linux-sg2042/drivers/mtd/devices/st_spi_fsm.c

2172 lines
58 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
*
* Author: Angus Clark <angus.clark@st.com>
*
* Copyright (C) 2010-2014 STMicroelectronics Limited
*
* JEDEC probe based on drivers/mtd/devices/m25p80.c
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/platform_device.h>
#include <linux/mfd/syscon.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/clk.h>
#include "serial_flash_cmds.h"
/*
* FSM SPI Controller Registers
*/
#define SPI_CLOCKDIV 0x0010
#define SPI_MODESELECT 0x0018
#define SPI_CONFIGDATA 0x0020
#define SPI_STA_MODE_CHANGE 0x0028
#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100
#define SPI_FAST_SEQ_ADD1 0x0104
#define SPI_FAST_SEQ_ADD2 0x0108
#define SPI_FAST_SEQ_ADD_CFG 0x010c
#define SPI_FAST_SEQ_OPC1 0x0110
#define SPI_FAST_SEQ_OPC2 0x0114
#define SPI_FAST_SEQ_OPC3 0x0118
#define SPI_FAST_SEQ_OPC4 0x011c
#define SPI_FAST_SEQ_OPC5 0x0120
#define SPI_MODE_BITS 0x0124
#define SPI_DUMMY_BITS 0x0128
#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c
#define SPI_FAST_SEQ_1 0x0130
#define SPI_FAST_SEQ_2 0x0134
#define SPI_FAST_SEQ_3 0x0138
#define SPI_FAST_SEQ_4 0x013c
#define SPI_FAST_SEQ_CFG 0x0140
#define SPI_FAST_SEQ_STA 0x0144
#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148
#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c
#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150
#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154
#define SPI_PROGRAM_ERASE_TIME 0x0158
#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c
#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160
#define SPI_STATUS_WR_TIME_REG 0x0164
#define SPI_FAST_SEQ_DATA_REG 0x0300
/*
* Register: SPI_MODESELECT
*/
#define SPI_MODESELECT_CONTIG 0x01
#define SPI_MODESELECT_FASTREAD 0x02
#define SPI_MODESELECT_DUALIO 0x04
#define SPI_MODESELECT_FSM 0x08
#define SPI_MODESELECT_QUADBOOT 0x10
/*
* Register: SPI_CONFIGDATA
*/
#define SPI_CFG_DEVICE_ST 0x1
#define SPI_CFG_DEVICE_ATMEL 0x4
#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4)
#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16)
#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24)
#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA)
#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0)
#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00)
/*
* Register: SPI_FAST_SEQ_TRANSFER_SIZE
*/
#define TRANSFER_SIZE(x) ((x) * 8)
/*
* Register: SPI_FAST_SEQ_ADD_CFG
*/
#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0)
#define ADR_CFG_PADS_1_ADD1 (0x0 << 6)
#define ADR_CFG_PADS_2_ADD1 (0x1 << 6)
#define ADR_CFG_PADS_4_ADD1 (0x3 << 6)
#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8)
#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16))
#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16))
#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16))
#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16))
#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16))
/*
* Register: SPI_FAST_SEQ_n
*/
#define SEQ_OPC_OPCODE(x) ((x) << 0)
#define SEQ_OPC_CYCLES(x) ((x) << 8)
#define SEQ_OPC_PADS_1 (0x0 << 14)
#define SEQ_OPC_PADS_2 (0x1 << 14)
#define SEQ_OPC_PADS_4 (0x3 << 14)
#define SEQ_OPC_CSDEASSERT (1 << 16)
/*
* Register: SPI_FAST_SEQ_CFG
*/
#define SEQ_CFG_STARTSEQ (1 << 0)
#define SEQ_CFG_SWRESET (1 << 5)
#define SEQ_CFG_CSDEASSERT (1 << 6)
#define SEQ_CFG_READNOTWRITE (1 << 7)
#define SEQ_CFG_ERASE (1 << 8)
#define SEQ_CFG_PADS_1 (0x0 << 16)
#define SEQ_CFG_PADS_2 (0x1 << 16)
#define SEQ_CFG_PADS_4 (0x3 << 16)
/*
* Register: SPI_MODE_BITS
*/
#define MODE_DATA(x) (x & 0xff)
#define MODE_CYCLES(x) ((x & 0x3f) << 16)
#define MODE_PADS_1 (0x0 << 22)
#define MODE_PADS_2 (0x1 << 22)
#define MODE_PADS_4 (0x3 << 22)
#define DUMMY_CSDEASSERT (1 << 24)
/*
* Register: SPI_DUMMY_BITS
*/
#define DUMMY_CYCLES(x) ((x & 0x3f) << 16)
#define DUMMY_PADS_1 (0x0 << 22)
#define DUMMY_PADS_2 (0x1 << 22)
#define DUMMY_PADS_4 (0x3 << 22)
#define DUMMY_CSDEASSERT (1 << 24)
/*
* Register: SPI_FAST_SEQ_FLASH_STA_DATA
*/
#define STA_DATA_BYTE1(x) ((x & 0xff) << 0)
#define STA_DATA_BYTE2(x) ((x & 0xff) << 8)
#define STA_PADS_1 (0x0 << 16)
#define STA_PADS_2 (0x1 << 16)
#define STA_PADS_4 (0x3 << 16)
#define STA_CSDEASSERT (0x1 << 20)
#define STA_RDNOTWR (0x1 << 21)
/*
* FSM SPI Instruction Opcodes
*/
#define STFSM_OPC_CMD 0x1
#define STFSM_OPC_ADD 0x2
#define STFSM_OPC_STA 0x3
#define STFSM_OPC_MODE 0x4
#define STFSM_OPC_DUMMY 0x5
#define STFSM_OPC_DATA 0x6
#define STFSM_OPC_WAIT 0x7
#define STFSM_OPC_JUMP 0x8
#define STFSM_OPC_GOTO 0x9
#define STFSM_OPC_STOP 0xF
/*
* FSM SPI Instructions (== opcode + operand).
*/
#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4))
#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1)
#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2)
#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3)
#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4)
#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5)
#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1)
#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2)
#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1)
#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2)
#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2)
#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3)
#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0)
#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0)
#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0)
#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0)
#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */
#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */
#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
/* S25FLxxxS commands */
#define S25FL_CMD_WRITE4_1_1_4 0x34
#define S25FL_CMD_SE4 0xdc
#define S25FL_CMD_CLSR 0x30
#define S25FL_CMD_DYBWR 0xe1
#define S25FL_CMD_DYBRD 0xe0
#define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with
* 'SPINOR_OP_WRITE_1_4_4'
* as found on N25Qxxx devices! */
/* Status register */
#define FLASH_STATUS_BUSY 0x01
#define FLASH_STATUS_WEL 0x02
#define FLASH_STATUS_BP0 0x04
#define FLASH_STATUS_BP1 0x08
#define FLASH_STATUS_BP2 0x10
#define FLASH_STATUS_SRWP0 0x80
#define FLASH_STATUS_TIMEOUT 0xff
/* S25FL Error Flags */
#define S25FL_STATUS_E_ERR 0x20
#define S25FL_STATUS_P_ERR 0x40
#define N25Q_CMD_WRVCR 0x81
#define N25Q_CMD_RDVCR 0x85
#define N25Q_CMD_RDVECR 0x65
#define N25Q_CMD_RDNVCR 0xb5
#define N25Q_CMD_WRNVCR 0xb1
#define FLASH_PAGESIZE 256 /* In Bytes */
#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */
#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */
/*
* Flags to tweak operation of default read/write/erase routines
*/
#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001
#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002
#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010
struct stfsm_seq {
uint32_t data_size;
uint32_t addr1;
uint32_t addr2;
uint32_t addr_cfg;
uint32_t seq_opc[5];
uint32_t mode;
uint32_t dummy;
uint32_t status;
uint8_t seq[16];
uint32_t seq_cfg;
} __packed __aligned(4);
struct stfsm {
struct device *dev;
void __iomem *base;
struct mtd_info mtd;
struct mutex lock;
struct flash_info *info;
struct clk *clk;
uint32_t configuration;
uint32_t fifo_dir_delay;
bool booted_from_spi;
bool reset_signal;
bool reset_por;
struct stfsm_seq stfsm_seq_read;
struct stfsm_seq stfsm_seq_write;
struct stfsm_seq stfsm_seq_en_32bit_addr;
};
/* Parameters to configure a READ or WRITE FSM sequence */
struct seq_rw_config {
uint32_t flags; /* flags to support config */
uint8_t cmd; /* FLASH command */
int write; /* Write Sequence */
uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */
uint8_t data_pads; /* No. of data pads */
uint8_t mode_data; /* MODE data */
uint8_t mode_cycles; /* No. of MODE cycles */
uint8_t dummy_cycles; /* No. of DUMMY cycles */
};
/* SPI Flash Device Table */
struct flash_info {
char *name;
/*
* JEDEC id zero means "no ID" (most older chips); otherwise it has
* a high byte of zero plus three data bytes: the manufacturer id,
* then a two byte device id.
*/
u32 jedec_id;
u16 ext_id;
/*
* The size listed here is what works with SPINOR_OP_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
u32 flags;
/*
* Note, where FAST_READ is supported, freq_max specifies the
* FAST_READ frequency, not the READ frequency.
*/
u32 max_freq;
int (*config)(struct stfsm *);
};
static int stfsm_n25q_config(struct stfsm *fsm);
static int stfsm_mx25_config(struct stfsm *fsm);
static int stfsm_s25fl_config(struct stfsm *fsm);
static int stfsm_w25q_config(struct stfsm *fsm);
static struct flash_info flash_types[] = {
/*
* ST Microelectronics/Numonyx --
* (newer production versions may have feature updates
* (eg faster operating frequency)
*/
#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
{ "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL },
{ "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL },
{ "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL },
{ "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL },
{ "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL },
{ "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL },
#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_WRITE_1_1_2)
{ "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL },
{ "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL },
/* Macronix MX25xxx
* - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
* where operating frequency must be reduced.
*/
#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_READ_1_2_2 | \
FLASH_FLAG_READ_1_1_4 | \
FLASH_FLAG_SE_4K | \
FLASH_FLAG_SE_32K)
{ "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64,
(MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86,
stfsm_mx25_config},
{ "mx25l25635e", 0xc22019, 0, 64*1024, 512,
(MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
stfsm_mx25_config },
{ "mx25l25655e", 0xc22619, 0, 64*1024, 512,
(MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
stfsm_mx25_config},
#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_READ_1_2_2 | \
FLASH_FLAG_READ_1_1_4 | \
FLASH_FLAG_READ_1_4_4 | \
FLASH_FLAG_WRITE_1_1_2 | \
FLASH_FLAG_WRITE_1_2_2 | \
FLASH_FLAG_WRITE_1_1_4 | \
FLASH_FLAG_WRITE_1_4_4)
{ "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108,
stfsm_n25q_config },
{ "n25q256", 0x20ba19, 0, 64 * 1024, 512,
N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
/*
* Spansion S25FLxxxP
* - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
*/
#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_READ_1_2_2 | \
FLASH_FLAG_READ_1_1_4 | \
FLASH_FLAG_READ_1_4_4 | \
FLASH_FLAG_WRITE_1_1_4 | \
FLASH_FLAG_READ_FAST)
{ "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80,
stfsm_s25fl_config},
{ "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80,
stfsm_s25fl_config },
{ "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80,
stfsm_s25fl_config },
/*
* Spansion S25FLxxxS
* - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
* - RESET# signal supported by die but not bristled out on all
* package types. The package type is a function of board design,
* so this information is captured in the board's flags.
* - Supports 'DYB' sector protection. Depending on variant, sectors
* may default to locked state on power-on.
*/
#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \
FLASH_FLAG_RESET | \
FLASH_FLAG_DYB_LOCKING)
{ "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80,
stfsm_s25fl_config },
{ "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80,
stfsm_s25fl_config },
{ "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
{ "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512,
S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_WRITE_1_1_2)
{ "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL },
{ "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL },
{ "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL },
{ "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL },
{ "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL },
/* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_READ_1_2_2 | \
FLASH_FLAG_READ_1_1_4 | \
FLASH_FLAG_READ_1_4_4 | \
FLASH_FLAG_WRITE_1_1_4)
{ "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80,
stfsm_w25q_config },
{ "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80,
stfsm_w25q_config },
{ "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80,
stfsm_w25q_config },
{ "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80,
stfsm_w25q_config },
/* Sentinel */
{ NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
};
/*
* FSM message sequence configurations:
*
* All configs are presented in order of preference
*/
/* Default READ configurations, in order of preference */
static struct seq_rw_config default_read_configs[] = {
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4},
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0},
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0},
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/* Default WRITE configurations */
static struct seq_rw_config default_write_configs[] = {
{FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
{FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
{FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
{FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/*
* [N25Qxxx] Configuration
*/
#define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4)
#define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3)
#define N25Q_VCR_WRAP_CONT 0x3
/* N25Q 3-byte Address READ configurations
* - 'FAST' variants configured for 8 dummy cycles.
*
* Note, the number of dummy cycles used for 'FAST' READ operations is
* configurable and would normally be tuned according to the READ command and
* operating frequency. However, this applies universally to all 'FAST' READ
* commands, including those used by the SPIBoot controller, and remains in
* force until the device is power-cycled. Since the SPIBoot controller is
* hard-wired to use 8 dummy cycles, we must configure the device to also use 8
* cycles.
*/
static struct seq_rw_config n25q_read3_configs[] = {
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/* N25Q 4-byte Address READ configurations
* - use special 4-byte address READ commands (reduces overheads, and
* reduces risk of hitting watchdog reset issues).
* - 'FAST' variants configured for 8 dummy cycles (see note above.)
*/
static struct seq_rw_config n25q_read4_configs[] = {
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/*
* [MX25xxx] Configuration
*/
#define MX25_STATUS_QE (0x1 << 6)
static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
{
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_EN4B) |
SEQ_OPC_CSDEASSERT);
seq->seq[0] = STFSM_INST_CMD1;
seq->seq[1] = STFSM_INST_WAIT;
seq->seq[2] = STFSM_INST_STOP;
seq->seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_ERASE |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ);
return 0;
}
/*
* [S25FLxxx] Configuration
*/
#define STFSM_S25FL_CONFIG_QE (0x1 << 1)
/*
* S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
* Register, Extended Address Modes, and a 32-bit address command set. The
* 32-bit address command set is used here, since it avoids any problems with
* entering a state that is incompatible with the SPIBoot Controller.
*/
static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 2, 4},
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 4, 0},
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
{FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0},
{FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/*
* [W25Qxxx] Configuration
*/
#define W25Q_STATUS_QE (0x1 << 1)
static struct stfsm_seq stfsm_seq_read_jedec = {
.data_size = TRANSFER_SIZE(8),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_DATA_READ,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct stfsm_seq stfsm_seq_read_status_fifo = {
.data_size = TRANSFER_SIZE(4),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_RDSR)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_DATA_READ,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct stfsm_seq stfsm_seq_erase_sector = {
/* 'addr_cfg' configured during initialisation */
.seq_opc = {
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_SE)),
},
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_ADD1,
STFSM_INST_ADD2,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct stfsm_seq stfsm_seq_erase_chip = {
.seq_opc = {
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT),
},
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_WAIT,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_ERASE |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct stfsm_seq stfsm_seq_write_status = {
.seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
.seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WRSR)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_STA_WR1,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
/* Dummy sequence to read one byte of data from flash into the FIFO */
static const struct stfsm_seq stfsm_seq_load_fifo_byte = {
.data_size = TRANSFER_SIZE(1),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_DATA_READ,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
{
seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_EN4B));
seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
SEQ_OPC_CSDEASSERT);
seq->seq[0] = STFSM_INST_CMD2;
seq->seq[1] = STFSM_INST_CMD1;
seq->seq[2] = STFSM_INST_WAIT;
seq->seq[3] = STFSM_INST_STOP;
seq->seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_ERASE |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ);
return 0;
}
static inline int stfsm_is_idle(struct stfsm *fsm)
{
return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
}
static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
{
return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
}
static inline void stfsm_load_seq(struct stfsm *fsm,
const struct stfsm_seq *seq)
{
void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
const uint32_t *src = (const uint32_t *)seq;
int words = sizeof(*seq) / sizeof(*src);
BUG_ON(!stfsm_is_idle(fsm));
while (words--) {
writel(*src, dst);
src++;
dst += 4;
}
}
static void stfsm_wait_seq(struct stfsm *fsm)
{
unsigned long deadline;
int timeout = 0;
deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
while (!timeout) {
if (time_after_eq(jiffies, deadline))
timeout = 1;
if (stfsm_is_idle(fsm))
return;
cond_resched();
}
dev_err(fsm->dev, "timeout on sequence completion\n");
}
static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
{
uint32_t remaining = size >> 2;
uint32_t avail;
uint32_t words;
dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
while (remaining) {
for (;;) {
avail = stfsm_fifo_available(fsm);
if (avail)
break;
udelay(1);
}
words = min(avail, remaining);
remaining -= words;
readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
buf += words;
}
}
/*
* Clear the data FIFO
*
* Typically, this is only required during driver initialisation, where no
* assumptions can be made regarding the state of the FIFO.
*
* The process of clearing the FIFO is complicated by fact that while it is
* possible for the FIFO to contain an arbitrary number of bytes [1], the
* SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words
* present. Furthermore, data can only be drained from the FIFO by reading
* complete 32-bit words.
*
* With this in mind, a two stage process is used to the clear the FIFO:
*
* 1. Read any complete 32-bit words from the FIFO, as reported by the
* SPI_FAST_SEQ_STA register.
*
* 2. Mop up any remaining bytes. At this point, it is not known if there
* are 0, 1, 2, or 3 bytes in the FIFO. To handle all cases, a dummy FSM
* sequence is used to load one byte at a time, until a complete 32-bit
* word is formed; at most, 4 bytes will need to be loaded.
*
* [1] It is theoretically possible for the FIFO to contain an arbitrary number
* of bits. However, since there are no known use-cases that leave
* incomplete bytes in the FIFO, only words and bytes are considered here.
*/
static void stfsm_clear_fifo(struct stfsm *fsm)
{
const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte;
uint32_t words, i;
/* 1. Clear any 32-bit words */
words = stfsm_fifo_available(fsm);
if (words) {
for (i = 0; i < words; i++)
readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words);
}
/*
* 2. Clear any remaining bytes
* - Load the FIFO, one byte at a time, until a complete 32-bit word
* is available.
*/
for (i = 0, words = 0; i < 4 && !words; i++) {
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
words = stfsm_fifo_available(fsm);
}
/* - A single word must be available now */
if (words != 1) {
dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n");
return;
}
/* - Read the 32-bit word */
readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i);
}
static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
uint32_t size)
{
uint32_t words = size >> 2;
dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
return size;
}
static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
{
struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(cmd) |
SEQ_OPC_CSDEASSERT);
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
return 0;
}
static uint8_t stfsm_wait_busy(struct stfsm *fsm)
{
struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
unsigned long deadline;
uint32_t status;
int timeout = 0;
/* Use RDRS1 */
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_RDSR));
/* Load read_status sequence */
stfsm_load_seq(fsm, seq);
/*
* Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
*/
deadline = jiffies + FLASH_MAX_BUSY_WAIT;
while (!timeout) {
if (time_after_eq(jiffies, deadline))
timeout = 1;
stfsm_wait_seq(fsm);
stfsm_read_fifo(fsm, &status, 4);
if ((status & FLASH_STATUS_BUSY) == 0)
return 0;
if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
((status & S25FL_STATUS_P_ERR) ||
(status & S25FL_STATUS_E_ERR)))
return (uint8_t)(status & 0xff);
if (!timeout)
/* Restart */
writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
cond_resched();
}
dev_err(fsm->dev, "timeout on wait_busy\n");
return FLASH_STATUS_TIMEOUT;
}
static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
uint8_t *data, int bytes)
{
struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
uint32_t tmp;
uint8_t *t = (uint8_t *)&tmp;
int i;
dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n",
cmd, bytes);
BUG_ON(bytes != 1 && bytes != 2);
seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(cmd)),
stfsm_load_seq(fsm, seq);
stfsm_read_fifo(fsm, &tmp, 4);
for (i = 0; i < bytes; i++)
data[i] = t[i];
stfsm_wait_seq(fsm);
return 0;
}
static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd,
uint16_t data, int bytes, int wait_busy)
{
struct stfsm_seq *seq = &stfsm_seq_write_status;
dev_dbg(fsm->dev,
"write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
" %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no");
BUG_ON(bytes != 1 && bytes != 2);
seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(cmd));
seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT;
seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
if (wait_busy)
stfsm_wait_busy(fsm);
return 0;
}
/*
* SoC reset on 'boot-from-spi' systems
*
* Certain modes of operation cause the Flash device to enter a particular state
* for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
* Addr' commands). On boot-from-spi systems, it is important to consider what
* happens if a warm reset occurs during this period. The SPIBoot controller
* assumes that Flash device is in its default reset state, 24-bit address mode,
* and ready to accept commands. This can be achieved using some form of
* on-board logic/controller to force a device POR in response to a SoC-level
* reset or by making use of the device reset signal if available (limited
* number of devices only).
*
* Failure to take such precautions can cause problems following a warm reset.
* For some operations (e.g. ERASE), there is little that can be done. For
* other modes of operation (e.g. 32-bit addressing), options are often
* available that can help minimise the window in which a reset could cause a
* problem.
*
*/
static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
{
/* Reset signal is available on the board and supported by the device */
if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
return true;
/* Board-level logic forces a power-on-reset */
if (fsm->reset_por)
return true;
/* Reset is not properly handled and may result in failure to reboot */
return false;
}
/* Configure 'addr_cfg' according to addressing mode */
static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
struct stfsm_seq *seq)
{
int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
ADR_CFG_PADS_1_ADD1 |
ADR_CFG_CYCLES_ADD2(16) |
ADR_CFG_PADS_1_ADD2 |
ADR_CFG_CSDEASSERT_ADD2);
}
/* Search for preferred configuration based on available flags */
static struct seq_rw_config *
stfsm_search_seq_rw_configs(struct stfsm *fsm,
struct seq_rw_config cfgs[])
{
struct seq_rw_config *config;
int flags = fsm->info->flags;
for (config = cfgs; config->cmd != 0; config++)
if ((config->flags & flags) == config->flags)
return config;
return NULL;
}
/* Prepare a READ/WRITE sequence according to configuration parameters */
static void stfsm_prepare_rw_seq(struct stfsm *fsm,
struct stfsm_seq *seq,
struct seq_rw_config *cfg)
{
int addr1_cycles, addr2_cycles;
int i = 0;
memset(seq, 0, sizeof(*seq));
/* Add READ/WRITE OPC */
seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(cfg->cmd));
/* Add WREN OPC for a WRITE sequence */
if (cfg->write)
seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
SEQ_OPC_CSDEASSERT);
/* Address configuration (24 or 32-bit addresses) */
addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
addr1_cycles /= cfg->addr_pads;
addr2_cycles = 16 / cfg->addr_pads;
seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */
(cfg->addr_pads - 1) << 6 | /* ADD1 pads */
(addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */
((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
/* Data/Sequence configuration */
seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
SEQ_CFG_STARTSEQ |
SEQ_CFG_CSDEASSERT);
if (!cfg->write)
seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
/* Mode configuration (no. of pads taken from addr cfg) */
seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */
(cfg->mode_cycles & 0x3f) << 16 | /* cycles */
(cfg->addr_pads - 1) << 22); /* pads */
/* Dummy configuration (no. of pads taken from addr cfg) */
seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */
(cfg->addr_pads - 1) << 22); /* pads */
/* Instruction sequence */
i = 0;
if (cfg->write)
seq->seq[i++] = STFSM_INST_CMD2;
seq->seq[i++] = STFSM_INST_CMD1;
seq->seq[i++] = STFSM_INST_ADD1;
seq->seq[i++] = STFSM_INST_ADD2;
if (cfg->mode_cycles)
seq->seq[i++] = STFSM_INST_MODE;
if (cfg->dummy_cycles)
seq->seq[i++] = STFSM_INST_DUMMY;
seq->seq[i++] =
cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
seq->seq[i++] = STFSM_INST_STOP;
}
static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
struct stfsm_seq *seq,
struct seq_rw_config *cfgs)
{
struct seq_rw_config *config;
config = stfsm_search_seq_rw_configs(fsm, cfgs);
if (!config) {
dev_err(fsm->dev, "failed to find suitable config\n");
return -EINVAL;
}
stfsm_prepare_rw_seq(fsm, seq, config);
return 0;
}
/* Prepare a READ/WRITE/ERASE 'default' sequences */
static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
{
uint32_t flags = fsm->info->flags;
int ret;
/* Configure 'READ' sequence */
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
default_read_configs);
if (ret) {
dev_err(fsm->dev,
"failed to prep READ sequence with flags [0x%08x]\n",
flags);
return ret;
}
/* Configure 'WRITE' sequence */
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
default_write_configs);
if (ret) {
dev_err(fsm->dev,
"failed to prep WRITE sequence with flags [0x%08x]\n",
flags);
return ret;
}
/* Configure 'ERASE_SECTOR' sequence */
stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
return 0;
}
static int stfsm_mx25_config(struct stfsm *fsm)
{
uint32_t flags = fsm->info->flags;
uint32_t data_pads;
uint8_t sta;
int ret;
bool soc_reset;
/*
* Use default READ/WRITE sequences
*/
ret = stfsm_prepare_rwe_seqs_default(fsm);
if (ret)
return ret;
/*
* Configure 32-bit Address Support
*/
if (flags & FLASH_FLAG_32BIT_ADDR) {
/* Configure 'enter_32bitaddr' FSM sequence */
stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
soc_reset = stfsm_can_handle_soc_reset(fsm);
if (soc_reset || !fsm->booted_from_spi)
/* If we can handle SoC resets, we enable 32-bit address
* mode pervasively */
stfsm_enter_32bit_addr(fsm, 1);
else
/* Else, enable/disable 32-bit addressing before/after
* each operation */
fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
CFG_WRITE_TOGGLE_32BIT_ADDR |
CFG_ERASESEC_TOGGLE_32BIT_ADDR);
}
/* Check status of 'QE' bit, update if required. */
stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1);
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
if (data_pads == 4) {
if (!(sta & MX25_STATUS_QE)) {
/* Set 'QE' */
sta |= MX25_STATUS_QE;
stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
}
} else {
if (sta & MX25_STATUS_QE) {
/* Clear 'QE' */
sta &= ~MX25_STATUS_QE;
stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
}
}
return 0;
}
static int stfsm_n25q_config(struct stfsm *fsm)
{
uint32_t flags = fsm->info->flags;
uint8_t vcr;
int ret = 0;
bool soc_reset;
/* Configure 'READ' sequence */
if (flags & FLASH_FLAG_32BIT_ADDR)
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
n25q_read4_configs);
else
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
n25q_read3_configs);
if (ret) {
dev_err(fsm->dev,
"failed to prepare READ sequence with flags [0x%08x]\n",
flags);
return ret;
}
/* Configure 'WRITE' sequence (default configs) */
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
default_write_configs);
if (ret) {
dev_err(fsm->dev,
"preparing WRITE sequence using flags [0x%08x] failed\n",
flags);
return ret;
}
/* * Configure 'ERASE_SECTOR' sequence */
stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
/* Configure 32-bit address support */
if (flags & FLASH_FLAG_32BIT_ADDR) {
stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
soc_reset = stfsm_can_handle_soc_reset(fsm);
if (soc_reset || !fsm->booted_from_spi) {
/*
* If we can handle SoC resets, we enable 32-bit
* address mode pervasively
*/
stfsm_enter_32bit_addr(fsm, 1);
} else {
/*
* If not, enable/disable for WRITE and ERASE
* operations (READ uses special commands)
*/
fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
CFG_ERASESEC_TOGGLE_32BIT_ADDR);
}
}
/*
* Configure device to use 8 dummy cycles
*/
vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
N25Q_VCR_WRAP_CONT);
stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0);
return 0;
}
static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq)
{
seq->seq_opc[1] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(S25FL_CMD_SE4));
seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
ADR_CFG_PADS_1_ADD1 |
ADR_CFG_CYCLES_ADD2(16) |
ADR_CFG_PADS_1_ADD2 |
ADR_CFG_CSDEASSERT_ADD2);
}
static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby)
{
uint32_t tmp;
struct stfsm_seq seq = {
.data_size = TRANSFER_SIZE(4),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)),
.addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
ADR_CFG_PADS_1_ADD1 |
ADR_CFG_CYCLES_ADD2(16) |
ADR_CFG_PADS_1_ADD2),
.addr1 = (offs >> 16) & 0xffff,
.addr2 = offs & 0xffff,
.seq = {
STFSM_INST_CMD1,
STFSM_INST_ADD1,
STFSM_INST_ADD2,
STFSM_INST_DATA_READ,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
stfsm_load_seq(fsm, &seq);
stfsm_read_fifo(fsm, &tmp, 4);
*dby = (uint8_t)(tmp >> 24);
stfsm_wait_seq(fsm);
}
static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
{
struct stfsm_seq seq = {
.seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
SEQ_OPC_CSDEASSERT),
.seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
.addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
ADR_CFG_PADS_1_ADD1 |
ADR_CFG_CYCLES_ADD2(16) |
ADR_CFG_PADS_1_ADD2),
.status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT,
.addr1 = (offs >> 16) & 0xffff,
.addr2 = offs & 0xffff,
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_ADD1,
STFSM_INST_ADD2,
STFSM_INST_STA_WR1,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
stfsm_load_seq(fsm, &seq);
stfsm_wait_seq(fsm);
stfsm_wait_busy(fsm);
}
static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
{
struct stfsm_seq seq = {
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(S25FL_CMD_CLSR) |
SEQ_OPC_CSDEASSERT),
.seq_opc[1] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WRDI) |
SEQ_OPC_CSDEASSERT),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_WAIT,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_ERASE |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
stfsm_load_seq(fsm, &seq);
stfsm_wait_seq(fsm);
return 0;
}
static int stfsm_s25fl_config(struct stfsm *fsm)
{
struct flash_info *info = fsm->info;
uint32_t flags = info->flags;
uint32_t data_pads;
uint32_t offs;
uint16_t sta_wr;
uint8_t sr1, cr1, dyb;
int update_sr = 0;
int ret;
if (flags & FLASH_FLAG_32BIT_ADDR) {
/*
* Prepare Read/Write/Erase sequences according to S25FLxxx
* 32-bit address command set
*/
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
stfsm_s25fl_read4_configs);
if (ret)
return ret;
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
stfsm_s25fl_write4_configs);
if (ret)
return ret;
stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector);
} else {
/* Use default configurations for 24-bit addressing */
ret = stfsm_prepare_rwe_seqs_default(fsm);
if (ret)
return ret;
}
/*
* For devices that support 'DYB' sector locking, check lock status and
* unlock sectors if necessary (some variants power-on with sectors
* locked by default)
*/
if (flags & FLASH_FLAG_DYB_LOCKING) {
offs = 0;
for (offs = 0; offs < info->sector_size * info->n_sectors;) {
stfsm_s25fl_read_dyb(fsm, offs, &dyb);
if (dyb == 0x00)
stfsm_s25fl_write_dyb(fsm, offs, 0xff);
/* Handle bottom/top 4KiB parameter sectors */
if ((offs < info->sector_size * 2) ||
(offs >= (info->sector_size - info->n_sectors * 4)))
offs += 0x1000;
else
offs += 0x10000;
}
}
/* Check status of 'QE' bit, update if required. */
stfsm_read_status(fsm, SPINOR_OP_RDCR, &cr1, 1);
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
if (data_pads == 4) {
if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
/* Set 'QE' */
cr1 |= STFSM_S25FL_CONFIG_QE;
update_sr = 1;
}
} else {
if (cr1 & STFSM_S25FL_CONFIG_QE) {
/* Clear 'QE' */
cr1 &= ~STFSM_S25FL_CONFIG_QE;
update_sr = 1;
}
}
if (update_sr) {
stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
sta_wr = ((uint16_t)cr1 << 8) | sr1;
stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1);
}
/*
* S25FLxxx devices support Program and Error error flags.
* Configure driver to check flags and clear if necessary.
*/
fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS;
return 0;
}
static int stfsm_w25q_config(struct stfsm *fsm)
{
uint32_t data_pads;
uint8_t sr1, sr2;
uint16_t sr_wr;
int update_sr = 0;
int ret;
ret = stfsm_prepare_rwe_seqs_default(fsm);
if (ret)
return ret;
/* Check status of 'QE' bit, update if required. */
stfsm_read_status(fsm, SPINOR_OP_RDCR, &sr2, 1);
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
if (data_pads == 4) {
if (!(sr2 & W25Q_STATUS_QE)) {
/* Set 'QE' */
sr2 |= W25Q_STATUS_QE;
update_sr = 1;
}
} else {
if (sr2 & W25Q_STATUS_QE) {
/* Clear 'QE' */
sr2 &= ~W25Q_STATUS_QE;
update_sr = 1;
}
}
if (update_sr) {
/* Write status register */
stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
sr_wr = ((uint16_t)sr2 << 8) | sr1;
stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1);
}
return 0;
}
static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
uint32_t offset)
{
struct stfsm_seq *seq = &fsm->stfsm_seq_read;
uint32_t data_pads;
uint32_t read_mask;
uint32_t size_ub;
uint32_t size_lb;
uint32_t size_mop;
uint32_t tmp[4];
uint32_t page_buf[FLASH_PAGESIZE_32];
uint8_t *p;
dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
/* Enter 32-bit address mode, if required */
if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 1);
/* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
read_mask = (data_pads << 2) - 1;
/* Handle non-aligned buf */
p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
/* Handle non-aligned size */
size_ub = (size + read_mask) & ~read_mask;
size_lb = size & ~read_mask;
size_mop = size & read_mask;
seq->data_size = TRANSFER_SIZE(size_ub);
seq->addr1 = (offset >> 16) & 0xffff;
seq->addr2 = offset & 0xffff;
stfsm_load_seq(fsm, seq);
if (size_lb)
stfsm_read_fifo(fsm, (uint32_t *)p, size_lb);
if (size_mop) {
stfsm_read_fifo(fsm, tmp, read_mask + 1);
memcpy(p + size_lb, &tmp, size_mop);
}
/* Handle non-aligned buf */
if ((uintptr_t)buf & 0x3)
memcpy(buf, page_buf, size);
/* Wait for sequence to finish */
stfsm_wait_seq(fsm);
stfsm_clear_fifo(fsm);
/* Exit 32-bit address mode, if required */
if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 0);
return 0;
}
static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
uint32_t size, uint32_t offset)
{
struct stfsm_seq *seq = &fsm->stfsm_seq_write;
uint32_t data_pads;
uint32_t write_mask;
uint32_t size_ub;
uint32_t size_lb;
uint32_t size_mop;
uint32_t tmp[4];
uint32_t i;
uint32_t page_buf[FLASH_PAGESIZE_32];
uint8_t *t = (uint8_t *)&tmp;
const uint8_t *p;
int ret;
dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
/* Enter 32-bit address mode, if required */
if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 1);
/* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
write_mask = (data_pads << 2) - 1;
/* Handle non-aligned buf */
if ((uintptr_t)buf & 0x3) {
memcpy(page_buf, buf, size);
p = (uint8_t *)page_buf;
} else {
p = buf;
}
/* Handle non-aligned size */
size_ub = (size + write_mask) & ~write_mask;
size_lb = size & ~write_mask;
size_mop = size & write_mask;
seq->data_size = TRANSFER_SIZE(size_ub);
seq->addr1 = (offset >> 16) & 0xffff;
seq->addr2 = offset & 0xffff;
/* Need to set FIFO to write mode, before writing data to FIFO (see
* GNBvb79594)
*/
writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
/*
* Before writing data to the FIFO, apply a small delay to allow a
* potential change of FIFO direction to complete.
*/
if (fsm->fifo_dir_delay == 0)
readl(fsm->base + SPI_FAST_SEQ_CFG);
else
udelay(fsm->fifo_dir_delay);
/* Write data to FIFO, before starting sequence (see GNBvd79593) */
if (size_lb) {
stfsm_write_fifo(fsm, (uint32_t *)p, size_lb);
p += size_lb;
}
/* Handle non-aligned size */
if (size_mop) {
memset(t, 0xff, write_mask + 1); /* fill with 0xff's */
for (i = 0; i < size_mop; i++)
t[i] = *p++;
stfsm_write_fifo(fsm, tmp, write_mask + 1);
}
/* Start sequence */
stfsm_load_seq(fsm, seq);
/* Wait for sequence to finish */
stfsm_wait_seq(fsm);
/* Wait for completion */
ret = stfsm_wait_busy(fsm);
if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
stfsm_s25fl_clear_status_reg(fsm);
/* Exit 32-bit address mode, if required */
if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 0);
return 0;
}
/*
* Read an address range from the flash chip. The address range
* may be any size provided it is within the physical boundaries.
*/
static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
uint32_t bytes;
dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
__func__, (u32)from, len);
mutex_lock(&fsm->lock);
while (len > 0) {
bytes = min_t(size_t, len, FLASH_PAGESIZE);
stfsm_read(fsm, buf, bytes, from);
buf += bytes;
from += bytes;
len -= bytes;
*retlen += bytes;
}
mutex_unlock(&fsm->lock);
return 0;
}
static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset)
{
struct stfsm_seq *seq = &stfsm_seq_erase_sector;
int ret;
dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
/* Enter 32-bit address mode, if required */
if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 1);
seq->addr1 = (offset >> 16) & 0xffff;
seq->addr2 = offset & 0xffff;
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
/* Wait for completion */
ret = stfsm_wait_busy(fsm);
if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
stfsm_s25fl_clear_status_reg(fsm);
/* Exit 32-bit address mode, if required */
if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 0);
return ret;
}
static int stfsm_erase_chip(struct stfsm *fsm)
{
const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
dev_dbg(fsm->dev, "erasing chip\n");
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
return stfsm_wait_busy(fsm);
}
/*
* Write an address range to the flash chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
u32 page_offs;
u32 bytes;
uint8_t *b = (uint8_t *)buf;
int ret = 0;
dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
/* Offset within page */
page_offs = to % FLASH_PAGESIZE;
mutex_lock(&fsm->lock);
while (len) {
/* Write up to page boundary */
bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len);
ret = stfsm_write(fsm, b, bytes, to);
if (ret)
goto out1;
b += bytes;
len -= bytes;
to += bytes;
/* We are now page-aligned */
page_offs = 0;
*retlen += bytes;
}
out1:
mutex_unlock(&fsm->lock);
return ret;
}
/*
* Erase an address range on the flash chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
u32 addr, len;
int ret;
dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
(long long)instr->addr, (long long)instr->len);
addr = instr->addr;
len = instr->len;
mutex_lock(&fsm->lock);
/* Whole-chip erase? */
if (len == mtd->size) {
ret = stfsm_erase_chip(fsm);
if (ret)
goto out1;
} else {
while (len) {
ret = stfsm_erase_sector(fsm, addr);
if (ret)
goto out1;
addr += mtd->erasesize;
len -= mtd->erasesize;
}
}
mutex_unlock(&fsm->lock);
return 0;
out1:
mutex_unlock(&fsm->lock);
return ret;
}
static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec)
{
const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
uint32_t tmp[2];
stfsm_load_seq(fsm, seq);
stfsm_read_fifo(fsm, tmp, 8);
memcpy(jedec, tmp, 5);
stfsm_wait_seq(fsm);
}
static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
{
struct flash_info *info;
u16 ext_jedec;
u32 jedec;
u8 id[5];
stfsm_read_jedec(fsm, id);
jedec = id[0] << 16 | id[1] << 8 | id[2];
/*
* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*/
ext_jedec = id[3] << 8 | id[4];
dev_dbg(fsm->dev, "JEDEC = 0x%08x [%5ph]\n", jedec, id);
for (info = flash_types; info->name; info++) {
if (info->jedec_id == jedec) {
if (info->ext_id && info->ext_id != ext_jedec)
continue;
return info;
}
}
dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
return NULL;
}
static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
{
int ret, timeout = 10;
/* Wait for controller to accept mode change */
while (--timeout) {
ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
if (ret & 0x1)
break;
udelay(1);
}
if (!timeout)
return -EBUSY;
writel(mode, fsm->base + SPI_MODESELECT);
return 0;
}
static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
{
uint32_t emi_freq;
uint32_t clk_div;
emi_freq = clk_get_rate(fsm->clk);
/*
* Calculate clk_div - values between 2 and 128
* Multiple of 2, rounded up
*/
clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
if (clk_div < 2)
clk_div = 2;
else if (clk_div > 128)
clk_div = 128;
/*
* Determine a suitable delay for the IP to complete a change of
* direction of the FIFO. The required delay is related to the clock
* divider used. The following heuristics are based on empirical tests,
* using a 100MHz EMI clock.
*/
if (clk_div <= 4)
fsm->fifo_dir_delay = 0;
else if (clk_div <= 10)
fsm->fifo_dir_delay = 1;
else
fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
emi_freq, spi_freq, clk_div);
writel(clk_div, fsm->base + SPI_CLOCKDIV);
}
static int stfsm_init(struct stfsm *fsm)
{
int ret;
/* Perform a soft reset of the FSM controller */
writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
udelay(1);
writel(0, fsm->base + SPI_FAST_SEQ_CFG);
/* Set clock to 'safe' frequency initially */
stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
/* Switch to FSM */
ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
if (ret)
return ret;
/* Set timing parameters */
writel(SPI_CFG_DEVICE_ST |
SPI_CFG_DEFAULT_MIN_CS_HIGH |
SPI_CFG_DEFAULT_CS_SETUPHOLD |
SPI_CFG_DEFAULT_DATA_HOLD,
fsm->base + SPI_CONFIGDATA);
writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
/*
* Set the FSM 'WAIT' delay to the minimum workable value. Note, for
* our purposes, the WAIT instruction is used purely to achieve
* "sequence validity" rather than actually implement a delay.
*/
writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME);
/* Clear FIFO, just in case */
stfsm_clear_fifo(fsm);
return 0;
}
static void stfsm_fetch_platform_configs(struct platform_device *pdev)
{
struct stfsm *fsm = platform_get_drvdata(pdev);
struct device_node *np = pdev->dev.of_node;
struct regmap *regmap;
uint32_t boot_device_reg;
uint32_t boot_device_spi;
uint32_t boot_device; /* Value we read from *boot_device_reg */
int ret;
/* Booting from SPI NOR Flash is the default */
fsm->booted_from_spi = true;
regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
if (IS_ERR(regmap))
goto boot_device_fail;
fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");
fsm->reset_por = of_property_read_bool(np, "st,reset-por");
/* Where in the syscon the boot device information lives */
ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
if (ret)
goto boot_device_fail;
/* Boot device value when booted from SPI NOR */
ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
if (ret)
goto boot_device_fail;
ret = regmap_read(regmap, boot_device_reg, &boot_device);
if (ret)
goto boot_device_fail;
if (boot_device != boot_device_spi)
fsm->booted_from_spi = false;
return;
boot_device_fail:
dev_warn(&pdev->dev,
"failed to fetch boot device, assuming boot from SPI\n");
}
static int stfsm_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct flash_info *info;
struct resource *res;
struct stfsm *fsm;
int ret;
if (!np) {
dev_err(&pdev->dev, "No DT found\n");
return -EINVAL;
}
fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
if (!fsm)
return -ENOMEM;
fsm->dev = &pdev->dev;
platform_set_drvdata(pdev, fsm);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "Resource not found\n");
return -ENODEV;
}
fsm->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fsm->base)) {
dev_err(&pdev->dev,
"Failed to reserve memory region %pR\n", res);
return PTR_ERR(fsm->base);
}
fsm->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(fsm->clk)) {
dev_err(fsm->dev, "Couldn't find EMI clock.\n");
return PTR_ERR(fsm->clk);
}
ret = clk_prepare_enable(fsm->clk);
if (ret) {
dev_err(fsm->dev, "Failed to enable EMI clock.\n");
return ret;
}
mutex_init(&fsm->lock);
ret = stfsm_init(fsm);
if (ret) {
dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
goto err_clk_unprepare;
}
stfsm_fetch_platform_configs(pdev);
/* Detect SPI FLASH device */
info = stfsm_jedec_probe(fsm);
if (!info) {
ret = -ENODEV;
goto err_clk_unprepare;
}
fsm->info = info;
/* Use device size to determine address width */
if (info->sector_size * info->n_sectors > 0x1000000)
info->flags |= FLASH_FLAG_32BIT_ADDR;
/*
* Configure READ/WRITE/ERASE sequences according to platform and
* device flags.
*/
if (info->config) {
ret = info->config(fsm);
if (ret)
goto err_clk_unprepare;
} else {
ret = stfsm_prepare_rwe_seqs_default(fsm);
if (ret)
goto err_clk_unprepare;
}
fsm->mtd.name = info->name;
fsm->mtd.dev.parent = &pdev->dev;
mtd_set_of_node(&fsm->mtd, np);
fsm->mtd.type = MTD_NORFLASH;
fsm->mtd.writesize = 4;
fsm->mtd.writebufsize = fsm->mtd.writesize;
fsm->mtd.flags = MTD_CAP_NORFLASH;
fsm->mtd.size = info->sector_size * info->n_sectors;
fsm->mtd.erasesize = info->sector_size;
fsm->mtd._read = stfsm_mtd_read;
fsm->mtd._write = stfsm_mtd_write;
fsm->mtd._erase = stfsm_mtd_erase;
dev_info(&pdev->dev,
"Found serial flash device: %s\n"
" size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
info->name,
(long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
return mtd_device_register(&fsm->mtd, NULL, 0);
err_clk_unprepare:
clk_disable_unprepare(fsm->clk);
return ret;
}
static int stfsm_remove(struct platform_device *pdev)
{
struct stfsm *fsm = platform_get_drvdata(pdev);
return mtd_device_unregister(&fsm->mtd);
}
#ifdef CONFIG_PM_SLEEP
static int stfsmfsm_suspend(struct device *dev)
{
struct stfsm *fsm = dev_get_drvdata(dev);
clk_disable_unprepare(fsm->clk);
return 0;
}
static int stfsmfsm_resume(struct device *dev)
{
struct stfsm *fsm = dev_get_drvdata(dev);
return clk_prepare_enable(fsm->clk);
}
#endif
static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume);
static const struct of_device_id stfsm_match[] = {
{ .compatible = "st,spi-fsm", },
{},
};
MODULE_DEVICE_TABLE(of, stfsm_match);
static struct platform_driver stfsm_driver = {
.probe = stfsm_probe,
.remove = stfsm_remove,
.driver = {
.name = "st-spi-fsm",
.of_match_table = stfsm_match,
.pm = &stfsm_pm_ops,
},
};
module_platform_driver(stfsm_driver);
MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
MODULE_DESCRIPTION("ST SPI FSM driver");
MODULE_LICENSE("GPL");