1412 lines
34 KiB
C
1412 lines
34 KiB
C
/* Performance event support for sparc64.
|
|
*
|
|
* Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
|
|
*
|
|
* This code is based almost entirely upon the x86 perf event
|
|
* code, which is:
|
|
*
|
|
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
|
|
* Copyright (C) 2009 Jaswinder Singh Rajput
|
|
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
|
|
*/
|
|
|
|
#include <linux/perf_event.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/mutex.h>
|
|
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/cpudata.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/pcr.h>
|
|
|
|
#include "kstack.h"
|
|
|
|
/* Sparc64 chips have two performance counters, 32-bits each, with
|
|
* overflow interrupts generated on transition from 0xffffffff to 0.
|
|
* The counters are accessed in one go using a 64-bit register.
|
|
*
|
|
* Both counters are controlled using a single control register. The
|
|
* only way to stop all sampling is to clear all of the context (user,
|
|
* supervisor, hypervisor) sampling enable bits. But these bits apply
|
|
* to both counters, thus the two counters can't be enabled/disabled
|
|
* individually.
|
|
*
|
|
* The control register has two event fields, one for each of the two
|
|
* counters. It's thus nearly impossible to have one counter going
|
|
* while keeping the other one stopped. Therefore it is possible to
|
|
* get overflow interrupts for counters not currently "in use" and
|
|
* that condition must be checked in the overflow interrupt handler.
|
|
*
|
|
* So we use a hack, in that we program inactive counters with the
|
|
* "sw_count0" and "sw_count1" events. These count how many times
|
|
* the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
|
|
* unusual way to encode a NOP and therefore will not trigger in
|
|
* normal code.
|
|
*/
|
|
|
|
#define MAX_HWEVENTS 2
|
|
#define MAX_PERIOD ((1UL << 32) - 1)
|
|
|
|
#define PIC_UPPER_INDEX 0
|
|
#define PIC_LOWER_INDEX 1
|
|
#define PIC_NO_INDEX -1
|
|
|
|
struct cpu_hw_events {
|
|
/* Number of events currently scheduled onto this cpu.
|
|
* This tells how many entries in the arrays below
|
|
* are valid.
|
|
*/
|
|
int n_events;
|
|
|
|
/* Number of new events added since the last hw_perf_disable().
|
|
* This works because the perf event layer always adds new
|
|
* events inside of a perf_{disable,enable}() sequence.
|
|
*/
|
|
int n_added;
|
|
|
|
/* Array of events current scheduled on this cpu. */
|
|
struct perf_event *event[MAX_HWEVENTS];
|
|
|
|
/* Array of encoded longs, specifying the %pcr register
|
|
* encoding and the mask of PIC counters this even can
|
|
* be scheduled on. See perf_event_encode() et al.
|
|
*/
|
|
unsigned long events[MAX_HWEVENTS];
|
|
|
|
/* The current counter index assigned to an event. When the
|
|
* event hasn't been programmed into the cpu yet, this will
|
|
* hold PIC_NO_INDEX. The event->hw.idx value tells us where
|
|
* we ought to schedule the event.
|
|
*/
|
|
int current_idx[MAX_HWEVENTS];
|
|
|
|
/* Software copy of %pcr register on this cpu. */
|
|
u64 pcr;
|
|
|
|
/* Enabled/disable state. */
|
|
int enabled;
|
|
|
|
unsigned int group_flag;
|
|
};
|
|
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
|
|
|
|
/* An event map describes the characteristics of a performance
|
|
* counter event. In particular it gives the encoding as well as
|
|
* a mask telling which counters the event can be measured on.
|
|
*/
|
|
struct perf_event_map {
|
|
u16 encoding;
|
|
u8 pic_mask;
|
|
#define PIC_NONE 0x00
|
|
#define PIC_UPPER 0x01
|
|
#define PIC_LOWER 0x02
|
|
};
|
|
|
|
/* Encode a perf_event_map entry into a long. */
|
|
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
|
|
{
|
|
return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
|
|
}
|
|
|
|
static u8 perf_event_get_msk(unsigned long val)
|
|
{
|
|
return val & 0xff;
|
|
}
|
|
|
|
static u64 perf_event_get_enc(unsigned long val)
|
|
{
|
|
return val >> 16;
|
|
}
|
|
|
|
#define C(x) PERF_COUNT_HW_CACHE_##x
|
|
|
|
#define CACHE_OP_UNSUPPORTED 0xfffe
|
|
#define CACHE_OP_NONSENSE 0xffff
|
|
|
|
typedef struct perf_event_map cache_map_t
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX];
|
|
|
|
struct sparc_pmu {
|
|
const struct perf_event_map *(*event_map)(int);
|
|
const cache_map_t *cache_map;
|
|
int max_events;
|
|
int upper_shift;
|
|
int lower_shift;
|
|
int event_mask;
|
|
int hv_bit;
|
|
int irq_bit;
|
|
int upper_nop;
|
|
int lower_nop;
|
|
};
|
|
|
|
static const struct perf_event_map ultra3_perfmon_event_map[] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
|
|
};
|
|
|
|
static const struct perf_event_map *ultra3_event_map(int event_id)
|
|
{
|
|
return &ultra3_perfmon_event_map[event_id];
|
|
}
|
|
|
|
static const cache_map_t ultra3_cache_map = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
|
|
[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
|
|
[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct sparc_pmu ultra3_pmu = {
|
|
.event_map = ultra3_event_map,
|
|
.cache_map = &ultra3_cache_map,
|
|
.max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
|
|
.upper_shift = 11,
|
|
.lower_shift = 4,
|
|
.event_mask = 0x3f,
|
|
.upper_nop = 0x1c,
|
|
.lower_nop = 0x14,
|
|
};
|
|
|
|
/* Niagara1 is very limited. The upper PIC is hard-locked to count
|
|
* only instructions, so it is free running which creates all kinds of
|
|
* problems. Some hardware designs make one wonder if the creator
|
|
* even looked at how this stuff gets used by software.
|
|
*/
|
|
static const struct perf_event_map niagara1_perfmon_event_map[] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
|
|
};
|
|
|
|
static const struct perf_event_map *niagara1_event_map(int event_id)
|
|
{
|
|
return &niagara1_perfmon_event_map[event_id];
|
|
}
|
|
|
|
static const cache_map_t niagara1_cache_map = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
|
|
[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct sparc_pmu niagara1_pmu = {
|
|
.event_map = niagara1_event_map,
|
|
.cache_map = &niagara1_cache_map,
|
|
.max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
|
|
.upper_shift = 0,
|
|
.lower_shift = 4,
|
|
.event_mask = 0x7,
|
|
.upper_nop = 0x0,
|
|
.lower_nop = 0x0,
|
|
};
|
|
|
|
static const struct perf_event_map niagara2_perfmon_event_map[] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
|
|
};
|
|
|
|
static const struct perf_event_map *niagara2_event_map(int event_id)
|
|
{
|
|
return &niagara2_perfmon_event_map[event_id];
|
|
}
|
|
|
|
static const cache_map_t niagara2_cache_map = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct sparc_pmu niagara2_pmu = {
|
|
.event_map = niagara2_event_map,
|
|
.cache_map = &niagara2_cache_map,
|
|
.max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
|
|
.upper_shift = 19,
|
|
.lower_shift = 6,
|
|
.event_mask = 0xfff,
|
|
.hv_bit = 0x8,
|
|
.irq_bit = 0x30,
|
|
.upper_nop = 0x220,
|
|
.lower_nop = 0x220,
|
|
};
|
|
|
|
static const struct sparc_pmu *sparc_pmu __read_mostly;
|
|
|
|
static u64 event_encoding(u64 event_id, int idx)
|
|
{
|
|
if (idx == PIC_UPPER_INDEX)
|
|
event_id <<= sparc_pmu->upper_shift;
|
|
else
|
|
event_id <<= sparc_pmu->lower_shift;
|
|
return event_id;
|
|
}
|
|
|
|
static u64 mask_for_index(int idx)
|
|
{
|
|
return event_encoding(sparc_pmu->event_mask, idx);
|
|
}
|
|
|
|
static u64 nop_for_index(int idx)
|
|
{
|
|
return event_encoding(idx == PIC_UPPER_INDEX ?
|
|
sparc_pmu->upper_nop :
|
|
sparc_pmu->lower_nop, idx);
|
|
}
|
|
|
|
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
|
|
{
|
|
u64 val, mask = mask_for_index(idx);
|
|
|
|
val = cpuc->pcr;
|
|
val &= ~mask;
|
|
val |= hwc->config;
|
|
cpuc->pcr = val;
|
|
|
|
pcr_ops->write(cpuc->pcr);
|
|
}
|
|
|
|
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
|
|
{
|
|
u64 mask = mask_for_index(idx);
|
|
u64 nop = nop_for_index(idx);
|
|
u64 val;
|
|
|
|
val = cpuc->pcr;
|
|
val &= ~mask;
|
|
val |= nop;
|
|
cpuc->pcr = val;
|
|
|
|
pcr_ops->write(cpuc->pcr);
|
|
}
|
|
|
|
static u32 read_pmc(int idx)
|
|
{
|
|
u64 val;
|
|
|
|
read_pic(val);
|
|
if (idx == PIC_UPPER_INDEX)
|
|
val >>= 32;
|
|
|
|
return val & 0xffffffff;
|
|
}
|
|
|
|
static void write_pmc(int idx, u64 val)
|
|
{
|
|
u64 shift, mask, pic;
|
|
|
|
shift = 0;
|
|
if (idx == PIC_UPPER_INDEX)
|
|
shift = 32;
|
|
|
|
mask = ((u64) 0xffffffff) << shift;
|
|
val <<= shift;
|
|
|
|
read_pic(pic);
|
|
pic &= ~mask;
|
|
pic |= val;
|
|
write_pic(pic);
|
|
}
|
|
|
|
static u64 sparc_perf_event_update(struct perf_event *event,
|
|
struct hw_perf_event *hwc, int idx)
|
|
{
|
|
int shift = 64 - 32;
|
|
u64 prev_raw_count, new_raw_count;
|
|
s64 delta;
|
|
|
|
again:
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
new_raw_count = read_pmc(idx);
|
|
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
goto again;
|
|
|
|
delta = (new_raw_count << shift) - (prev_raw_count << shift);
|
|
delta >>= shift;
|
|
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
|
|
return new_raw_count;
|
|
}
|
|
|
|
static int sparc_perf_event_set_period(struct perf_event *event,
|
|
struct hw_perf_event *hwc, int idx)
|
|
{
|
|
s64 left = local64_read(&hwc->period_left);
|
|
s64 period = hwc->sample_period;
|
|
int ret = 0;
|
|
|
|
if (unlikely(left <= -period)) {
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
if (unlikely(left <= 0)) {
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
if (left > MAX_PERIOD)
|
|
left = MAX_PERIOD;
|
|
|
|
local64_set(&hwc->prev_count, (u64)-left);
|
|
|
|
write_pmc(idx, (u64)(-left) & 0xffffffff);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* If performance event entries have been added, move existing
|
|
* events around (if necessary) and then assign new entries to
|
|
* counters.
|
|
*/
|
|
static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
|
|
{
|
|
int i;
|
|
|
|
if (!cpuc->n_added)
|
|
goto out;
|
|
|
|
/* Read in the counters which are moving. */
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
struct perf_event *cp = cpuc->event[i];
|
|
|
|
if (cpuc->current_idx[i] != PIC_NO_INDEX &&
|
|
cpuc->current_idx[i] != cp->hw.idx) {
|
|
sparc_perf_event_update(cp, &cp->hw,
|
|
cpuc->current_idx[i]);
|
|
cpuc->current_idx[i] = PIC_NO_INDEX;
|
|
}
|
|
}
|
|
|
|
/* Assign to counters all unassigned events. */
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
struct perf_event *cp = cpuc->event[i];
|
|
struct hw_perf_event *hwc = &cp->hw;
|
|
int idx = hwc->idx;
|
|
u64 enc;
|
|
|
|
if (cpuc->current_idx[i] != PIC_NO_INDEX)
|
|
continue;
|
|
|
|
sparc_perf_event_set_period(cp, hwc, idx);
|
|
cpuc->current_idx[i] = idx;
|
|
|
|
enc = perf_event_get_enc(cpuc->events[i]);
|
|
pcr &= ~mask_for_index(idx);
|
|
pcr |= event_encoding(enc, idx);
|
|
}
|
|
out:
|
|
return pcr;
|
|
}
|
|
|
|
void hw_perf_enable(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
u64 pcr;
|
|
|
|
if (cpuc->enabled)
|
|
return;
|
|
|
|
cpuc->enabled = 1;
|
|
barrier();
|
|
|
|
pcr = cpuc->pcr;
|
|
if (!cpuc->n_events) {
|
|
pcr = 0;
|
|
} else {
|
|
pcr = maybe_change_configuration(cpuc, pcr);
|
|
|
|
/* We require that all of the events have the same
|
|
* configuration, so just fetch the settings from the
|
|
* first entry.
|
|
*/
|
|
cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
|
|
}
|
|
|
|
pcr_ops->write(cpuc->pcr);
|
|
}
|
|
|
|
void hw_perf_disable(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
u64 val;
|
|
|
|
if (!cpuc->enabled)
|
|
return;
|
|
|
|
cpuc->enabled = 0;
|
|
cpuc->n_added = 0;
|
|
|
|
val = cpuc->pcr;
|
|
val &= ~(PCR_UTRACE | PCR_STRACE |
|
|
sparc_pmu->hv_bit | sparc_pmu->irq_bit);
|
|
cpuc->pcr = val;
|
|
|
|
pcr_ops->write(cpuc->pcr);
|
|
}
|
|
|
|
static void sparc_pmu_disable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
local_irq_save(flags);
|
|
perf_disable();
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
if (event == cpuc->event[i]) {
|
|
int idx = cpuc->current_idx[i];
|
|
|
|
/* Shift remaining entries down into
|
|
* the existing slot.
|
|
*/
|
|
while (++i < cpuc->n_events) {
|
|
cpuc->event[i - 1] = cpuc->event[i];
|
|
cpuc->events[i - 1] = cpuc->events[i];
|
|
cpuc->current_idx[i - 1] =
|
|
cpuc->current_idx[i];
|
|
}
|
|
|
|
/* Absorb the final count and turn off the
|
|
* event.
|
|
*/
|
|
sparc_pmu_disable_event(cpuc, hwc, idx);
|
|
barrier();
|
|
sparc_perf_event_update(event, hwc, idx);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
cpuc->n_events--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
perf_enable();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int active_event_index(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
if (cpuc->event[i] == event)
|
|
break;
|
|
}
|
|
BUG_ON(i == cpuc->n_events);
|
|
return cpuc->current_idx[i];
|
|
}
|
|
|
|
static void sparc_pmu_read(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx = active_event_index(cpuc, event);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
sparc_perf_event_update(event, hwc, idx);
|
|
}
|
|
|
|
static void sparc_pmu_unthrottle(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx = active_event_index(cpuc, event);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
sparc_pmu_enable_event(cpuc, hwc, idx);
|
|
}
|
|
|
|
static atomic_t active_events = ATOMIC_INIT(0);
|
|
static DEFINE_MUTEX(pmc_grab_mutex);
|
|
|
|
static void perf_stop_nmi_watchdog(void *unused)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
stop_nmi_watchdog(NULL);
|
|
cpuc->pcr = pcr_ops->read();
|
|
}
|
|
|
|
void perf_event_grab_pmc(void)
|
|
{
|
|
if (atomic_inc_not_zero(&active_events))
|
|
return;
|
|
|
|
mutex_lock(&pmc_grab_mutex);
|
|
if (atomic_read(&active_events) == 0) {
|
|
if (atomic_read(&nmi_active) > 0) {
|
|
on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
|
|
BUG_ON(atomic_read(&nmi_active) != 0);
|
|
}
|
|
atomic_inc(&active_events);
|
|
}
|
|
mutex_unlock(&pmc_grab_mutex);
|
|
}
|
|
|
|
void perf_event_release_pmc(void)
|
|
{
|
|
if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
|
|
if (atomic_read(&nmi_active) == 0)
|
|
on_each_cpu(start_nmi_watchdog, NULL, 1);
|
|
mutex_unlock(&pmc_grab_mutex);
|
|
}
|
|
}
|
|
|
|
static const struct perf_event_map *sparc_map_cache_event(u64 config)
|
|
{
|
|
unsigned int cache_type, cache_op, cache_result;
|
|
const struct perf_event_map *pmap;
|
|
|
|
if (!sparc_pmu->cache_map)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
cache_type = (config >> 0) & 0xff;
|
|
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
cache_op = (config >> 8) & 0xff;
|
|
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
cache_result = (config >> 16) & 0xff;
|
|
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
|
|
|
|
if (pmap->encoding == CACHE_OP_UNSUPPORTED)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
if (pmap->encoding == CACHE_OP_NONSENSE)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return pmap;
|
|
}
|
|
|
|
static void hw_perf_event_destroy(struct perf_event *event)
|
|
{
|
|
perf_event_release_pmc();
|
|
}
|
|
|
|
/* Make sure all events can be scheduled into the hardware at
|
|
* the same time. This is simplified by the fact that we only
|
|
* need to support 2 simultaneous HW events.
|
|
*
|
|
* As a side effect, the evts[]->hw.idx values will be assigned
|
|
* on success. These are pending indexes. When the events are
|
|
* actually programmed into the chip, these values will propagate
|
|
* to the per-cpu cpuc->current_idx[] slots, see the code in
|
|
* maybe_change_configuration() for details.
|
|
*/
|
|
static int sparc_check_constraints(struct perf_event **evts,
|
|
unsigned long *events, int n_ev)
|
|
{
|
|
u8 msk0 = 0, msk1 = 0;
|
|
int idx0 = 0;
|
|
|
|
/* This case is possible when we are invoked from
|
|
* hw_perf_group_sched_in().
|
|
*/
|
|
if (!n_ev)
|
|
return 0;
|
|
|
|
if (n_ev > perf_max_events)
|
|
return -1;
|
|
|
|
msk0 = perf_event_get_msk(events[0]);
|
|
if (n_ev == 1) {
|
|
if (msk0 & PIC_LOWER)
|
|
idx0 = 1;
|
|
goto success;
|
|
}
|
|
BUG_ON(n_ev != 2);
|
|
msk1 = perf_event_get_msk(events[1]);
|
|
|
|
/* If both events can go on any counter, OK. */
|
|
if (msk0 == (PIC_UPPER | PIC_LOWER) &&
|
|
msk1 == (PIC_UPPER | PIC_LOWER))
|
|
goto success;
|
|
|
|
/* If one event is limited to a specific counter,
|
|
* and the other can go on both, OK.
|
|
*/
|
|
if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
|
|
msk1 == (PIC_UPPER | PIC_LOWER)) {
|
|
if (msk0 & PIC_LOWER)
|
|
idx0 = 1;
|
|
goto success;
|
|
}
|
|
|
|
if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
|
|
msk0 == (PIC_UPPER | PIC_LOWER)) {
|
|
if (msk1 & PIC_UPPER)
|
|
idx0 = 1;
|
|
goto success;
|
|
}
|
|
|
|
/* If the events are fixed to different counters, OK. */
|
|
if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
|
|
(msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
|
|
if (msk0 & PIC_LOWER)
|
|
idx0 = 1;
|
|
goto success;
|
|
}
|
|
|
|
/* Otherwise, there is a conflict. */
|
|
return -1;
|
|
|
|
success:
|
|
evts[0]->hw.idx = idx0;
|
|
if (n_ev == 2)
|
|
evts[1]->hw.idx = idx0 ^ 1;
|
|
return 0;
|
|
}
|
|
|
|
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
|
|
{
|
|
int eu = 0, ek = 0, eh = 0;
|
|
struct perf_event *event;
|
|
int i, n, first;
|
|
|
|
n = n_prev + n_new;
|
|
if (n <= 1)
|
|
return 0;
|
|
|
|
first = 1;
|
|
for (i = 0; i < n; i++) {
|
|
event = evts[i];
|
|
if (first) {
|
|
eu = event->attr.exclude_user;
|
|
ek = event->attr.exclude_kernel;
|
|
eh = event->attr.exclude_hv;
|
|
first = 0;
|
|
} else if (event->attr.exclude_user != eu ||
|
|
event->attr.exclude_kernel != ek ||
|
|
event->attr.exclude_hv != eh) {
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int collect_events(struct perf_event *group, int max_count,
|
|
struct perf_event *evts[], unsigned long *events,
|
|
int *current_idx)
|
|
{
|
|
struct perf_event *event;
|
|
int n = 0;
|
|
|
|
if (!is_software_event(group)) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
evts[n] = group;
|
|
events[n] = group->hw.event_base;
|
|
current_idx[n++] = PIC_NO_INDEX;
|
|
}
|
|
list_for_each_entry(event, &group->sibling_list, group_entry) {
|
|
if (!is_software_event(event) &&
|
|
event->state != PERF_EVENT_STATE_OFF) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
evts[n] = event;
|
|
events[n] = event->hw.event_base;
|
|
current_idx[n++] = PIC_NO_INDEX;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static int sparc_pmu_enable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int n0, ret = -EAGAIN;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
perf_disable();
|
|
|
|
n0 = cpuc->n_events;
|
|
if (n0 >= perf_max_events)
|
|
goto out;
|
|
|
|
cpuc->event[n0] = event;
|
|
cpuc->events[n0] = event->hw.event_base;
|
|
cpuc->current_idx[n0] = PIC_NO_INDEX;
|
|
|
|
/*
|
|
* If group events scheduling transaction was started,
|
|
* skip the schedulability test here, it will be peformed
|
|
* at commit time(->commit_txn) as a whole
|
|
*/
|
|
if (cpuc->group_flag & PERF_EVENT_TXN)
|
|
goto nocheck;
|
|
|
|
if (check_excludes(cpuc->event, n0, 1))
|
|
goto out;
|
|
if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
|
|
goto out;
|
|
|
|
nocheck:
|
|
cpuc->n_events++;
|
|
cpuc->n_added++;
|
|
|
|
ret = 0;
|
|
out:
|
|
perf_enable();
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
static int __hw_perf_event_init(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
struct perf_event *evts[MAX_HWEVENTS];
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
unsigned long events[MAX_HWEVENTS];
|
|
int current_idx_dmy[MAX_HWEVENTS];
|
|
const struct perf_event_map *pmap;
|
|
int n;
|
|
|
|
if (atomic_read(&nmi_active) < 0)
|
|
return -ENODEV;
|
|
|
|
if (attr->type == PERF_TYPE_HARDWARE) {
|
|
if (attr->config >= sparc_pmu->max_events)
|
|
return -EINVAL;
|
|
pmap = sparc_pmu->event_map(attr->config);
|
|
} else if (attr->type == PERF_TYPE_HW_CACHE) {
|
|
pmap = sparc_map_cache_event(attr->config);
|
|
if (IS_ERR(pmap))
|
|
return PTR_ERR(pmap);
|
|
} else
|
|
return -EOPNOTSUPP;
|
|
|
|
/* We save the enable bits in the config_base. */
|
|
hwc->config_base = sparc_pmu->irq_bit;
|
|
if (!attr->exclude_user)
|
|
hwc->config_base |= PCR_UTRACE;
|
|
if (!attr->exclude_kernel)
|
|
hwc->config_base |= PCR_STRACE;
|
|
if (!attr->exclude_hv)
|
|
hwc->config_base |= sparc_pmu->hv_bit;
|
|
|
|
hwc->event_base = perf_event_encode(pmap);
|
|
|
|
n = 0;
|
|
if (event->group_leader != event) {
|
|
n = collect_events(event->group_leader,
|
|
perf_max_events - 1,
|
|
evts, events, current_idx_dmy);
|
|
if (n < 0)
|
|
return -EINVAL;
|
|
}
|
|
events[n] = hwc->event_base;
|
|
evts[n] = event;
|
|
|
|
if (check_excludes(evts, n, 1))
|
|
return -EINVAL;
|
|
|
|
if (sparc_check_constraints(evts, events, n + 1))
|
|
return -EINVAL;
|
|
|
|
hwc->idx = PIC_NO_INDEX;
|
|
|
|
/* Try to do all error checking before this point, as unwinding
|
|
* state after grabbing the PMC is difficult.
|
|
*/
|
|
perf_event_grab_pmc();
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
if (!hwc->sample_period) {
|
|
hwc->sample_period = MAX_PERIOD;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Start group events scheduling transaction
|
|
* Set the flag to make pmu::enable() not perform the
|
|
* schedulability test, it will be performed at commit time
|
|
*/
|
|
static void sparc_pmu_start_txn(const struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
|
|
|
|
cpuhw->group_flag |= PERF_EVENT_TXN;
|
|
}
|
|
|
|
/*
|
|
* Stop group events scheduling transaction
|
|
* Clear the flag and pmu::enable() will perform the
|
|
* schedulability test.
|
|
*/
|
|
static void sparc_pmu_cancel_txn(const struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
|
|
|
|
cpuhw->group_flag &= ~PERF_EVENT_TXN;
|
|
}
|
|
|
|
/*
|
|
* Commit group events scheduling transaction
|
|
* Perform the group schedulability test as a whole
|
|
* Return 0 if success
|
|
*/
|
|
static int sparc_pmu_commit_txn(const struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int n;
|
|
|
|
if (!sparc_pmu)
|
|
return -EINVAL;
|
|
|
|
cpuc = &__get_cpu_var(cpu_hw_events);
|
|
n = cpuc->n_events;
|
|
if (check_excludes(cpuc->event, 0, n))
|
|
return -EINVAL;
|
|
if (sparc_check_constraints(cpuc->event, cpuc->events, n))
|
|
return -EAGAIN;
|
|
|
|
cpuc->group_flag &= ~PERF_EVENT_TXN;
|
|
return 0;
|
|
}
|
|
|
|
static const struct pmu pmu = {
|
|
.enable = sparc_pmu_enable,
|
|
.disable = sparc_pmu_disable,
|
|
.read = sparc_pmu_read,
|
|
.unthrottle = sparc_pmu_unthrottle,
|
|
.start_txn = sparc_pmu_start_txn,
|
|
.cancel_txn = sparc_pmu_cancel_txn,
|
|
.commit_txn = sparc_pmu_commit_txn,
|
|
};
|
|
|
|
const struct pmu *hw_perf_event_init(struct perf_event *event)
|
|
{
|
|
int err = __hw_perf_event_init(event);
|
|
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
return &pmu;
|
|
}
|
|
|
|
void perf_event_print_debug(void)
|
|
{
|
|
unsigned long flags;
|
|
u64 pcr, pic;
|
|
int cpu;
|
|
|
|
if (!sparc_pmu)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
|
|
pcr = pcr_ops->read();
|
|
read_pic(pic);
|
|
|
|
pr_info("\n");
|
|
pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
|
|
cpu, pcr, pic);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
|
|
unsigned long cmd, void *__args)
|
|
{
|
|
struct die_args *args = __args;
|
|
struct perf_sample_data data;
|
|
struct cpu_hw_events *cpuc;
|
|
struct pt_regs *regs;
|
|
int i;
|
|
|
|
if (!atomic_read(&active_events))
|
|
return NOTIFY_DONE;
|
|
|
|
switch (cmd) {
|
|
case DIE_NMI:
|
|
break;
|
|
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
regs = args->regs;
|
|
|
|
perf_sample_data_init(&data, 0);
|
|
|
|
cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
/* If the PMU has the TOE IRQ enable bits, we need to do a
|
|
* dummy write to the %pcr to clear the overflow bits and thus
|
|
* the interrupt.
|
|
*
|
|
* Do this before we peek at the counters to determine
|
|
* overflow so we don't lose any events.
|
|
*/
|
|
if (sparc_pmu->irq_bit)
|
|
pcr_ops->write(cpuc->pcr);
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
struct perf_event *event = cpuc->event[i];
|
|
int idx = cpuc->current_idx[i];
|
|
struct hw_perf_event *hwc;
|
|
u64 val;
|
|
|
|
hwc = &event->hw;
|
|
val = sparc_perf_event_update(event, hwc, idx);
|
|
if (val & (1ULL << 31))
|
|
continue;
|
|
|
|
data.period = event->hw.last_period;
|
|
if (!sparc_perf_event_set_period(event, hwc, idx))
|
|
continue;
|
|
|
|
if (perf_event_overflow(event, 1, &data, regs))
|
|
sparc_pmu_disable_event(cpuc, hwc, idx);
|
|
}
|
|
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
|
|
.notifier_call = perf_event_nmi_handler,
|
|
};
|
|
|
|
static bool __init supported_pmu(void)
|
|
{
|
|
if (!strcmp(sparc_pmu_type, "ultra3") ||
|
|
!strcmp(sparc_pmu_type, "ultra3+") ||
|
|
!strcmp(sparc_pmu_type, "ultra3i") ||
|
|
!strcmp(sparc_pmu_type, "ultra4+")) {
|
|
sparc_pmu = &ultra3_pmu;
|
|
return true;
|
|
}
|
|
if (!strcmp(sparc_pmu_type, "niagara")) {
|
|
sparc_pmu = &niagara1_pmu;
|
|
return true;
|
|
}
|
|
if (!strcmp(sparc_pmu_type, "niagara2")) {
|
|
sparc_pmu = &niagara2_pmu;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void __init init_hw_perf_events(void)
|
|
{
|
|
pr_info("Performance events: ");
|
|
|
|
if (!supported_pmu()) {
|
|
pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
|
|
return;
|
|
}
|
|
|
|
pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
|
|
|
|
/* All sparc64 PMUs currently have 2 events. */
|
|
perf_max_events = 2;
|
|
|
|
register_die_notifier(&perf_event_nmi_notifier);
|
|
}
|
|
|
|
static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
|
|
{
|
|
if (entry->nr < PERF_MAX_STACK_DEPTH)
|
|
entry->ip[entry->nr++] = ip;
|
|
}
|
|
|
|
static void perf_callchain_kernel(struct pt_regs *regs,
|
|
struct perf_callchain_entry *entry)
|
|
{
|
|
unsigned long ksp, fp;
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
int graph = 0;
|
|
#endif
|
|
|
|
callchain_store(entry, PERF_CONTEXT_KERNEL);
|
|
callchain_store(entry, regs->tpc);
|
|
|
|
ksp = regs->u_regs[UREG_I6];
|
|
fp = ksp + STACK_BIAS;
|
|
do {
|
|
struct sparc_stackf *sf;
|
|
struct pt_regs *regs;
|
|
unsigned long pc;
|
|
|
|
if (!kstack_valid(current_thread_info(), fp))
|
|
break;
|
|
|
|
sf = (struct sparc_stackf *) fp;
|
|
regs = (struct pt_regs *) (sf + 1);
|
|
|
|
if (kstack_is_trap_frame(current_thread_info(), regs)) {
|
|
if (user_mode(regs))
|
|
break;
|
|
pc = regs->tpc;
|
|
fp = regs->u_regs[UREG_I6] + STACK_BIAS;
|
|
} else {
|
|
pc = sf->callers_pc;
|
|
fp = (unsigned long)sf->fp + STACK_BIAS;
|
|
}
|
|
callchain_store(entry, pc);
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
if ((pc + 8UL) == (unsigned long) &return_to_handler) {
|
|
int index = current->curr_ret_stack;
|
|
if (current->ret_stack && index >= graph) {
|
|
pc = current->ret_stack[index - graph].ret;
|
|
callchain_store(entry, pc);
|
|
graph++;
|
|
}
|
|
}
|
|
#endif
|
|
} while (entry->nr < PERF_MAX_STACK_DEPTH);
|
|
}
|
|
|
|
static void perf_callchain_user_64(struct pt_regs *regs,
|
|
struct perf_callchain_entry *entry)
|
|
{
|
|
unsigned long ufp;
|
|
|
|
callchain_store(entry, PERF_CONTEXT_USER);
|
|
callchain_store(entry, regs->tpc);
|
|
|
|
ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
|
|
do {
|
|
struct sparc_stackf *usf, sf;
|
|
unsigned long pc;
|
|
|
|
usf = (struct sparc_stackf *) ufp;
|
|
if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
|
|
break;
|
|
|
|
pc = sf.callers_pc;
|
|
ufp = (unsigned long)sf.fp + STACK_BIAS;
|
|
callchain_store(entry, pc);
|
|
} while (entry->nr < PERF_MAX_STACK_DEPTH);
|
|
}
|
|
|
|
static void perf_callchain_user_32(struct pt_regs *regs,
|
|
struct perf_callchain_entry *entry)
|
|
{
|
|
unsigned long ufp;
|
|
|
|
callchain_store(entry, PERF_CONTEXT_USER);
|
|
callchain_store(entry, regs->tpc);
|
|
|
|
ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
|
|
do {
|
|
struct sparc_stackf32 *usf, sf;
|
|
unsigned long pc;
|
|
|
|
usf = (struct sparc_stackf32 *) ufp;
|
|
if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
|
|
break;
|
|
|
|
pc = sf.callers_pc;
|
|
ufp = (unsigned long)sf.fp;
|
|
callchain_store(entry, pc);
|
|
} while (entry->nr < PERF_MAX_STACK_DEPTH);
|
|
}
|
|
|
|
/* Like powerpc we can't get PMU interrupts within the PMU handler,
|
|
* so no need for separate NMI and IRQ chains as on x86.
|
|
*/
|
|
static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
|
|
|
|
struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
|
|
{
|
|
struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
|
|
|
|
entry->nr = 0;
|
|
if (!user_mode(regs)) {
|
|
stack_trace_flush();
|
|
perf_callchain_kernel(regs, entry);
|
|
if (current->mm)
|
|
regs = task_pt_regs(current);
|
|
else
|
|
regs = NULL;
|
|
}
|
|
if (regs) {
|
|
flushw_user();
|
|
if (test_thread_flag(TIF_32BIT))
|
|
perf_callchain_user_32(regs, entry);
|
|
else
|
|
perf_callchain_user_64(regs, entry);
|
|
}
|
|
return entry;
|
|
}
|