linux-sg2042/fs/coredump.c

1136 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/freezer.h>
#include <linux/mm.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/swap.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/perf_event.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/key.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
#include <linux/coredump.h>
#include <linux/sched/coredump.h>
#include <linux/sched/signal.h>
#include <linux/sched/task_stack.h>
#include <linux/utsname.h>
#include <linux/pid_namespace.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/audit.h>
#include <linux/tracehook.h>
#include <linux/kmod.h>
#include <linux/fsnotify.h>
#include <linux/fs_struct.h>
#include <linux/pipe_fs_i.h>
#include <linux/oom.h>
#include <linux/compat.h>
#include <linux/fs.h>
#include <linux/path.h>
#include <linux/timekeeping.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <asm/exec.h>
#include <trace/events/task.h>
#include "internal.h"
#include <trace/events/sched.h>
int core_uses_pid;
unsigned int core_pipe_limit;
char core_pattern[CORENAME_MAX_SIZE] = "core";
static int core_name_size = CORENAME_MAX_SIZE;
struct core_name {
char *corename;
int used, size;
};
/* The maximal length of core_pattern is also specified in sysctl.c */
static int expand_corename(struct core_name *cn, int size)
{
char *corename = krealloc(cn->corename, size, GFP_KERNEL);
if (!corename)
return -ENOMEM;
if (size > core_name_size) /* racy but harmless */
core_name_size = size;
cn->size = ksize(corename);
cn->corename = corename;
return 0;
}
static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
va_list arg)
{
int free, need;
va_list arg_copy;
again:
free = cn->size - cn->used;
va_copy(arg_copy, arg);
need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
va_end(arg_copy);
if (need < free) {
cn->used += need;
return 0;
}
if (!expand_corename(cn, cn->size + need - free + 1))
goto again;
return -ENOMEM;
}
static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
{
va_list arg;
int ret;
va_start(arg, fmt);
ret = cn_vprintf(cn, fmt, arg);
va_end(arg);
return ret;
}
static __printf(2, 3)
int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
{
int cur = cn->used;
va_list arg;
int ret;
va_start(arg, fmt);
ret = cn_vprintf(cn, fmt, arg);
va_end(arg);
if (ret == 0) {
/*
* Ensure that this coredump name component can't cause the
* resulting corefile path to consist of a ".." or ".".
*/
if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
(cn->used - cur == 2 && cn->corename[cur] == '.'
&& cn->corename[cur+1] == '.'))
cn->corename[cur] = '!';
/*
* Empty names are fishy and could be used to create a "//" in a
* corefile name, causing the coredump to happen one directory
* level too high. Enforce that all components of the core
* pattern are at least one character long.
*/
if (cn->used == cur)
ret = cn_printf(cn, "!");
}
for (; cur < cn->used; ++cur) {
if (cn->corename[cur] == '/')
cn->corename[cur] = '!';
}
return ret;
}
static int cn_print_exe_file(struct core_name *cn, bool name_only)
{
struct file *exe_file;
char *pathbuf, *path, *ptr;
int ret;
exe_file = get_mm_exe_file(current->mm);
if (!exe_file)
return cn_esc_printf(cn, "%s (path unknown)", current->comm);
pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!pathbuf) {
ret = -ENOMEM;
goto put_exe_file;
}
path = file_path(exe_file, pathbuf, PATH_MAX);
if (IS_ERR(path)) {
ret = PTR_ERR(path);
goto free_buf;
}
if (name_only) {
ptr = strrchr(path, '/');
if (ptr)
path = ptr + 1;
}
ret = cn_esc_printf(cn, "%s", path);
free_buf:
kfree(pathbuf);
put_exe_file:
fput(exe_file);
return ret;
}
/* format_corename will inspect the pattern parameter, and output a
* name into corename, which must have space for at least
* CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
*/
static int format_corename(struct core_name *cn, struct coredump_params *cprm,
size_t **argv, int *argc)
{
const struct cred *cred = current_cred();
const char *pat_ptr = core_pattern;
int ispipe = (*pat_ptr == '|');
bool was_space = false;
int pid_in_pattern = 0;
int err = 0;
cn->used = 0;
cn->corename = NULL;
if (expand_corename(cn, core_name_size))
return -ENOMEM;
cn->corename[0] = '\0';
if (ispipe) {
int argvs = sizeof(core_pattern) / 2;
(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
if (!(*argv))
return -ENOMEM;
(*argv)[(*argc)++] = 0;
++pat_ptr;
if (!(*pat_ptr))
return -ENOMEM;
}
/* Repeat as long as we have more pattern to process and more output
space */
while (*pat_ptr) {
/*
* Split on spaces before doing template expansion so that
* %e and %E don't get split if they have spaces in them
*/
if (ispipe) {
if (isspace(*pat_ptr)) {
if (cn->used != 0)
was_space = true;
pat_ptr++;
continue;
} else if (was_space) {
was_space = false;
err = cn_printf(cn, "%c", '\0');
if (err)
return err;
(*argv)[(*argc)++] = cn->used;
}
}
if (*pat_ptr != '%') {
err = cn_printf(cn, "%c", *pat_ptr++);
} else {
switch (*++pat_ptr) {
/* single % at the end, drop that */
case 0:
goto out;
/* Double percent, output one percent */
case '%':
err = cn_printf(cn, "%c", '%');
break;
/* pid */
case 'p':
pid_in_pattern = 1;
err = cn_printf(cn, "%d",
task_tgid_vnr(current));
break;
/* global pid */
case 'P':
err = cn_printf(cn, "%d",
task_tgid_nr(current));
break;
case 'i':
err = cn_printf(cn, "%d",
task_pid_vnr(current));
break;
case 'I':
err = cn_printf(cn, "%d",
task_pid_nr(current));
break;
/* uid */
case 'u':
err = cn_printf(cn, "%u",
from_kuid(&init_user_ns,
cred->uid));
break;
/* gid */
case 'g':
err = cn_printf(cn, "%u",
from_kgid(&init_user_ns,
cred->gid));
break;
case 'd':
err = cn_printf(cn, "%d",
__get_dumpable(cprm->mm_flags));
break;
/* signal that caused the coredump */
case 's':
err = cn_printf(cn, "%d",
cprm->siginfo->si_signo);
break;
/* UNIX time of coredump */
case 't': {
time64_t time;
time = ktime_get_real_seconds();
err = cn_printf(cn, "%lld", time);
break;
}
/* hostname */
case 'h':
down_read(&uts_sem);
err = cn_esc_printf(cn, "%s",
utsname()->nodename);
up_read(&uts_sem);
break;
/* executable, could be changed by prctl PR_SET_NAME etc */
case 'e':
err = cn_esc_printf(cn, "%s", current->comm);
break;
/* file name of executable */
case 'f':
err = cn_print_exe_file(cn, true);
break;
case 'E':
err = cn_print_exe_file(cn, false);
break;
/* core limit size */
case 'c':
err = cn_printf(cn, "%lu",
rlimit(RLIMIT_CORE));
break;
default:
break;
}
++pat_ptr;
}
if (err)
return err;
}
out:
/* Backward compatibility with core_uses_pid:
*
* If core_pattern does not include a %p (as is the default)
* and core_uses_pid is set, then .%pid will be appended to
* the filename. Do not do this for piped commands. */
if (!ispipe && !pid_in_pattern && core_uses_pid) {
err = cn_printf(cn, ".%d", task_tgid_vnr(current));
if (err)
return err;
}
return ispipe;
}
static int zap_process(struct task_struct *start, int exit_code, int flags)
{
struct task_struct *t;
int nr = 0;
/* ignore all signals except SIGKILL, see prepare_signal() */
start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
start->signal->group_exit_code = exit_code;
start->signal->group_stop_count = 0;
for_each_thread(start, t) {
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
if (t != current && t->mm) {
sigaddset(&t->pending.signal, SIGKILL);
signal_wake_up(t, 1);
nr++;
}
}
return nr;
}
static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
struct core_state *core_state, int exit_code)
{
struct task_struct *g, *p;
unsigned long flags;
int nr = -EAGAIN;
spin_lock_irq(&tsk->sighand->siglock);
if (!signal_group_exit(tsk->signal)) {
mm->core_state = core_state;
tsk->signal->group_exit_task = tsk;
nr = zap_process(tsk, exit_code, 0);
clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
}
spin_unlock_irq(&tsk->sighand->siglock);
if (unlikely(nr < 0))
return nr;
tsk->flags |= PF_DUMPCORE;
if (atomic_read(&mm->mm_users) == nr + 1)
goto done;
/*
* We should find and kill all tasks which use this mm, and we should
* count them correctly into ->nr_threads. We don't take tasklist
* lock, but this is safe wrt:
*
* fork:
* None of sub-threads can fork after zap_process(leader). All
* processes which were created before this point should be
* visible to zap_threads() because copy_process() adds the new
* process to the tail of init_task.tasks list, and lock/unlock
* of ->siglock provides a memory barrier.
*
* do_exit:
* The caller holds mm->mmap_lock. This means that the task which
* uses this mm can't pass exit_mm(), so it can't exit or clear
* its ->mm.
*
* de_thread:
* It does list_replace_rcu(&leader->tasks, &current->tasks),
* we must see either old or new leader, this does not matter.
* However, it can change p->sighand, so lock_task_sighand(p)
* must be used. Since p->mm != NULL and we hold ->mmap_lock
* it can't fail.
*
* Note also that "g" can be the old leader with ->mm == NULL
* and already unhashed and thus removed from ->thread_group.
* This is OK, __unhash_process()->list_del_rcu() does not
* clear the ->next pointer, we will find the new leader via
* next_thread().
*/
rcu_read_lock();
for_each_process(g) {
if (g == tsk->group_leader)
continue;
if (g->flags & PF_KTHREAD)
continue;
for_each_thread(g, p) {
if (unlikely(!p->mm))
continue;
if (unlikely(p->mm == mm)) {
lock_task_sighand(p, &flags);
nr += zap_process(p, exit_code,
SIGNAL_GROUP_EXIT);
unlock_task_sighand(p, &flags);
}
break;
}
}
rcu_read_unlock();
done:
atomic_set(&core_state->nr_threads, nr);
return nr;
}
static int coredump_wait(int exit_code, struct core_state *core_state)
{
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->mm;
int core_waiters = -EBUSY;
init_completion(&core_state->startup);
core_state->dumper.task = tsk;
core_state->dumper.next = NULL;
if (mmap_write_lock_killable(mm))
return -EINTR;
if (!mm->core_state)
core_waiters = zap_threads(tsk, mm, core_state, exit_code);
mmap_write_unlock(mm);
if (core_waiters > 0) {
struct core_thread *ptr;
freezer_do_not_count();
wait_for_completion(&core_state->startup);
freezer_count();
/*
* Wait for all the threads to become inactive, so that
* all the thread context (extended register state, like
* fpu etc) gets copied to the memory.
*/
ptr = core_state->dumper.next;
while (ptr != NULL) {
wait_task_inactive(ptr->task, 0);
ptr = ptr->next;
}
}
return core_waiters;
}
static void coredump_finish(struct mm_struct *mm, bool core_dumped)
{
struct core_thread *curr, *next;
struct task_struct *task;
spin_lock_irq(&current->sighand->siglock);
if (core_dumped && !__fatal_signal_pending(current))
current->signal->group_exit_code |= 0x80;
current->signal->group_exit_task = NULL;
current->signal->flags = SIGNAL_GROUP_EXIT;
spin_unlock_irq(&current->sighand->siglock);
next = mm->core_state->dumper.next;
while ((curr = next) != NULL) {
next = curr->next;
task = curr->task;
/*
* see exit_mm(), curr->task must not see
* ->task == NULL before we read ->next.
*/
smp_mb();
curr->task = NULL;
wake_up_process(task);
}
mm->core_state = NULL;
}
static bool dump_interrupted(void)
{
/*
* SIGKILL or freezing() interrupt the coredumping. Perhaps we
* can do try_to_freeze() and check __fatal_signal_pending(),
* but then we need to teach dump_write() to restart and clear
* TIF_SIGPENDING.
*/
return fatal_signal_pending(current) || freezing(current);
}
static void wait_for_dump_helpers(struct file *file)
{
struct pipe_inode_info *pipe = file->private_data;
pipe_lock(pipe);
pipe->readers++;
pipe->writers--;
wake_up_interruptible_sync(&pipe->rd_wait);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
pipe_unlock(pipe);
/*
* We actually want wait_event_freezable() but then we need
* to clear TIF_SIGPENDING and improve dump_interrupted().
*/
wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
pipe_lock(pipe);
pipe->readers--;
pipe->writers++;
pipe_unlock(pipe);
}
/*
* umh_pipe_setup
* helper function to customize the process used
* to collect the core in userspace. Specifically
* it sets up a pipe and installs it as fd 0 (stdin)
* for the process. Returns 0 on success, or
* PTR_ERR on failure.
* Note that it also sets the core limit to 1. This
* is a special value that we use to trap recursive
* core dumps
*/
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
{
struct file *files[2];
struct coredump_params *cp = (struct coredump_params *)info->data;
int err = create_pipe_files(files, 0);
if (err)
return err;
cp->file = files[1];
err = replace_fd(0, files[0], 0);
fput(files[0]);
/* and disallow core files too */
current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
return err;
}
void do_coredump(const kernel_siginfo_t *siginfo)
{
struct core_state core_state;
struct core_name cn;
struct mm_struct *mm = current->mm;
struct linux_binfmt * binfmt;
const struct cred *old_cred;
struct cred *cred;
int retval = 0;
int ispipe;
size_t *argv = NULL;
int argc = 0;
/* require nonrelative corefile path and be extra careful */
bool need_suid_safe = false;
bool core_dumped = false;
static atomic_t core_dump_count = ATOMIC_INIT(0);
struct coredump_params cprm = {
.siginfo = siginfo,
.regs = signal_pt_regs(),
.limit = rlimit(RLIMIT_CORE),
/*
* We must use the same mm->flags while dumping core to avoid
* inconsistency of bit flags, since this flag is not protected
* by any locks.
*/
.mm_flags = mm->flags,
};
audit_core_dumps(siginfo->si_signo);
binfmt = mm->binfmt;
if (!binfmt || !binfmt->core_dump)
goto fail;
if (!__get_dumpable(cprm.mm_flags))
goto fail;
cred = prepare_creds();
if (!cred)
goto fail;
/*
* We cannot trust fsuid as being the "true" uid of the process
* nor do we know its entire history. We only know it was tainted
* so we dump it as root in mode 2, and only into a controlled
* environment (pipe handler or fully qualified path).
*/
if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
/* Setuid core dump mode */
cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
need_suid_safe = true;
}
retval = coredump_wait(siginfo->si_signo, &core_state);
if (retval < 0)
goto fail_creds;
old_cred = override_creds(cred);
ispipe = format_corename(&cn, &cprm, &argv, &argc);
if (ispipe) {
int argi;
int dump_count;
char **helper_argv;
struct subprocess_info *sub_info;
if (ispipe < 0) {
printk(KERN_WARNING "format_corename failed\n");
printk(KERN_WARNING "Aborting core\n");
goto fail_unlock;
}
if (cprm.limit == 1) {
/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
*
* Normally core limits are irrelevant to pipes, since
* we're not writing to the file system, but we use
* cprm.limit of 1 here as a special value, this is a
* consistent way to catch recursive crashes.
* We can still crash if the core_pattern binary sets
* RLIM_CORE = !1, but it runs as root, and can do
* lots of stupid things.
*
* Note that we use task_tgid_vnr here to grab the pid
* of the process group leader. That way we get the
* right pid if a thread in a multi-threaded
* core_pattern process dies.
*/
printk(KERN_WARNING
"Process %d(%s) has RLIMIT_CORE set to 1\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Aborting core\n");
goto fail_unlock;
}
cprm.limit = RLIM_INFINITY;
dump_count = atomic_inc_return(&core_dump_count);
if (core_pipe_limit && (core_pipe_limit < dump_count)) {
printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Skipping core dump\n");
goto fail_dropcount;
}
helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
GFP_KERNEL);
if (!helper_argv) {
printk(KERN_WARNING "%s failed to allocate memory\n",
__func__);
goto fail_dropcount;
}
for (argi = 0; argi < argc; argi++)
helper_argv[argi] = cn.corename + argv[argi];
helper_argv[argi] = NULL;
retval = -ENOMEM;
sub_info = call_usermodehelper_setup(helper_argv[0],
helper_argv, NULL, GFP_KERNEL,
umh_pipe_setup, NULL, &cprm);
if (sub_info)
retval = call_usermodehelper_exec(sub_info,
UMH_WAIT_EXEC);
kfree(helper_argv);
if (retval) {
printk(KERN_INFO "Core dump to |%s pipe failed\n",
cn.corename);
goto close_fail;
}
} else {
struct user_namespace *mnt_userns;
struct inode *inode;
int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
O_LARGEFILE | O_EXCL;
if (cprm.limit < binfmt->min_coredump)
goto fail_unlock;
if (need_suid_safe && cn.corename[0] != '/') {
printk(KERN_WARNING "Pid %d(%s) can only dump core "\
"to fully qualified path!\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Skipping core dump\n");
goto fail_unlock;
}
/*
* Unlink the file if it exists unless this is a SUID
* binary - in that case, we're running around with root
* privs and don't want to unlink another user's coredump.
*/
if (!need_suid_safe) {
/*
* If it doesn't exist, that's fine. If there's some
* other problem, we'll catch it at the filp_open().
*/
do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
}
/*
* There is a race between unlinking and creating the
* file, but if that causes an EEXIST here, that's
* fine - another process raced with us while creating
* the corefile, and the other process won. To userspace,
* what matters is that at least one of the two processes
* writes its coredump successfully, not which one.
*/
if (need_suid_safe) {
/*
* Using user namespaces, normal user tasks can change
* their current->fs->root to point to arbitrary
* directories. Since the intention of the "only dump
* with a fully qualified path" rule is to control where
* coredumps may be placed using root privileges,
* current->fs->root must not be used. Instead, use the
* root directory of init_task.
*/
struct path root;
task_lock(&init_task);
get_fs_root(init_task.fs, &root);
task_unlock(&init_task);
cprm.file = file_open_root(&root, cn.corename,
open_flags, 0600);
path_put(&root);
} else {
cprm.file = filp_open(cn.corename, open_flags, 0600);
}
if (IS_ERR(cprm.file))
goto fail_unlock;
inode = file_inode(cprm.file);
if (inode->i_nlink > 1)
goto close_fail;
if (d_unhashed(cprm.file->f_path.dentry))
goto close_fail;
/*
* AK: actually i see no reason to not allow this for named
* pipes etc, but keep the previous behaviour for now.
*/
if (!S_ISREG(inode->i_mode))
goto close_fail;
/*
* Don't dump core if the filesystem changed owner or mode
* of the file during file creation. This is an issue when
* a process dumps core while its cwd is e.g. on a vfat
* filesystem.
*/
mnt_userns = file_mnt_user_ns(cprm.file);
if (!uid_eq(i_uid_into_mnt(mnt_userns, inode), current_fsuid()))
goto close_fail;
if ((inode->i_mode & 0677) != 0600)
goto close_fail;
if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
goto close_fail;
if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
0, 0, cprm.file))
goto close_fail;
}
/* get us an unshared descriptor table; almost always a no-op */
/* The cell spufs coredump code reads the file descriptor tables */
retval = unshare_files();
if (retval)
goto close_fail;
if (!dump_interrupted()) {
/*
* umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
* have this set to NULL.
*/
if (!cprm.file) {
pr_info("Core dump to |%s disabled\n", cn.corename);
goto close_fail;
}
file_start_write(cprm.file);
core_dumped = binfmt->core_dump(&cprm);
/*
* Ensures that file size is big enough to contain the current
* file postion. This prevents gdb from complaining about
* a truncated file if the last "write" to the file was
* dump_skip.
*/
if (cprm.to_skip) {
cprm.to_skip--;
dump_emit(&cprm, "", 1);
}
file_end_write(cprm.file);
}
if (ispipe && core_pipe_limit)
wait_for_dump_helpers(cprm.file);
close_fail:
if (cprm.file)
filp_close(cprm.file, NULL);
fail_dropcount:
if (ispipe)
atomic_dec(&core_dump_count);
fail_unlock:
kfree(argv);
kfree(cn.corename);
coredump_finish(mm, core_dumped);
revert_creds(old_cred);
fail_creds:
put_cred(cred);
fail:
return;
}
/*
* Core dumping helper functions. These are the only things you should
* do on a core-file: use only these functions to write out all the
* necessary info.
*/
static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
{
struct file *file = cprm->file;
loff_t pos = file->f_pos;
ssize_t n;
if (cprm->written + nr > cprm->limit)
return 0;
if (dump_interrupted())
return 0;
n = __kernel_write(file, addr, nr, &pos);
if (n != nr)
return 0;
file->f_pos = pos;
cprm->written += n;
cprm->pos += n;
return 1;
}
static int __dump_skip(struct coredump_params *cprm, size_t nr)
{
static char zeroes[PAGE_SIZE];
struct file *file = cprm->file;
if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
if (dump_interrupted() ||
file->f_op->llseek(file, nr, SEEK_CUR) < 0)
return 0;
cprm->pos += nr;
return 1;
} else {
while (nr > PAGE_SIZE) {
if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
return 0;
nr -= PAGE_SIZE;
}
return __dump_emit(cprm, zeroes, nr);
}
}
int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
{
if (cprm->to_skip) {
if (!__dump_skip(cprm, cprm->to_skip))
return 0;
cprm->to_skip = 0;
}
return __dump_emit(cprm, addr, nr);
}
EXPORT_SYMBOL(dump_emit);
void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
{
cprm->to_skip = pos - cprm->pos;
}
EXPORT_SYMBOL(dump_skip_to);
void dump_skip(struct coredump_params *cprm, size_t nr)
{
cprm->to_skip += nr;
}
EXPORT_SYMBOL(dump_skip);
#ifdef CONFIG_ELF_CORE
int dump_user_range(struct coredump_params *cprm, unsigned long start,
unsigned long len)
{
unsigned long addr;
for (addr = start; addr < start + len; addr += PAGE_SIZE) {
struct page *page;
int stop;
/*
* To avoid having to allocate page tables for virtual address
* ranges that have never been used yet, and also to make it
* easy to generate sparse core files, use a helper that returns
* NULL when encountering an empty page table entry that would
* otherwise have been filled with the zero page.
*/
page = get_dump_page(addr);
if (page) {
void *kaddr = kmap_local_page(page);
stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
kunmap_local(kaddr);
put_page(page);
if (stop)
return 0;
} else {
dump_skip(cprm, PAGE_SIZE);
}
}
return 1;
}
#endif
int dump_align(struct coredump_params *cprm, int align)
{
unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
if (align & (align - 1))
return 0;
if (mod)
cprm->to_skip += align - mod;
return 1;
}
EXPORT_SYMBOL(dump_align);
/*
* The purpose of always_dump_vma() is to make sure that special kernel mappings
* that are useful for post-mortem analysis are included in every core dump.
* In that way we ensure that the core dump is fully interpretable later
* without matching up the same kernel and hardware config to see what PC values
* meant. These special mappings include - vDSO, vsyscall, and other
* architecture specific mappings
*/
static bool always_dump_vma(struct vm_area_struct *vma)
{
/* Any vsyscall mappings? */
if (vma == get_gate_vma(vma->vm_mm))
return true;
/*
* Assume that all vmas with a .name op should always be dumped.
* If this changes, a new vm_ops field can easily be added.
*/
if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
return true;
/*
* arch_vma_name() returns non-NULL for special architecture mappings,
* such as vDSO sections.
*/
if (arch_vma_name(vma))
return true;
return false;
}
/*
* Decide how much of @vma's contents should be included in a core dump.
*/
static unsigned long vma_dump_size(struct vm_area_struct *vma,
unsigned long mm_flags)
{
#define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
/* always dump the vdso and vsyscall sections */
if (always_dump_vma(vma))
goto whole;
if (vma->vm_flags & VM_DONTDUMP)
return 0;
/* support for DAX */
if (vma_is_dax(vma)) {
if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
goto whole;
if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
goto whole;
return 0;
}
/* Hugetlb memory check */
if (is_vm_hugetlb_page(vma)) {
if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
goto whole;
if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
goto whole;
return 0;
}
/* Do not dump I/O mapped devices or special mappings */
if (vma->vm_flags & VM_IO)
return 0;
/* By default, dump shared memory if mapped from an anonymous file. */
if (vma->vm_flags & VM_SHARED) {
if (file_inode(vma->vm_file)->i_nlink == 0 ?
FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
goto whole;
return 0;
}
/* Dump segments that have been written to. */
if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
goto whole;
if (vma->vm_file == NULL)
return 0;
if (FILTER(MAPPED_PRIVATE))
goto whole;
/*
* If this is the beginning of an executable file mapping,
* dump the first page to aid in determining what was mapped here.
*/
if (FILTER(ELF_HEADERS) &&
vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) &&
(READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
return PAGE_SIZE;
#undef FILTER
return 0;
whole:
return vma->vm_end - vma->vm_start;
}
static struct vm_area_struct *first_vma(struct task_struct *tsk,
struct vm_area_struct *gate_vma)
{
struct vm_area_struct *ret = tsk->mm->mmap;
if (ret)
return ret;
return gate_vma;
}
/*
* Helper function for iterating across a vma list. It ensures that the caller
* will visit `gate_vma' prior to terminating the search.
*/
static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
struct vm_area_struct *gate_vma)
{
struct vm_area_struct *ret;
ret = this_vma->vm_next;
if (ret)
return ret;
if (this_vma == gate_vma)
return NULL;
return gate_vma;
}
/*
* Under the mmap_lock, take a snapshot of relevant information about the task's
* VMAs.
*/
int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count,
struct core_vma_metadata **vma_meta,
size_t *vma_data_size_ptr)
{
struct vm_area_struct *vma, *gate_vma;
struct mm_struct *mm = current->mm;
int i;
size_t vma_data_size = 0;
/*
* Once the stack expansion code is fixed to not change VMA bounds
* under mmap_lock in read mode, this can be changed to take the
* mmap_lock in read mode.
*/
if (mmap_write_lock_killable(mm))
return -EINTR;
gate_vma = get_gate_vma(mm);
*vma_count = mm->map_count + (gate_vma ? 1 : 0);
*vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL);
if (!*vma_meta) {
mmap_write_unlock(mm);
return -ENOMEM;
}
for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
vma = next_vma(vma, gate_vma), i++) {
struct core_vma_metadata *m = (*vma_meta) + i;
m->start = vma->vm_start;
m->end = vma->vm_end;
m->flags = vma->vm_flags;
m->dump_size = vma_dump_size(vma, cprm->mm_flags);
vma_data_size += m->dump_size;
}
mmap_write_unlock(mm);
if (WARN_ON(i != *vma_count))
return -EFAULT;
*vma_data_size_ptr = vma_data_size;
return 0;
}