819 lines
22 KiB
C
819 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/mm/swap_state.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
* Swap reorganised 29.12.95, Stephen Tweedie
|
|
*
|
|
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/swap_slots.h>
|
|
#include <linux/huge_mm.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
/*
|
|
* swapper_space is a fiction, retained to simplify the path through
|
|
* vmscan's shrink_page_list.
|
|
*/
|
|
static const struct address_space_operations swap_aops = {
|
|
.writepage = swap_writepage,
|
|
.set_page_dirty = swap_set_page_dirty,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = migrate_page,
|
|
#endif
|
|
};
|
|
|
|
struct address_space *swapper_spaces[MAX_SWAPFILES];
|
|
static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
|
|
bool swap_vma_readahead = true;
|
|
|
|
#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
|
|
#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
|
|
#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
|
|
#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
|
|
|
|
#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
|
|
#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
|
|
#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
|
|
|
|
#define SWAP_RA_VAL(addr, win, hits) \
|
|
(((addr) & PAGE_MASK) | \
|
|
(((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
|
|
((hits) & SWAP_RA_HITS_MASK))
|
|
|
|
/* Initial readahead hits is 4 to start up with a small window */
|
|
#define GET_SWAP_RA_VAL(vma) \
|
|
(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
|
|
|
|
#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
|
|
#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
|
|
|
|
static struct {
|
|
unsigned long add_total;
|
|
unsigned long del_total;
|
|
unsigned long find_success;
|
|
unsigned long find_total;
|
|
} swap_cache_info;
|
|
|
|
unsigned long total_swapcache_pages(void)
|
|
{
|
|
unsigned int i, j, nr;
|
|
unsigned long ret = 0;
|
|
struct address_space *spaces;
|
|
|
|
rcu_read_lock();
|
|
for (i = 0; i < MAX_SWAPFILES; i++) {
|
|
/*
|
|
* The corresponding entries in nr_swapper_spaces and
|
|
* swapper_spaces will be reused only after at least
|
|
* one grace period. So it is impossible for them
|
|
* belongs to different usage.
|
|
*/
|
|
nr = nr_swapper_spaces[i];
|
|
spaces = rcu_dereference(swapper_spaces[i]);
|
|
if (!nr || !spaces)
|
|
continue;
|
|
for (j = 0; j < nr; j++)
|
|
ret += spaces[j].nrpages;
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
|
|
|
|
void show_swap_cache_info(void)
|
|
{
|
|
printk("%lu pages in swap cache\n", total_swapcache_pages());
|
|
printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
|
|
swap_cache_info.add_total, swap_cache_info.del_total,
|
|
swap_cache_info.find_success, swap_cache_info.find_total);
|
|
printk("Free swap = %ldkB\n",
|
|
get_nr_swap_pages() << (PAGE_SHIFT - 10));
|
|
printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
|
|
}
|
|
|
|
/*
|
|
* __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
|
|
* but sets SwapCache flag and private instead of mapping and index.
|
|
*/
|
|
int __add_to_swap_cache(struct page *page, swp_entry_t entry)
|
|
{
|
|
int error, i, nr = hpage_nr_pages(page);
|
|
struct address_space *address_space;
|
|
pgoff_t idx = swp_offset(entry);
|
|
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(PageSwapCache(page), page);
|
|
VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
|
|
|
|
page_ref_add(page, nr);
|
|
SetPageSwapCache(page);
|
|
|
|
address_space = swap_address_space(entry);
|
|
spin_lock_irq(&address_space->tree_lock);
|
|
for (i = 0; i < nr; i++) {
|
|
set_page_private(page + i, entry.val + i);
|
|
error = radix_tree_insert(&address_space->page_tree,
|
|
idx + i, page + i);
|
|
if (unlikely(error))
|
|
break;
|
|
}
|
|
if (likely(!error)) {
|
|
address_space->nrpages += nr;
|
|
__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
|
|
ADD_CACHE_INFO(add_total, nr);
|
|
} else {
|
|
/*
|
|
* Only the context which have set SWAP_HAS_CACHE flag
|
|
* would call add_to_swap_cache().
|
|
* So add_to_swap_cache() doesn't returns -EEXIST.
|
|
*/
|
|
VM_BUG_ON(error == -EEXIST);
|
|
set_page_private(page + i, 0UL);
|
|
while (i--) {
|
|
radix_tree_delete(&address_space->page_tree, idx + i);
|
|
set_page_private(page + i, 0UL);
|
|
}
|
|
ClearPageSwapCache(page);
|
|
page_ref_sub(page, nr);
|
|
}
|
|
spin_unlock_irq(&address_space->tree_lock);
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
|
|
{
|
|
int error;
|
|
|
|
error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
|
|
if (!error) {
|
|
error = __add_to_swap_cache(page, entry);
|
|
radix_tree_preload_end();
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This must be called only on pages that have
|
|
* been verified to be in the swap cache.
|
|
*/
|
|
void __delete_from_swap_cache(struct page *page)
|
|
{
|
|
struct address_space *address_space;
|
|
int i, nr = hpage_nr_pages(page);
|
|
swp_entry_t entry;
|
|
pgoff_t idx;
|
|
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(!PageSwapCache(page), page);
|
|
VM_BUG_ON_PAGE(PageWriteback(page), page);
|
|
|
|
entry.val = page_private(page);
|
|
address_space = swap_address_space(entry);
|
|
idx = swp_offset(entry);
|
|
for (i = 0; i < nr; i++) {
|
|
radix_tree_delete(&address_space->page_tree, idx + i);
|
|
set_page_private(page + i, 0);
|
|
}
|
|
ClearPageSwapCache(page);
|
|
address_space->nrpages -= nr;
|
|
__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
|
|
ADD_CACHE_INFO(del_total, nr);
|
|
}
|
|
|
|
/**
|
|
* add_to_swap - allocate swap space for a page
|
|
* @page: page we want to move to swap
|
|
*
|
|
* Allocate swap space for the page and add the page to the
|
|
* swap cache. Caller needs to hold the page lock.
|
|
*/
|
|
int add_to_swap(struct page *page)
|
|
{
|
|
swp_entry_t entry;
|
|
int err;
|
|
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(!PageUptodate(page), page);
|
|
|
|
entry = get_swap_page(page);
|
|
if (!entry.val)
|
|
return 0;
|
|
|
|
if (mem_cgroup_try_charge_swap(page, entry))
|
|
goto fail;
|
|
|
|
/*
|
|
* Radix-tree node allocations from PF_MEMALLOC contexts could
|
|
* completely exhaust the page allocator. __GFP_NOMEMALLOC
|
|
* stops emergency reserves from being allocated.
|
|
*
|
|
* TODO: this could cause a theoretical memory reclaim
|
|
* deadlock in the swap out path.
|
|
*/
|
|
/*
|
|
* Add it to the swap cache.
|
|
*/
|
|
err = add_to_swap_cache(page, entry,
|
|
__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
|
|
/* -ENOMEM radix-tree allocation failure */
|
|
if (err)
|
|
/*
|
|
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
|
|
* clear SWAP_HAS_CACHE flag.
|
|
*/
|
|
goto fail;
|
|
/*
|
|
* Normally the page will be dirtied in unmap because its pte should be
|
|
* dirty. A special case is MADV_FREE page. The page'e pte could have
|
|
* dirty bit cleared but the page's SwapBacked bit is still set because
|
|
* clearing the dirty bit and SwapBacked bit has no lock protected. For
|
|
* such page, unmap will not set dirty bit for it, so page reclaim will
|
|
* not write the page out. This can cause data corruption when the page
|
|
* is swap in later. Always setting the dirty bit for the page solves
|
|
* the problem.
|
|
*/
|
|
set_page_dirty(page);
|
|
|
|
return 1;
|
|
|
|
fail:
|
|
put_swap_page(page, entry);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This must be called only on pages that have
|
|
* been verified to be in the swap cache and locked.
|
|
* It will never put the page into the free list,
|
|
* the caller has a reference on the page.
|
|
*/
|
|
void delete_from_swap_cache(struct page *page)
|
|
{
|
|
swp_entry_t entry;
|
|
struct address_space *address_space;
|
|
|
|
entry.val = page_private(page);
|
|
|
|
address_space = swap_address_space(entry);
|
|
spin_lock_irq(&address_space->tree_lock);
|
|
__delete_from_swap_cache(page);
|
|
spin_unlock_irq(&address_space->tree_lock);
|
|
|
|
put_swap_page(page, entry);
|
|
page_ref_sub(page, hpage_nr_pages(page));
|
|
}
|
|
|
|
/*
|
|
* If we are the only user, then try to free up the swap cache.
|
|
*
|
|
* Its ok to check for PageSwapCache without the page lock
|
|
* here because we are going to recheck again inside
|
|
* try_to_free_swap() _with_ the lock.
|
|
* - Marcelo
|
|
*/
|
|
static inline void free_swap_cache(struct page *page)
|
|
{
|
|
if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
|
|
try_to_free_swap(page);
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform a free_page(), also freeing any swap cache associated with
|
|
* this page if it is the last user of the page.
|
|
*/
|
|
void free_page_and_swap_cache(struct page *page)
|
|
{
|
|
free_swap_cache(page);
|
|
if (!is_huge_zero_page(page))
|
|
put_page(page);
|
|
}
|
|
|
|
/*
|
|
* Passed an array of pages, drop them all from swapcache and then release
|
|
* them. They are removed from the LRU and freed if this is their last use.
|
|
*/
|
|
void free_pages_and_swap_cache(struct page **pages, int nr)
|
|
{
|
|
struct page **pagep = pages;
|
|
int i;
|
|
|
|
lru_add_drain();
|
|
for (i = 0; i < nr; i++)
|
|
free_swap_cache(pagep[i]);
|
|
release_pages(pagep, nr, false);
|
|
}
|
|
|
|
/*
|
|
* Lookup a swap entry in the swap cache. A found page will be returned
|
|
* unlocked and with its refcount incremented - we rely on the kernel
|
|
* lock getting page table operations atomic even if we drop the page
|
|
* lock before returning.
|
|
*/
|
|
struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
struct page *page;
|
|
unsigned long ra_info;
|
|
int win, hits, readahead;
|
|
|
|
page = find_get_page(swap_address_space(entry), swp_offset(entry));
|
|
|
|
INC_CACHE_INFO(find_total);
|
|
if (page) {
|
|
INC_CACHE_INFO(find_success);
|
|
if (unlikely(PageTransCompound(page)))
|
|
return page;
|
|
readahead = TestClearPageReadahead(page);
|
|
if (vma) {
|
|
ra_info = GET_SWAP_RA_VAL(vma);
|
|
win = SWAP_RA_WIN(ra_info);
|
|
hits = SWAP_RA_HITS(ra_info);
|
|
if (readahead)
|
|
hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
|
|
atomic_long_set(&vma->swap_readahead_info,
|
|
SWAP_RA_VAL(addr, win, hits));
|
|
}
|
|
if (readahead) {
|
|
count_vm_event(SWAP_RA_HIT);
|
|
if (!vma)
|
|
atomic_inc(&swapin_readahead_hits);
|
|
}
|
|
}
|
|
return page;
|
|
}
|
|
|
|
struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
bool *new_page_allocated)
|
|
{
|
|
struct page *found_page, *new_page = NULL;
|
|
struct address_space *swapper_space = swap_address_space(entry);
|
|
int err;
|
|
*new_page_allocated = false;
|
|
|
|
do {
|
|
/*
|
|
* First check the swap cache. Since this is normally
|
|
* called after lookup_swap_cache() failed, re-calling
|
|
* that would confuse statistics.
|
|
*/
|
|
found_page = find_get_page(swapper_space, swp_offset(entry));
|
|
if (found_page)
|
|
break;
|
|
|
|
/*
|
|
* Just skip read ahead for unused swap slot.
|
|
* During swap_off when swap_slot_cache is disabled,
|
|
* we have to handle the race between putting
|
|
* swap entry in swap cache and marking swap slot
|
|
* as SWAP_HAS_CACHE. That's done in later part of code or
|
|
* else swap_off will be aborted if we return NULL.
|
|
*/
|
|
if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
|
|
break;
|
|
|
|
/*
|
|
* Get a new page to read into from swap.
|
|
*/
|
|
if (!new_page) {
|
|
new_page = alloc_page_vma(gfp_mask, vma, addr);
|
|
if (!new_page)
|
|
break; /* Out of memory */
|
|
}
|
|
|
|
/*
|
|
* call radix_tree_preload() while we can wait.
|
|
*/
|
|
err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
|
|
if (err)
|
|
break;
|
|
|
|
/*
|
|
* Swap entry may have been freed since our caller observed it.
|
|
*/
|
|
err = swapcache_prepare(entry);
|
|
if (err == -EEXIST) {
|
|
radix_tree_preload_end();
|
|
/*
|
|
* We might race against get_swap_page() and stumble
|
|
* across a SWAP_HAS_CACHE swap_map entry whose page
|
|
* has not been brought into the swapcache yet.
|
|
*/
|
|
cond_resched();
|
|
continue;
|
|
}
|
|
if (err) { /* swp entry is obsolete ? */
|
|
radix_tree_preload_end();
|
|
break;
|
|
}
|
|
|
|
/* May fail (-ENOMEM) if radix-tree node allocation failed. */
|
|
__SetPageLocked(new_page);
|
|
__SetPageSwapBacked(new_page);
|
|
err = __add_to_swap_cache(new_page, entry);
|
|
if (likely(!err)) {
|
|
radix_tree_preload_end();
|
|
/*
|
|
* Initiate read into locked page and return.
|
|
*/
|
|
lru_cache_add_anon(new_page);
|
|
*new_page_allocated = true;
|
|
return new_page;
|
|
}
|
|
radix_tree_preload_end();
|
|
__ClearPageLocked(new_page);
|
|
/*
|
|
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
|
|
* clear SWAP_HAS_CACHE flag.
|
|
*/
|
|
put_swap_page(new_page, entry);
|
|
} while (err != -ENOMEM);
|
|
|
|
if (new_page)
|
|
put_page(new_page);
|
|
return found_page;
|
|
}
|
|
|
|
/*
|
|
* Locate a page of swap in physical memory, reserving swap cache space
|
|
* and reading the disk if it is not already cached.
|
|
* A failure return means that either the page allocation failed or that
|
|
* the swap entry is no longer in use.
|
|
*/
|
|
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_area_struct *vma, unsigned long addr, bool do_poll)
|
|
{
|
|
bool page_was_allocated;
|
|
struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
|
|
vma, addr, &page_was_allocated);
|
|
|
|
if (page_was_allocated)
|
|
swap_readpage(retpage, do_poll);
|
|
|
|
return retpage;
|
|
}
|
|
|
|
static unsigned int __swapin_nr_pages(unsigned long prev_offset,
|
|
unsigned long offset,
|
|
int hits,
|
|
int max_pages,
|
|
int prev_win)
|
|
{
|
|
unsigned int pages, last_ra;
|
|
|
|
/*
|
|
* This heuristic has been found to work well on both sequential and
|
|
* random loads, swapping to hard disk or to SSD: please don't ask
|
|
* what the "+ 2" means, it just happens to work well, that's all.
|
|
*/
|
|
pages = hits + 2;
|
|
if (pages == 2) {
|
|
/*
|
|
* We can have no readahead hits to judge by: but must not get
|
|
* stuck here forever, so check for an adjacent offset instead
|
|
* (and don't even bother to check whether swap type is same).
|
|
*/
|
|
if (offset != prev_offset + 1 && offset != prev_offset - 1)
|
|
pages = 1;
|
|
} else {
|
|
unsigned int roundup = 4;
|
|
while (roundup < pages)
|
|
roundup <<= 1;
|
|
pages = roundup;
|
|
}
|
|
|
|
if (pages > max_pages)
|
|
pages = max_pages;
|
|
|
|
/* Don't shrink readahead too fast */
|
|
last_ra = prev_win / 2;
|
|
if (pages < last_ra)
|
|
pages = last_ra;
|
|
|
|
return pages;
|
|
}
|
|
|
|
static unsigned long swapin_nr_pages(unsigned long offset)
|
|
{
|
|
static unsigned long prev_offset;
|
|
unsigned int hits, pages, max_pages;
|
|
static atomic_t last_readahead_pages;
|
|
|
|
max_pages = 1 << READ_ONCE(page_cluster);
|
|
if (max_pages <= 1)
|
|
return 1;
|
|
|
|
hits = atomic_xchg(&swapin_readahead_hits, 0);
|
|
pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
|
|
atomic_read(&last_readahead_pages));
|
|
if (!hits)
|
|
prev_offset = offset;
|
|
atomic_set(&last_readahead_pages, pages);
|
|
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* swapin_readahead - swap in pages in hope we need them soon
|
|
* @entry: swap entry of this memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @vma: user vma this address belongs to
|
|
* @addr: target address for mempolicy
|
|
*
|
|
* Returns the struct page for entry and addr, after queueing swapin.
|
|
*
|
|
* Primitive swap readahead code. We simply read an aligned block of
|
|
* (1 << page_cluster) entries in the swap area. This method is chosen
|
|
* because it doesn't cost us any seek time. We also make sure to queue
|
|
* the 'original' request together with the readahead ones...
|
|
*
|
|
* This has been extended to use the NUMA policies from the mm triggering
|
|
* the readahead.
|
|
*
|
|
* Caller must hold down_read on the vma->vm_mm if vma is not NULL.
|
|
*/
|
|
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct page *page;
|
|
unsigned long entry_offset = swp_offset(entry);
|
|
unsigned long offset = entry_offset;
|
|
unsigned long start_offset, end_offset;
|
|
unsigned long mask;
|
|
struct blk_plug plug;
|
|
bool do_poll = true, page_allocated;
|
|
|
|
mask = swapin_nr_pages(offset) - 1;
|
|
if (!mask)
|
|
goto skip;
|
|
|
|
do_poll = false;
|
|
/* Read a page_cluster sized and aligned cluster around offset. */
|
|
start_offset = offset & ~mask;
|
|
end_offset = offset | mask;
|
|
if (!start_offset) /* First page is swap header. */
|
|
start_offset++;
|
|
|
|
blk_start_plug(&plug);
|
|
for (offset = start_offset; offset <= end_offset ; offset++) {
|
|
/* Ok, do the async read-ahead now */
|
|
page = __read_swap_cache_async(
|
|
swp_entry(swp_type(entry), offset),
|
|
gfp_mask, vma, addr, &page_allocated);
|
|
if (!page)
|
|
continue;
|
|
if (page_allocated) {
|
|
swap_readpage(page, false);
|
|
if (offset != entry_offset &&
|
|
likely(!PageTransCompound(page))) {
|
|
SetPageReadahead(page);
|
|
count_vm_event(SWAP_RA);
|
|
}
|
|
}
|
|
put_page(page);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
|
|
lru_add_drain(); /* Push any new pages onto the LRU now */
|
|
skip:
|
|
return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
|
|
}
|
|
|
|
int init_swap_address_space(unsigned int type, unsigned long nr_pages)
|
|
{
|
|
struct address_space *spaces, *space;
|
|
unsigned int i, nr;
|
|
|
|
nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
|
|
spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
|
|
if (!spaces)
|
|
return -ENOMEM;
|
|
for (i = 0; i < nr; i++) {
|
|
space = spaces + i;
|
|
INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
|
|
atomic_set(&space->i_mmap_writable, 0);
|
|
space->a_ops = &swap_aops;
|
|
/* swap cache doesn't use writeback related tags */
|
|
mapping_set_no_writeback_tags(space);
|
|
spin_lock_init(&space->tree_lock);
|
|
}
|
|
nr_swapper_spaces[type] = nr;
|
|
rcu_assign_pointer(swapper_spaces[type], spaces);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void exit_swap_address_space(unsigned int type)
|
|
{
|
|
struct address_space *spaces;
|
|
|
|
spaces = swapper_spaces[type];
|
|
nr_swapper_spaces[type] = 0;
|
|
rcu_assign_pointer(swapper_spaces[type], NULL);
|
|
synchronize_rcu();
|
|
kvfree(spaces);
|
|
}
|
|
|
|
static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
|
|
unsigned long faddr,
|
|
unsigned long lpfn,
|
|
unsigned long rpfn,
|
|
unsigned long *start,
|
|
unsigned long *end)
|
|
{
|
|
*start = max3(lpfn, PFN_DOWN(vma->vm_start),
|
|
PFN_DOWN(faddr & PMD_MASK));
|
|
*end = min3(rpfn, PFN_DOWN(vma->vm_end),
|
|
PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
|
|
}
|
|
|
|
struct page *swap_readahead_detect(struct vm_fault *vmf,
|
|
struct vma_swap_readahead *swap_ra)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
unsigned long swap_ra_info;
|
|
struct page *page;
|
|
swp_entry_t entry;
|
|
unsigned long faddr, pfn, fpfn;
|
|
unsigned long start, end;
|
|
pte_t *pte;
|
|
unsigned int max_win, hits, prev_win, win, left;
|
|
#ifndef CONFIG_64BIT
|
|
pte_t *tpte;
|
|
#endif
|
|
|
|
max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
|
|
SWAP_RA_ORDER_CEILING);
|
|
if (max_win == 1) {
|
|
swap_ra->win = 1;
|
|
return NULL;
|
|
}
|
|
|
|
faddr = vmf->address;
|
|
entry = pte_to_swp_entry(vmf->orig_pte);
|
|
if ((unlikely(non_swap_entry(entry))))
|
|
return NULL;
|
|
page = lookup_swap_cache(entry, vma, faddr);
|
|
if (page)
|
|
return page;
|
|
|
|
fpfn = PFN_DOWN(faddr);
|
|
swap_ra_info = GET_SWAP_RA_VAL(vma);
|
|
pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
|
|
prev_win = SWAP_RA_WIN(swap_ra_info);
|
|
hits = SWAP_RA_HITS(swap_ra_info);
|
|
swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
|
|
max_win, prev_win);
|
|
atomic_long_set(&vma->swap_readahead_info,
|
|
SWAP_RA_VAL(faddr, win, 0));
|
|
|
|
if (win == 1)
|
|
return NULL;
|
|
|
|
/* Copy the PTEs because the page table may be unmapped */
|
|
if (fpfn == pfn + 1)
|
|
swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
|
|
else if (pfn == fpfn + 1)
|
|
swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
|
|
&start, &end);
|
|
else {
|
|
left = (win - 1) / 2;
|
|
swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
|
|
&start, &end);
|
|
}
|
|
swap_ra->nr_pte = end - start;
|
|
swap_ra->offset = fpfn - start;
|
|
pte = vmf->pte - swap_ra->offset;
|
|
#ifdef CONFIG_64BIT
|
|
swap_ra->ptes = pte;
|
|
#else
|
|
tpte = swap_ra->ptes;
|
|
for (pfn = start; pfn != end; pfn++)
|
|
*tpte++ = *pte++;
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
|
|
struct vm_fault *vmf,
|
|
struct vma_swap_readahead *swap_ra)
|
|
{
|
|
struct blk_plug plug;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct page *page;
|
|
pte_t *pte, pentry;
|
|
swp_entry_t entry;
|
|
unsigned int i;
|
|
bool page_allocated;
|
|
|
|
if (swap_ra->win == 1)
|
|
goto skip;
|
|
|
|
blk_start_plug(&plug);
|
|
for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
|
|
i++, pte++) {
|
|
pentry = *pte;
|
|
if (pte_none(pentry))
|
|
continue;
|
|
if (pte_present(pentry))
|
|
continue;
|
|
entry = pte_to_swp_entry(pentry);
|
|
if (unlikely(non_swap_entry(entry)))
|
|
continue;
|
|
page = __read_swap_cache_async(entry, gfp_mask, vma,
|
|
vmf->address, &page_allocated);
|
|
if (!page)
|
|
continue;
|
|
if (page_allocated) {
|
|
swap_readpage(page, false);
|
|
if (i != swap_ra->offset &&
|
|
likely(!PageTransCompound(page))) {
|
|
SetPageReadahead(page);
|
|
count_vm_event(SWAP_RA);
|
|
}
|
|
}
|
|
put_page(page);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
lru_add_drain();
|
|
skip:
|
|
return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
|
|
swap_ra->win == 1);
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t vma_ra_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
|
|
}
|
|
static ssize_t vma_ra_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
|
|
swap_vma_readahead = true;
|
|
else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
|
|
swap_vma_readahead = false;
|
|
else
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute vma_ra_enabled_attr =
|
|
__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
|
|
vma_ra_enabled_store);
|
|
|
|
static struct attribute *swap_attrs[] = {
|
|
&vma_ra_enabled_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group swap_attr_group = {
|
|
.attrs = swap_attrs,
|
|
};
|
|
|
|
static int __init swap_init_sysfs(void)
|
|
{
|
|
int err;
|
|
struct kobject *swap_kobj;
|
|
|
|
swap_kobj = kobject_create_and_add("swap", mm_kobj);
|
|
if (!swap_kobj) {
|
|
pr_err("failed to create swap kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
err = sysfs_create_group(swap_kobj, &swap_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register swap group\n");
|
|
goto delete_obj;
|
|
}
|
|
return 0;
|
|
|
|
delete_obj:
|
|
kobject_put(swap_kobj);
|
|
return err;
|
|
}
|
|
subsys_initcall(swap_init_sysfs);
|
|
#endif
|