linux-sg2042/drivers/media/i2c/cx25840/cx25840-audio.c

572 lines
15 KiB
C

/* cx25840 audio functions
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/videodev2.h>
#include <linux/i2c.h>
#include <media/v4l2-common.h>
#include <media/drv-intf/cx25840.h>
#include "cx25840-core.h"
/*
* Note: The PLL and SRC parameters are based on a reference frequency that
* would ideally be:
*
* NTSC Color subcarrier freq * 8 = 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
*
* However, it's not the exact reference frequency that matters, only that the
* firmware and modules that comprise the driver for a particular board all
* use the same value (close to the ideal value).
*
* Comments below will note which reference frequency is assumed for various
* parameters. They will usually be one of
*
* ref_freq = 28.636360 MHz
* or
* ref_freq = 28.636363 MHz
*/
static int cx25840_set_audclk_freq(struct i2c_client *client, u32 freq)
{
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
if (state->aud_input != CX25840_AUDIO_SERIAL) {
switch (freq) {
case 32000:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x06, AUX PLL Post Divider = 0x10
*/
cx25840_write4(client, 0x108, 0x1006040f);
/*
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
* 28636360 * 0xf.15f17f0/4 = 108 MHz
* 432 MHz pre-postdivide
*/
/*
* AUX_PLL Fraction = 0x1bb39ee
* 28636363 * 0x6.dd9cf70/0x10 = 32000 * 384
* 196.6 MHz pre-postdivide
* FIXME < 200 MHz is out of specified valid range
* FIXME 28636363 ref_freq doesn't match VID PLL ref
*/
cx25840_write4(client, 0x110, 0x01bb39ee);
/*
* SA_MCLK_SEL = 1
* SA_MCLK_DIV = 0x10 = 384/384 * AUX_PLL post dvivider
*/
cx25840_write(client, 0x127, 0x50);
if (is_cx2583x(state))
break;
/* src3/4/6_ctl */
/* 0x1.f77f = (4 * 28636360/8 * 2/455) / 32000 */
cx25840_write4(client, 0x900, 0x0801f77f);
cx25840_write4(client, 0x904, 0x0801f77f);
cx25840_write4(client, 0x90c, 0x0801f77f);
break;
case 44100:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x09, AUX PLL Post Divider = 0x10
*/
cx25840_write4(client, 0x108, 0x1009040f);
/*
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
* 28636360 * 0xf.15f17f0/4 = 108 MHz
* 432 MHz pre-postdivide
*/
/*
* AUX_PLL Fraction = 0x0ec6bd6
* 28636363 * 0x9.7635eb0/0x10 = 44100 * 384
* 271 MHz pre-postdivide
* FIXME 28636363 ref_freq doesn't match VID PLL ref
*/
cx25840_write4(client, 0x110, 0x00ec6bd6);
/*
* SA_MCLK_SEL = 1
* SA_MCLK_DIV = 0x10 = 384/384 * AUX_PLL post dvivider
*/
cx25840_write(client, 0x127, 0x50);
if (is_cx2583x(state))
break;
/* src3/4/6_ctl */
/* 0x1.6d59 = (4 * 28636360/8 * 2/455) / 44100 */
cx25840_write4(client, 0x900, 0x08016d59);
cx25840_write4(client, 0x904, 0x08016d59);
cx25840_write4(client, 0x90c, 0x08016d59);
break;
case 48000:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x0a, AUX PLL Post Divider = 0x10
*/
cx25840_write4(client, 0x108, 0x100a040f);
/*
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
* 28636360 * 0xf.15f17f0/4 = 108 MHz
* 432 MHz pre-postdivide
*/
/*
* AUX_PLL Fraction = 0x098d6e5
* 28636363 * 0xa.4c6b728/0x10 = 48000 * 384
* 295 MHz pre-postdivide
* FIXME 28636363 ref_freq doesn't match VID PLL ref
*/
cx25840_write4(client, 0x110, 0x0098d6e5);
/*
* SA_MCLK_SEL = 1
* SA_MCLK_DIV = 0x10 = 384/384 * AUX_PLL post dvivider
*/
cx25840_write(client, 0x127, 0x50);
if (is_cx2583x(state))
break;
/* src3/4/6_ctl */
/* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */
cx25840_write4(client, 0x900, 0x08014faa);
cx25840_write4(client, 0x904, 0x08014faa);
cx25840_write4(client, 0x90c, 0x08014faa);
break;
}
} else {
switch (freq) {
case 32000:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x08, AUX PLL Post Divider = 0x1e
*/
cx25840_write4(client, 0x108, 0x1e08040f);
/*
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
* 28636360 * 0xf.15f17f0/4 = 108 MHz
* 432 MHz pre-postdivide
*/
/*
* AUX_PLL Fraction = 0x12a0869
* 28636363 * 0x8.9504348/0x1e = 32000 * 256
* 246 MHz pre-postdivide
* FIXME 28636363 ref_freq doesn't match VID PLL ref
*/
cx25840_write4(client, 0x110, 0x012a0869);
/*
* SA_MCLK_SEL = 1
* SA_MCLK_DIV = 0x14 = 256/384 * AUX_PLL post dvivider
*/
cx25840_write(client, 0x127, 0x54);
if (is_cx2583x(state))
break;
/* src1_ctl */
/* 0x1.0000 = 32000/32000 */
cx25840_write4(client, 0x8f8, 0x08010000);
/* src3/4/6_ctl */
/* 0x2.0000 = 2 * (32000/32000) */
cx25840_write4(client, 0x900, 0x08020000);
cx25840_write4(client, 0x904, 0x08020000);
cx25840_write4(client, 0x90c, 0x08020000);
break;
case 44100:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x09, AUX PLL Post Divider = 0x18
*/
cx25840_write4(client, 0x108, 0x1809040f);
/*
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
* 28636360 * 0xf.15f17f0/4 = 108 MHz
* 432 MHz pre-postdivide
*/
/*
* AUX_PLL Fraction = 0x0ec6bd6
* 28636363 * 0x9.7635eb0/0x18 = 44100 * 256
* 271 MHz pre-postdivide
* FIXME 28636363 ref_freq doesn't match VID PLL ref
*/
cx25840_write4(client, 0x110, 0x00ec6bd6);
/*
* SA_MCLK_SEL = 1
* SA_MCLK_DIV = 0x10 = 256/384 * AUX_PLL post dvivider
*/
cx25840_write(client, 0x127, 0x50);
if (is_cx2583x(state))
break;
/* src1_ctl */
/* 0x1.60cd = 44100/32000 */
cx25840_write4(client, 0x8f8, 0x080160cd);
/* src3/4/6_ctl */
/* 0x1.7385 = 2 * (32000/44100) */
cx25840_write4(client, 0x900, 0x08017385);
cx25840_write4(client, 0x904, 0x08017385);
cx25840_write4(client, 0x90c, 0x08017385);
break;
case 48000:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x0a, AUX PLL Post Divider = 0x18
*/
cx25840_write4(client, 0x108, 0x180a040f);
/*
* VID_PLL Fraction (register 0x10c) = 0x2be2fe
* 28636360 * 0xf.15f17f0/4 = 108 MHz
* 432 MHz pre-postdivide
*/
/*
* AUX_PLL Fraction = 0x098d6e5
* 28636363 * 0xa.4c6b728/0x18 = 48000 * 256
* 295 MHz pre-postdivide
* FIXME 28636363 ref_freq doesn't match VID PLL ref
*/
cx25840_write4(client, 0x110, 0x0098d6e5);
/*
* SA_MCLK_SEL = 1
* SA_MCLK_DIV = 0x10 = 256/384 * AUX_PLL post dvivider
*/
cx25840_write(client, 0x127, 0x50);
if (is_cx2583x(state))
break;
/* src1_ctl */
/* 0x1.8000 = 48000/32000 */
cx25840_write4(client, 0x8f8, 0x08018000);
/* src3/4/6_ctl */
/* 0x1.5555 = 2 * (32000/48000) */
cx25840_write4(client, 0x900, 0x08015555);
cx25840_write4(client, 0x904, 0x08015555);
cx25840_write4(client, 0x90c, 0x08015555);
break;
}
}
state->audclk_freq = freq;
return 0;
}
static inline int cx25836_set_audclk_freq(struct i2c_client *client, u32 freq)
{
return cx25840_set_audclk_freq(client, freq);
}
static int cx23885_set_audclk_freq(struct i2c_client *client, u32 freq)
{
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
if (state->aud_input != CX25840_AUDIO_SERIAL) {
switch (freq) {
case 32000:
case 44100:
case 48000:
/* We don't have register values
* so avoid destroying registers. */
/* FIXME return -EINVAL; */
break;
}
} else {
switch (freq) {
case 32000:
case 44100:
/* We don't have register values
* so avoid destroying registers. */
/* FIXME return -EINVAL; */
break;
case 48000:
/* src1_ctl */
/* 0x1.867c = 48000 / (2 * 28636360/8 * 2/455) */
cx25840_write4(client, 0x8f8, 0x0801867c);
/* src3/4/6_ctl */
/* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */
cx25840_write4(client, 0x900, 0x08014faa);
cx25840_write4(client, 0x904, 0x08014faa);
cx25840_write4(client, 0x90c, 0x08014faa);
break;
}
}
state->audclk_freq = freq;
return 0;
}
static int cx231xx_set_audclk_freq(struct i2c_client *client, u32 freq)
{
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
if (state->aud_input != CX25840_AUDIO_SERIAL) {
switch (freq) {
case 32000:
/* src3/4/6_ctl */
/* 0x1.f77f = (4 * 28636360/8 * 2/455) / 32000 */
cx25840_write4(client, 0x900, 0x0801f77f);
cx25840_write4(client, 0x904, 0x0801f77f);
cx25840_write4(client, 0x90c, 0x0801f77f);
break;
case 44100:
/* src3/4/6_ctl */
/* 0x1.6d59 = (4 * 28636360/8 * 2/455) / 44100 */
cx25840_write4(client, 0x900, 0x08016d59);
cx25840_write4(client, 0x904, 0x08016d59);
cx25840_write4(client, 0x90c, 0x08016d59);
break;
case 48000:
/* src3/4/6_ctl */
/* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */
cx25840_write4(client, 0x900, 0x08014faa);
cx25840_write4(client, 0x904, 0x08014faa);
cx25840_write4(client, 0x90c, 0x08014faa);
break;
}
} else {
switch (freq) {
/* FIXME These cases make different assumptions about audclk */
case 32000:
/* src1_ctl */
/* 0x1.0000 = 32000/32000 */
cx25840_write4(client, 0x8f8, 0x08010000);
/* src3/4/6_ctl */
/* 0x2.0000 = 2 * (32000/32000) */
cx25840_write4(client, 0x900, 0x08020000);
cx25840_write4(client, 0x904, 0x08020000);
cx25840_write4(client, 0x90c, 0x08020000);
break;
case 44100:
/* src1_ctl */
/* 0x1.60cd = 44100/32000 */
cx25840_write4(client, 0x8f8, 0x080160cd);
/* src3/4/6_ctl */
/* 0x1.7385 = 2 * (32000/44100) */
cx25840_write4(client, 0x900, 0x08017385);
cx25840_write4(client, 0x904, 0x08017385);
cx25840_write4(client, 0x90c, 0x08017385);
break;
case 48000:
/* src1_ctl */
/* 0x1.867c = 48000 / (2 * 28636360/8 * 2/455) */
cx25840_write4(client, 0x8f8, 0x0801867c);
/* src3/4/6_ctl */
/* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */
cx25840_write4(client, 0x900, 0x08014faa);
cx25840_write4(client, 0x904, 0x08014faa);
cx25840_write4(client, 0x90c, 0x08014faa);
break;
}
}
state->audclk_freq = freq;
return 0;
}
static int set_audclk_freq(struct i2c_client *client, u32 freq)
{
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
if (freq != 32000 && freq != 44100 && freq != 48000)
return -EINVAL;
if (is_cx231xx(state))
return cx231xx_set_audclk_freq(client, freq);
if (is_cx2388x(state))
return cx23885_set_audclk_freq(client, freq);
if (is_cx2583x(state))
return cx25836_set_audclk_freq(client, freq);
return cx25840_set_audclk_freq(client, freq);
}
void cx25840_audio_set_path(struct i2c_client *client)
{
struct cx25840_state *state = to_state(i2c_get_clientdata(client));
if (!is_cx2583x(state)) {
/* assert soft reset */
cx25840_and_or(client, 0x810, ~0x1, 0x01);
/* stop microcontroller */
cx25840_and_or(client, 0x803, ~0x10, 0);
/* Mute everything to prevent the PFFT! */
cx25840_write(client, 0x8d3, 0x1f);
if (state->aud_input == CX25840_AUDIO_SERIAL) {
/* Set Path1 to Serial Audio Input */
cx25840_write4(client, 0x8d0, 0x01011012);
/* The microcontroller should not be started for the
* non-tuner inputs: autodetection is specific for
* TV audio. */
} else {
/* Set Path1 to Analog Demod Main Channel */
cx25840_write4(client, 0x8d0, 0x1f063870);
}
}
set_audclk_freq(client, state->audclk_freq);
if (!is_cx2583x(state)) {
if (state->aud_input != CX25840_AUDIO_SERIAL) {
/* When the microcontroller detects the
* audio format, it will unmute the lines */
cx25840_and_or(client, 0x803, ~0x10, 0x10);
}
/* deassert soft reset */
cx25840_and_or(client, 0x810, ~0x1, 0x00);
/* Ensure the controller is running when we exit */
if (is_cx2388x(state) || is_cx231xx(state))
cx25840_and_or(client, 0x803, ~0x10, 0x10);
}
}
static void set_volume(struct i2c_client *client, int volume)
{
int vol;
/* Convert the volume to msp3400 values (0-127) */
vol = volume >> 9;
/* now scale it up to cx25840 values
* -114dB to -96dB maps to 0
* this should be 19, but in my testing that was 4dB too loud */
if (vol <= 23) {
vol = 0;
} else {
vol -= 23;
}
/* PATH1_VOLUME */
cx25840_write(client, 0x8d4, 228 - (vol * 2));
}
static void set_balance(struct i2c_client *client, int balance)
{
int bal = balance >> 8;
if (bal > 0x80) {
/* PATH1_BAL_LEFT */
cx25840_and_or(client, 0x8d5, 0x7f, 0x80);
/* PATH1_BAL_LEVEL */
cx25840_and_or(client, 0x8d5, ~0x7f, bal & 0x7f);
} else {
/* PATH1_BAL_LEFT */
cx25840_and_or(client, 0x8d5, 0x7f, 0x00);
/* PATH1_BAL_LEVEL */
cx25840_and_or(client, 0x8d5, ~0x7f, 0x80 - bal);
}
}
int cx25840_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct cx25840_state *state = to_state(sd);
int retval;
if (!is_cx2583x(state))
cx25840_and_or(client, 0x810, ~0x1, 1);
if (state->aud_input != CX25840_AUDIO_SERIAL) {
cx25840_and_or(client, 0x803, ~0x10, 0);
cx25840_write(client, 0x8d3, 0x1f);
}
retval = set_audclk_freq(client, freq);
if (state->aud_input != CX25840_AUDIO_SERIAL)
cx25840_and_or(client, 0x803, ~0x10, 0x10);
if (!is_cx2583x(state))
cx25840_and_or(client, 0x810, ~0x1, 0);
return retval;
}
static int cx25840_audio_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = to_sd(ctrl);
struct cx25840_state *state = to_state(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
switch (ctrl->id) {
case V4L2_CID_AUDIO_VOLUME:
if (state->mute->val)
set_volume(client, 0);
else
set_volume(client, state->volume->val);
break;
case V4L2_CID_AUDIO_BASS:
/* PATH1_EQ_BASS_VOL */
cx25840_and_or(client, 0x8d9, ~0x3f,
48 - (ctrl->val * 48 / 0xffff));
break;
case V4L2_CID_AUDIO_TREBLE:
/* PATH1_EQ_TREBLE_VOL */
cx25840_and_or(client, 0x8db, ~0x3f,
48 - (ctrl->val * 48 / 0xffff));
break;
case V4L2_CID_AUDIO_BALANCE:
set_balance(client, ctrl->val);
break;
default:
return -EINVAL;
}
return 0;
}
const struct v4l2_ctrl_ops cx25840_audio_ctrl_ops = {
.s_ctrl = cx25840_audio_s_ctrl,
};