << 1)
#define FG_CNTL_OCV_ADJ_STAT (1 << 2)
#define FG_CNTL_OCV_ADJ_EN (1 << 3)
#define FG_CNTL_CAP_ADJ_STAT (1 << 4)
#define FG_CNTL_CAP_ADJ_EN (1 << 5)
#define FG_CNTL_CC_EN (1 << 6)
#define FG_CNTL_GAUGE_EN (1 << 7)
#define FG_REP_CAP_VALID (1 << 7)
#define FG_REP_CAP_VAL_MASK 0x7F
#define FG_DES_CAP1_VALID (1 << 7)
#define FG_DES_CAP1_VAL_MASK 0x7F
#define FG_DES_CAP0_VAL_MASK 0xFF
#define FG_DES_CAP_RES_LSB 1456 /* 1.456mAhr */
#define FG_CC_MTR1_VALID (1 << 7)
#define FG_CC_MTR1_VAL_MASK 0x7F
#define FG_CC_MTR0_VAL_MASK 0xFF
#define FG_DES_CC_RES_LSB 1456 /* 1.456mAhr */
#define FG_OCV_CAP_VALID (1 << 7)
#define FG_OCV_CAP_VAL_MASK 0x7F
#define FG_CC_CAP_VALID (1 << 7)
#define FG_CC_CAP_VAL_MASK 0x7F
#define FG_LOW_CAP_THR1_MASK 0xf0 /* 5% tp 20% */
#define FG_LOW_CAP_THR1_VAL 0xa0 /* 15 perc */
#define FG_LOW_CAP_THR2_MASK 0x0f /* 0% to 15% */
#define FG_LOW_CAP_WARN_THR 14 /* 14 perc */
#define FG_LOW_CAP_CRIT_THR 4 /* 4 perc */
#define FG_LOW_CAP_SHDN_THR 0 /* 0 perc */
#define STATUS_MON_DELAY_JIFFIES (HZ * 60) /*60 sec */
#define NR_RETRY_CNT 3
#define DEV_NAME "axp288_fuel_gauge"
/* 1.1mV per LSB expressed in uV */
#define VOLTAGE_FROM_ADC(a) ((a * 11) / 10)
/* properties converted to tenths of degrees, uV, uA, uW */
#define PROP_TEMP(a) ((a) * 10)
#define UNPROP_TEMP(a) ((a) / 10)
#define PROP_VOLT(a) ((a) * 1000)
#define PROP_CURR(a) ((a) * 1000)
#define AXP288_FG_INTR_NUM 6
enum {
QWBTU_IRQ = 0,
WBTU_IRQ,
QWBTO_IRQ,
WBTO_IRQ,
WL2_IRQ,
WL1_IRQ,
};
struct axp288_fg_info {
struct platform_device *pdev;
struct axp20x_fg_pdata *pdata;
struct regmap *regmap;
struct regmap_irq_chip_data *regmap_irqc;
int irq[AXP288_FG_INTR_NUM];
struct power_supply *bat;
struct mutex lock;
int status;
struct delayed_work status_monitor;
struct dentry *debug_file;
};
static enum power_supply_property fuel_gauge_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_VOLTAGE_OCV,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TEMP_MAX,
POWER_SUPPLY_PROP_TEMP_MIN,
POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_MODEL_NAME,
};
static int fuel_gauge_reg_readb(struct axp288_fg_info *info, int reg)
{
int ret, i;
unsigned int val;
for (i = 0; i < NR_RETRY_CNT; i++) {
ret = regmap_read(info->regmap, reg, &val);
if (ret == -EBUSY)
continue;
else
break;
}
if (ret < 0)
dev_err(&info->pdev->dev, "axp288 reg read err:%d\n", ret);
return val;
}
static int fuel_gauge_reg_writeb(struct axp288_fg_info *info, int reg, u8 val)
{
int ret;
ret = regmap_write(info->regmap, reg, (unsigned int)val);
if (ret < 0)
dev_err(&info->pdev->dev, "axp288 reg write err:%d\n", ret);
return ret;
}
static int pmic_read_adc_val(const char *name, int *raw_val,
struct axp288_fg_info *info)
{
int ret, val = 0;
struct iio_channel *indio_chan;
indio_chan = iio_channel_get(NULL, name);
if (IS_ERR_OR_NULL(indio_chan)) {
ret = PTR_ERR(indio_chan);
goto exit;
}
ret = iio_read_channel_raw(indio_chan, &val);
if (ret < 0) {
dev_err(&info->pdev->dev,
"IIO channel read error: %x, %x\n", ret, val);
goto err_exit;
}
dev_dbg(&info->pdev->dev, "adc raw val=%x\n", val);
*raw_val = val;
err_exit:
iio_channel_release(indio_chan);
exit:
return ret;
}
#ifdef CONFIG_DEBUG_FS
static int fuel_gauge_debug_show(struct seq_file *s, void *data)
{
struct axp288_fg_info *info = s->private;
int raw_val, ret;
seq_printf(s, " PWR_STATUS[%02x] : %02x\n",
AXP20X_PWR_INPUT_STATUS,
fuel_gauge_reg_readb(info, AXP20X_PWR_INPUT_STATUS));
seq_printf(s, "PWR_OP_MODE[%02x] : %02x\n",
AXP20X_PWR_OP_MODE,
fuel_gauge_reg_readb(info, AXP20X_PWR_OP_MODE));
seq_printf(s, " CHRG_CTRL1[%02x] : %02x\n",
AXP20X_CHRG_CTRL1,
fuel_gauge_reg_readb(info, AXP20X_CHRG_CTRL1));
seq_printf(s, " VLTF[%02x] : %02x\n",
AXP20X_V_LTF_DISCHRG,
fuel_gauge_reg_readb(info, AXP20X_V_LTF_DISCHRG));
seq_printf(s, " VHTF[%02x] : %02x\n",
AXP20X_V_HTF_DISCHRG,
fuel_gauge_reg_readb(info, AXP20X_V_HTF_DISCHRG));
seq_printf(s, " CC_CTRL[%02x] : %02x\n",
AXP20X_CC_CTRL,
fuel_gauge_reg_readb(info, AXP20X_CC_CTRL));
seq_printf(s, "BATTERY CAP[%02x] : %02x\n",
AXP20X_FG_RES,
fuel_gauge_reg_readb(info, AXP20X_FG_RES));
seq_printf(s, " FG_RDC1[%02x] : %02x\n",
AXP288_FG_RDC1_REG,
fuel_gauge_reg_readb(info, AXP288_FG_RDC1_REG));
seq_printf(s, " FG_RDC0[%02x] : %02x\n",
AXP288_FG_RDC0_REG,
fuel_gauge_reg_readb(info, AXP288_FG_RDC0_REG));
seq_printf(s, " FG_OCVH[%02x] : %02x\n",
AXP288_FG_OCVH_REG,
fuel_gauge_reg_readb(info, AXP288_FG_OCVH_REG));
seq_printf(s, " FG_OCVL[%02x] : %02x\n",
AXP288_FG_OCVL_REG,
fuel_gauge_reg_readb(info, AXP288_FG_OCVL_REG));
seq_printf(s, "FG_DES_CAP1[%02x] : %02x\n",
AXP288_FG_DES_CAP1_REG,
fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG));
seq_printf(s, "FG_DES_CAP0[%02x] : %02x\n",
AXP288_FG_DES_CAP0_REG,
fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP0_REG));
seq_printf(s, " FG_CC_MTR1[%02x] : %02x\n",
AXP288_FG_CC_MTR1_REG,
fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR1_REG));
seq_printf(s, " FG_CC_MTR0[%02x] : %02x\n",
AXP288_FG_CC_MTR0_REG,
fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR0_REG));
seq_printf(s, " FG_OCV_CAP[%02x] : %02x\n",
AXP288_FG_OCV_CAP_REG,
fuel_gauge_reg_readb(info, AXP288_FG_OCV_CAP_REG));
seq_printf(s, " FG_CC_CAP[%02x] : %02x\n",
AXP288_FG_CC_CAP_REG,
fuel_gauge_reg_readb(info, AXP288_FG_CC_CAP_REG));
seq_printf(s, " FG_LOW_CAP[%02x] : %02x\n",
AXP288_FG_LOW_CAP_REG,
fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG));
seq_printf(s, "TUNING_CTL0[%02x] : %02x\n",
AXP288_FG_TUNE0,
fuel_gauge_reg_readb(info, AXP288_FG_TUNE0));
seq_printf(s, "TUNING_CTL1[%02x] : %02x\n",
AXP288_FG_TUNE1,
fuel_gauge_reg_readb(info, AXP288_FG_TUNE1));
seq_printf(s, "TUNING_CTL2[%02x] : %02x\n",
AXP288_FG_TUNE2,
fuel_gauge_reg_readb(info, AXP288_FG_TUNE2));
seq_printf(s, "TUNING_CTL3[%02x] : %02x\n",
AXP288_FG_TUNE3,
fuel_gauge_reg_readb(info, AXP288_FG_TUNE3));
seq_printf(s, "TUNING_CTL4[%02x] : %02x\n",
AXP288_FG_TUNE4,
fuel_gauge_reg_readb(info, AXP288_FG_TUNE4));
seq_printf(s, "TUNING_CTL5[%02x] : %02x\n",
AXP288_FG_TUNE5,
fuel_gauge_reg_readb(info, AXP288_FG_TUNE5));
ret = pmic_read_adc_val("axp288-batt-temp", &raw_val, info);
if (ret >= 0)
seq_printf(s, "axp288-batttemp : %d\n", raw_val);
ret = pmic_read_adc_val("axp288-pmic-temp", &raw_val, info);
if (ret >= 0)
seq_printf(s, "axp288-pmictemp : %d\n", raw_val);
ret = pmic_read_adc_val("axp288-system-temp", &raw_val, info);
if (ret >= 0)
seq_printf(s, "axp288-systtemp : %d\n", raw_val);
ret = pmic_read_adc_val("axp288-chrg-curr", &raw_val, info);
if (ret >= 0)
seq_printf(s, "axp288-chrgcurr : %d\n", raw_val);
ret = pmic_read_adc_val("axp288-chrg-d-curr", &raw_val, info);
if (ret >= 0)
seq_printf(s, "axp288-dchrgcur : %d\n", raw_val);
ret = pmic_read_adc_val("axp288-batt-volt", &raw_val, info);
if (ret >= 0)
seq_printf(s, "axp288-battvolt : %d\n", raw_val);
return 0;
}
static int debug_open(struct inode *inode, struct file *file)
{
return single_open(file, fuel_gauge_debug_show, inode->i_private);
}
static const struct file_operations fg_debug_fops = {
.open = debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void fuel_gauge_create_debugfs(struct axp288_fg_info *info)
{
info->debug_file = debugfs_create_file("fuelgauge", 0666, NULL,
info, &fg_debug_fops);
}
static void fuel_gauge_remove_debugfs(struct axp288_fg_info *info)
{
debugfs_remove(info->debug_file);
}
#else
static inline void fuel_gauge_create_debugfs(struct axp288_fg_info *info)
{
}
static inline void fuel_gauge_remove_debugfs(struct axp288_fg_info *info)
{
}
#endif
static void fuel_gauge_get_status(struct axp288_fg_info *info)
{
int pwr_stat, ret;
int charge, discharge;
pwr_stat = fuel_gauge_reg_readb(info, AXP20X_PWR_INPUT_STATUS);
if (pwr_stat < 0) {
dev_err(&info->pdev->dev,
"PWR STAT read failed:%d\n", pwr_stat);
return;
}
ret = pmic_read_adc_val("axp288-chrg-curr", &charge, info);
if (ret < 0) {
dev_err(&info->pdev->dev,
"ADC charge current read failed:%d\n", ret);
return;
}
ret = pmic_read_adc_val("axp288-chrg-d-curr", &discharge, info);
if (ret < 0) {
dev_err(&info->pdev->dev,
"ADC discharge current read failed:%d\n", ret);
return;
}
if (charge > 0)
info->status = POWER_SUPPLY_STATUS_CHARGING;
else if (discharge > 0)
info->status = POWER_SUPPLY_STATUS_DISCHARGING;
else {
if (pwr_stat & CHRG_STAT_BAT_PRESENT)
info->status = POWER_SUPPLY_STATUS_FULL;
else
info->status = POWER_SUPPLY_STATUS_NOT_CHARGING;
}
}
static int fuel_gauge_get_vbatt(struct axp288_fg_info *info, int *vbatt)
{
int ret = 0, raw_val;
ret = pmic_read_adc_val("axp288-batt-volt", &raw_val, info);
if (ret < 0)
goto vbatt_read_fail;
*vbatt = VOLTAGE_FROM_ADC(raw_val);
vbatt_read_fail:
return ret;
}
static int fuel_gauge_get_current(struct axp288_fg_info *info, int *cur)
{
int ret, value = 0;
int charge, discharge;
ret = pmic_read_adc_val("axp288-chrg-curr", &charge, info);
if (ret < 0)
goto current_read_fail;
ret = pmic_read_adc_val("axp288-chrg-d-curr", &discharge, info);
if (ret < 0)
goto current_read_fail;
if (charge > 0)
value = charge;
else if (discharge > 0)
value = -1 * discharge;
*cur = value;
current_read_fail:
return ret;
}
static int temp_to_adc(struct axp288_fg_info *info, int tval)
{
int rntc = 0, i, ret, adc_val;
int rmin, rmax, tmin, tmax;
int tcsz = info->pdata->tcsz;
/* get the Rntc resitance value for this temp */
if (tval > info->pdata->thermistor_curve[0][1]) {
rntc = info->pdata->thermistor_curve[0][0];
} else if (tval <= info->pdata->thermistor_curve[tcsz-1][1]) {
rntc = info->pdata->thermistor_curve[tcsz-1][0];
} else {
for (i = 1; i < tcsz; i++) {
if (tval > info->pdata->thermistor_curve[i][1]) {
rmin = info->pdata->thermistor_curve[i-1][0];
rmax = info->pdata->thermistor_curve[i][0];
tmin = info->pdata->thermistor_curve[i-1][1];
tmax = info->pdata->thermistor_curve[i][1];
rntc = rmin + ((rmax - rmin) *
(tval - tmin) / (tmax - tmin));
break;
}
}
}
/* we need the current to calculate the proper adc voltage */
ret = fuel_gauge_reg_readb(info, AXP20X_ADC_RATE);
if (ret < 0) {
dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret);
ret = 0x30;
}
/*
* temperature is proportional to NTS thermistor resistance
* ADC_RATE[5-4] determines current, 00=20uA,01=40uA,10=60uA,11=80uA
* [12-bit ADC VAL] = R_NTC(Ω) * current / 800
*/
adc_val = rntc * (20 + (20 * ((ret >> 4) & 0x3))) / 800;
return adc_val;
}
static int adc_to_temp(struct axp288_fg_info *info, int adc_val)
{
int ret, r, i, tval = 0;
int rmin, rmax, tmin, tmax;
int tcsz = info->pdata->tcsz;
ret = fuel_gauge_reg_readb(info, AXP20X_ADC_RATE);
if (ret < 0) {
dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret);
ret = 0x30;
}
/*
* temperature is proportional to NTS thermistor resistance
* ADC_RATE[5-4] determines current, 00=20uA,01=40uA,10=60uA,11=80uA
* R_NTC(Ω) = [12-bit ADC VAL] * 800 / current
*/
r = adc_val * 800 / (20 + (20 * ((ret >> 4) & 0x3)));
if (r < info->pdata->thermistor_curve[0][0]) {
tval = info->pdata->thermistor_curve[0][1];
} else if (r >= info->pdata->thermistor_curve[tcsz-1][0]) {
tval = info->pdata->thermistor_curve[tcsz-1][1];
} else {
for (i = 1; i < tcsz; i++) {
if (r < info->pdata->thermistor_curve[i][0]) {
rmin = info->pdata->thermistor_curve[i-1][0];
rmax = info->pdata->thermistor_curve[i][0];
tmin = info->pdata->thermistor_curve[i-1][1];
tmax = info->pdata->thermistor_curve[i][1];
tval = tmin + ((tmax - tmin) *
(r - rmin) / (rmax - rmin));
break;
}
}
}
return tval;
}
static int fuel_gauge_get_btemp(struct axp288_fg_info *info, int *btemp)
{
int ret, raw_val = 0;
ret = pmic_read_adc_val("axp288-batt-temp", &raw_val, info);
if (ret < 0)
goto temp_read_fail;
*btemp = adc_to_temp(info, raw_val);
temp_read_fail:
return ret;
}
static int fuel_gauge_get_vocv(struct axp288_fg_info *info, int *vocv)
{
int ret, value;
/* 12-bit data value, upper 8 in OCVH, lower 4 in OCVL */
ret = fuel_gauge_reg_readb(info, AXP288_FG_OCVH_REG);
if (ret < 0)
goto vocv_read_fail;
value = ret << 4;
ret = fuel_gauge_reg_readb(info, AXP288_FG_OCVL_REG);
if (ret < 0)
goto vocv_read_fail;
value |= (ret & 0xf);
*vocv = VOLTAGE_FROM_ADC(value);
vocv_read_fail:
return ret;
}
static int fuel_gauge_battery_health(struct axp288_fg_info *info)
{
int temp, vocv;
int ret, health = POWER_SUPPLY_HEALTH_UNKNOWN;
ret = fuel_gauge_get_btemp(info, &temp);
if (ret < 0)
goto health_read_fail;
ret = fuel_gauge_get_vocv(info, &vocv);
if (ret < 0)
goto health_read_fail;
if (vocv > info->pdata->max_volt)
health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
else if (temp > info->pdata->max_temp)
health = POWER_SUPPLY_HEALTH_OVERHEAT;
else if (temp < info->pdata->min_temp)
health = POWER_SUPPLY_HEALTH_COLD;
else if (vocv < info->pdata->min_volt)
health = POWER_SUPPLY_HEALTH_DEAD;
else
health = POWER_SUPPLY_HEALTH_GOOD;
health_read_fail:
return health;
}
static int fuel_gauge_set_high_btemp_alert(struct axp288_fg_info *info)
{
int ret, adc_val;
/* program temperature threshold as 1/16 ADC value */
adc_val = temp_to_adc(info, info->pdata->max_temp);
ret = fuel_gauge_reg_writeb(info, AXP20X_V_HTF_DISCHRG, adc_val >> 4);
return ret;
}
static int fuel_gauge_set_low_btemp_alert(struct axp288_fg_info *info)
{
int ret, adc_val;
/* program temperature threshold as 1/16 ADC value */
adc_val = temp_to_adc(info, info->pdata->min_temp);
ret = fuel_gauge_reg_writeb(info, AXP20X_V_LTF_DISCHRG, adc_val >> 4);
return ret;
}
static int fuel_gauge_get_property(struct power_supply *ps,
enum power_supply_property prop,
union power_supply_propval *val)
{
struct axp288_fg_info *info = power_supply_get_drvdata(ps);
int ret = 0, value;
mutex_lock(&info->lock);
switch (prop) {
case POWER_SUPPLY_PROP_STATUS:
fuel_gauge_get_status(info);
val->intval = info->status;
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = fuel_gauge_battery_health(info);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
ret = fuel_gauge_get_vbatt(info, &value);
if (ret < 0)
goto fuel_gauge_read_err;
val->intval = PROP_VOLT(value);
break;
case POWER_SUPPLY_PROP_VOLTAGE_OCV:
ret = fuel_gauge_get_vocv(info, &value);
if (ret < 0)
goto fuel_gauge_read_err;
val->intval = PROP_VOLT(value);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
ret = fuel_gauge_get_current(info, &value);
if (ret < 0)
goto fuel_gauge_read_err;
val->intval = PROP_CURR(value);
break;
case POWER_SUPPLY_PROP_PRESENT:
ret = fuel_gauge_reg_readb(info, AXP20X_PWR_OP_MODE);
if (ret < 0)
goto fuel_gauge_read_err;
if (ret & CHRG_STAT_BAT_PRESENT)
val->intval = 1;
else
val->intval = 0;
break;
case POWER_SUPPLY_PROP_CAPACITY:
ret = fuel_gauge_reg_readb(info, AXP20X_FG_RES);
if (ret < 0)
goto fuel_gauge_read_err;
if (!(ret & FG_REP_CAP_VALID))
dev_err(&info->pdev->dev,
"capacity measurement not valid\n");
val->intval = (ret & FG_REP_CAP_VAL_MASK);
break;
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
ret = fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG);
if (ret < 0)
goto fuel_gauge_read_err;
val->intval = (ret & 0x0f);
break;
case POWER_SUPPLY_PROP_TEMP:
ret = fuel_gauge_get_btemp(info, &value);
if (ret < 0)
goto fuel_gauge_read_err;
val->intval = PROP_TEMP(value);
break;
case POWER_SUPPLY_PROP_TEMP_MAX:
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
val->intval = PROP_TEMP(info->pdata->max_temp);
break;
case POWER_SUPPLY_PROP_TEMP_MIN:
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
val->intval = PROP_TEMP(info->pdata->min_temp);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_CHARGE_NOW:
ret = fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR1_REG);
if (ret < 0)
goto fuel_gauge_read_err;
value = (ret & FG_CC_MTR1_VAL_MASK) << 8;
ret = fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR0_REG);
if (ret < 0)
goto fuel_gauge_read_err;
value |= (ret & FG_CC_MTR0_VAL_MASK);
val->intval = value * FG_DES_CAP_RES_LSB;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG);
if (ret < 0)
goto fuel_gauge_read_err;
value = (ret & FG_DES_CAP1_VAL_MASK) << 8;
ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP0_REG);
if (ret < 0)
goto fuel_gauge_read_err;
value |= (ret & FG_DES_CAP0_VAL_MASK);
val->intval = value * FG_DES_CAP_RES_LSB;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval = PROP_CURR(info->pdata->design_cap);
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
val->intval = PROP_VOLT(info->pdata->max_volt);
break;
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
val->intval = PROP_VOLT(info->pdata->min_volt);
break;
case POWER_SUPPLY_PROP_MODEL_NAME:
val->strval = info->pdata->battid;
break;
default:
mutex_unlock(&info->lock);
return -EINVAL;
}
mutex_unlock(&info->lock);
return 0;
fuel_gauge_read_err:
mutex_unlock(&info->lock);
return ret;
}
static int fuel_gauge_set_property(struct power_supply *ps,
enum power_supply_property prop,
const union power_supply_propval *val)
{
struct axp288_fg_info *info = power_supply_get_drvdata(ps);
int ret = 0;
mutex_lock(&info->lock);
switch (prop) {
case POWER_SUPPLY_PROP_STATUS:
info->status = val->intval;
break;
case POWER_SUPPLY_PROP_TEMP_MIN:
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
if ((val->intval < PD_DEF_MIN_TEMP) ||
(val->intval > PD_DEF_MAX_TEMP)) {
ret = -EINVAL;
break;
}
info->pdata->min_temp = UNPROP_TEMP(val->intval);
ret = fuel_gauge_set_low_btemp_alert(info);
if (ret < 0)
dev_err(&info->pdev->dev,
"temp alert min set fail:%d\n", ret);
break;
case POWER_SUPPLY_PROP_TEMP_MAX:
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
if ((val->intval < PD_DEF_MIN_TEMP) ||
(val->intval > PD_DEF_MAX_TEMP)) {
ret = -EINVAL;
break;
}
info->pdata->max_temp = UNPROP_TEMP(val->intval);
ret = fuel_gauge_set_high_btemp_alert(info);
if (ret < 0)
dev_err(&info->pdev->dev,
"temp alert max set fail:%d\n", ret);
break;
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
if ((val->intval < 0) || (val->intval > 15)) {
ret = -EINVAL;
break;
}
ret = fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG);
if (ret < 0)
break;
ret &= 0xf0;
ret |= (val->intval & 0xf);
ret = fuel_gauge_reg_writeb(info, AXP288_FG_LOW_CAP_REG, ret);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&info->lock);
return ret;
}
static int fuel_gauge_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
int ret;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
case POWER_SUPPLY_PROP_TEMP_MIN:
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
case POWER_SUPPLY_PROP_TEMP_MAX:
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
ret = 1;
break;
default:
ret = 0;
}
return ret;
}
static void fuel_gauge_status_monitor(struct work_struct *work)
{
struct axp288_fg_info *info = container_of(work,
struct axp288_fg_info, status_monitor.work);
fuel_gauge_get_status(info);
power_supply_changed(info->bat);
schedule_delayed_work(&info->status_monitor, STATUS_MON_DELAY_JIFFIES);
}
static irqreturn_t fuel_gauge_thread_handler(int irq, void *dev)
{
struct axp288_fg_info *info = dev;
int i;
for (i = 0; i < AXP288_FG_INTR_NUM; i++) {
if (info->irq[i] == irq)
break;
}
if (i >= AXP288_FG_INTR_NUM) {
dev_warn(&info->pdev->dev, "spurious interrupt!!\n");
return IRQ_NONE;
}
switch (i) {
case QWBTU_IRQ:
dev_info(&info->pdev->dev,
"Quit Battery under temperature in work mode IRQ (QWBTU)\n");
break;
case WBTU_IRQ:
dev_info(&info->pdev->dev,
"Battery under temperature in work mode IRQ (WBTU)\n");
break;
case QWBTO_IRQ:
dev_info(&info->pdev->dev,
"Quit Battery over temperature in work mode IRQ (QWBTO)\n");
break;
case WBTO_IRQ:
dev_info(&info->pdev->dev,
"Battery over temperature in work mode IRQ (WBTO)\n");
break;
case WL2_IRQ:
dev_info(&info->pdev->dev, "Low Batt Warning(2) INTR\n");
break;
case WL1_IRQ:
dev_info(&info->pdev->dev, "Low Batt Warning(1) INTR\n");
break;
default:
dev_warn(&info->pdev->dev, "Spurious Interrupt!!!\n");
}
power_supply_changed(info->bat);
return IRQ_HANDLED;
}
static void fuel_gauge_external_power_changed(struct power_supply *psy)
{
struct axp288_fg_info *info = power_supply_get_drvdata(psy);
power_supply_changed(info->bat);
}
static const struct power_supply_desc fuel_gauge_desc = {
.name = DEV_NAME,
.type = POWER_SUPPLY_TYPE_BATTERY,
.properties = fuel_gauge_props,
.num_properties = ARRAY_SIZE(fuel_gauge_props),
.get_property = fuel_gauge_get_property,
.set_property = fuel_gauge_set_property,
.property_is_writeable = fuel_gauge_property_is_writeable,
.external_power_changed = fuel_gauge_external_power_changed,
};
static int fuel_gauge_set_lowbatt_thresholds(struct axp288_fg_info *info)
{
int ret;
u8 reg_val;
ret = fuel_gauge_reg_readb(info, AXP20X_FG_RES);
if (ret < 0) {
dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret);
return ret;
}
ret = (ret & FG_REP_CAP_VAL_MASK);
if (ret > FG_LOW_CAP_WARN_THR)
reg_val = FG_LOW_CAP_WARN_THR;
else if (ret > FG_LOW_CAP_CRIT_THR)
reg_val = FG_LOW_CAP_CRIT_THR;
else
reg_val = FG_LOW_CAP_SHDN_THR;
reg_val |= FG_LOW_CAP_THR1_VAL;
ret = fuel_gauge_reg_writeb(info, AXP288_FG_LOW_CAP_REG, reg_val);
if (ret < 0)
dev_err(&info->pdev->dev, "%s:write err:%d\n", __func__, ret);
return ret;
}
static int fuel_gauge_program_vbatt_full(struct axp288_fg_info *info)
{
int ret;
u8 val;
ret = fuel_gauge_reg_readb(info, AXP20X_CHRG_CTRL1);
if (ret < 0)
goto fg_prog_ocv_fail;
else
val = (ret & ~CHRG_CCCV_CV_MASK);
switch (info->pdata->max_volt) {
case CV_4100:
val |= (CHRG_CCCV_CV_4100MV << CHRG_CCCV_CV_BIT_POS);
break;
case CV_4150:
val |= (CHRG_CCCV_CV_4150MV << CHRG_CCCV_CV_BIT_POS);
break;
case CV_4200:
val |= (CHRG_CCCV_CV_4200MV << CHRG_CCCV_CV_BIT_POS);
break;
case CV_4350:
val |= (CHRG_CCCV_CV_4350MV << CHRG_CCCV_CV_BIT_POS);
break;
default:
val |= (CHRG_CCCV_CV_4200MV << CHRG_CCCV_CV_BIT_POS);
break;
}
ret = fuel_gauge_reg_writeb(info, AXP20X_CHRG_CTRL1, val);
fg_prog_ocv_fail:
return ret;
}
static int fuel_gauge_program_design_cap(struct axp288_fg_info *info)
{
int ret;
ret = fuel_gauge_reg_writeb(info,
AXP288_FG_DES_CAP1_REG, info->pdata->cap1);
if (ret < 0)
goto fg_prog_descap_fail;
ret = fuel_gauge_reg_writeb(info,
AXP288_FG_DES_CAP0_REG, info->pdata->cap0);
fg_prog_descap_fail:
return ret;
}
static int fuel_gauge_program_ocv_curve(struct axp288_fg_info *info)
{
int ret = 0, i;
for (i = 0; i < OCV_CURVE_SIZE; i++) {
ret = fuel_gauge_reg_writeb(info,
AXP288_FG_OCV_CURVE_REG + i, info->pdata->ocv_curve[i]);
if (ret < 0)
goto fg_prog_ocv_fail;
}
fg_prog_ocv_fail:
return ret;
}
static int fuel_gauge_program_rdc_vals(struct axp288_fg_info *info)
{
int ret;
ret = fuel_gauge_reg_writeb(info,
AXP288_FG_RDC1_REG, info->pdata->rdc1);
if (ret < 0)
goto fg_prog_ocv_fail;
ret = fuel_gauge_reg_writeb(info,
AXP288_FG_RDC0_REG, info->pdata->rdc0);
fg_prog_ocv_fail:
return ret;
}
static void fuel_gauge_init_config_regs(struct axp288_fg_info *info)
{
int ret;
/*
* check if the config data is already
* programmed and if so just return.
*/
ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG);
if (ret < 0) {
dev_warn(&info->pdev->dev, "CAP1 reg read err!!\n");
} else if (!(ret & FG_DES_CAP1_VALID)) {
dev_info(&info->pdev->dev, "FG data needs to be initialized\n");
} else {
dev_info(&info->pdev->dev, "FG data is already initialized\n");
return;
}
ret = fuel_gauge_program_vbatt_full(info);
if (ret < 0)
dev_err(&info->pdev->dev, "set vbatt full fail:%d\n", ret);
ret = fuel_gauge_program_design_cap(info);
if (ret < 0)
dev_err(&info->pdev->dev, "set design cap fail:%d\n", ret);
ret = fuel_gauge_program_rdc_vals(info);
if (ret < 0)
dev_err(&info->pdev->dev, "set rdc fail:%d\n", ret);
ret = fuel_gauge_program_ocv_curve(info);
if (ret < 0)
dev_err(&info->pdev->dev, "set ocv curve fail:%d\n", ret);
ret = fuel_gauge_set_lowbatt_thresholds(info);
if (ret < 0)
dev_err(&info->pdev->dev, "lowbatt thr set fail:%d\n", ret);
ret = fuel_gauge_reg_writeb(info, AXP20X_CC_CTRL, 0xef);
if (ret < 0)
dev_err(&info->pdev->dev, "gauge cntl set fail:%d\n", ret);
}
static void fuel_gauge_init_irq(struct axp288_fg_info *info)
{
int ret, i, pirq;
for (i = 0; i < AXP288_FG_INTR_NUM; i++) {
pirq = platform_get_irq(info->pdev, i);
info->irq[i] = regmap_irq_get_virq(info->regmap_irqc, pirq);
if (info->irq[i] < 0) {
dev_warn(&info->pdev->dev,
"regmap_irq get virq failed for IRQ %d: %d\n",
pirq, info->irq[i]);
info->irq[i] = -1;
goto intr_failed;
}
ret = request_threaded_irq(info->irq[i],
NULL, fuel_gauge_thread_handler,
IRQF_ONESHOT, DEV_NAME, info);
if (ret) {
dev_warn(&info->pdev->dev,
"request irq failed for IRQ %d: %d\n",
pirq, info->irq[i]);
info->irq[i] = -1;
goto intr_failed;
} else {
dev_info(&info->pdev->dev, "HW IRQ %d -> VIRQ %d\n",
pirq, info->irq[i]);
}
}
return;
intr_failed:
for (; i > 0; i--) {
free_irq(info->irq[i - 1], info);
info->irq[i - 1] = -1;
}
}
static void fuel_gauge_init_hw_regs(struct axp288_fg_info *info)
{
int ret;
unsigned int val;
ret = fuel_gauge_set_high_btemp_alert(info);
if (ret < 0)
dev_err(&info->pdev->dev, "high batt temp set fail:%d\n", ret);
ret = fuel_gauge_set_low_btemp_alert(info);
if (ret < 0)
dev_err(&info->pdev->dev, "low batt temp set fail:%d\n", ret);
/* enable interrupts */
val = fuel_gauge_reg_readb(info, AXP20X_IRQ3_EN);
val |= TEMP_IRQ_CFG_MASK;
fuel_gauge_reg_writeb(info, AXP20X_IRQ3_EN, val);
val = fuel_gauge_reg_readb(info, AXP20X_IRQ4_EN);
val |= FG_IRQ_CFG_LOWBATT_MASK;
val = fuel_gauge_reg_writeb(info, AXP20X_IRQ4_EN, val);
}
static int axp288_fuel_gauge_probe(struct platform_device *pdev)
{
int ret = 0;
struct axp288_fg_info *info;
struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent);
struct power_supply_config psy_cfg = {};
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->pdev = pdev;
info->regmap = axp20x->regmap;
info->regmap_irqc = axp20x->regmap_irqc;
info->status = POWER_SUPPLY_STATUS_UNKNOWN;
info->pdata = pdev->dev.platform_data;
if (!info->pdata)
return -ENODEV;
platform_set_drvdata(pdev, info);
mutex_init(&info->lock);
INIT_DELAYED_WORK(&info->status_monitor, fuel_gauge_status_monitor);
psy_cfg.drv_data = info;
info->bat = power_supply_register(&pdev->dev, &fuel_gauge_desc, &psy_cfg);
if (IS_ERR(info->bat)) {
ret = PTR_ERR(info->bat);
dev_err(&pdev->dev, "failed to register battery: %d\n", ret);
return ret;
}
fuel_gauge_create_debugfs(info);
fuel_gauge_init_config_regs(info);
fuel_gauge_init_irq(info);
fuel_gauge_init_hw_regs(info);
schedule_delayed_work(&info->status_monitor, STATUS_MON_DELAY_JIFFIES);
return ret;
}
static const struct platform_device_id axp288_fg_id_table[] = {
{ .name = DEV_NAME },
{},
};
MODULE_DEVICE_TABLE(platform, axp288_fg_id_table);
static int axp288_fuel_gauge_remove(struct platform_device *pdev)
{
struct axp288_fg_info *info = platform_get_drvdata(pdev);
int i;
cancel_delayed_work_sync(&info->status_monitor);
power_supply_unregister(info->bat);
fuel_gauge_remove_debugfs(info);
for (i = 0; i < AXP288_FG_INTR_NUM; i++)
if (info->irq[i] >= 0)
free_irq(info->irq[i], info);
return 0;
}
static struct platform_driver axp288_fuel_gauge_driver = {
.probe = axp288_fuel_gauge_probe,
.remove = axp288_fuel_gauge_remove,
.id_table = axp288_fg_id_table,
.driver = {
.name = DEV_NAME,
},
};
module_platform_driver(axp288_fuel_gauge_driver);
MODULE_AUTHOR("Ramakrishna Pallala <ramakrishna.pallala@intel.com>");
MODULE_AUTHOR("Todd Brandt <todd.e.brandt@linux.intel.com>");
MODULE_DESCRIPTION("Xpower AXP288 Fuel Gauge Driver");
MODULE_LICENSE("GPL");