linux-sg2042/drivers/net/sgiseeq.c

857 lines
22 KiB
C

/*
* sgiseeq.c: Seeq8003 ethernet driver for SGI machines.
*
* Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/sgi/hpc3.h>
#include <asm/sgi/ip22.h>
#include <asm/sgi/seeq.h>
#include "sgiseeq.h"
static char *sgiseeqstr = "SGI Seeq8003";
/*
* If you want speed, you do something silly, it always has worked for me. So,
* with that in mind, I've decided to make this driver look completely like a
* stupid Lance from a driver architecture perspective. Only difference is that
* here our "ring buffer" looks and acts like a real Lance one does but is
* layed out like how the HPC DMA and the Seeq want it to. You'd be surprised
* how a stupid idea like this can pay off in performance, not to mention
* making this driver 2,000 times easier to write. ;-)
*/
/* Tune these if we tend to run out often etc. */
#define SEEQ_RX_BUFFERS 16
#define SEEQ_TX_BUFFERS 16
#define PKT_BUF_SZ 1584
#define NEXT_RX(i) (((i) + 1) & (SEEQ_RX_BUFFERS - 1))
#define NEXT_TX(i) (((i) + 1) & (SEEQ_TX_BUFFERS - 1))
#define PREV_RX(i) (((i) - 1) & (SEEQ_RX_BUFFERS - 1))
#define PREV_TX(i) (((i) - 1) & (SEEQ_TX_BUFFERS - 1))
#define TX_BUFFS_AVAIL(sp) ((sp->tx_old <= sp->tx_new) ? \
sp->tx_old + (SEEQ_TX_BUFFERS - 1) - sp->tx_new : \
sp->tx_old - sp->tx_new - 1)
#define VIRT_TO_DMA(sp, v) ((sp)->srings_dma + \
(dma_addr_t)((unsigned long)(v) - \
(unsigned long)((sp)->rx_desc)))
/* Copy frames shorter than rx_copybreak, otherwise pass on up in
* a full sized sk_buff. Value of 100 stolen from tulip.c (!alpha).
*/
static int rx_copybreak = 100;
#define PAD_SIZE (128 - sizeof(struct hpc_dma_desc) - sizeof(void *))
struct sgiseeq_rx_desc {
volatile struct hpc_dma_desc rdma;
u8 padding[PAD_SIZE];
struct sk_buff *skb;
};
struct sgiseeq_tx_desc {
volatile struct hpc_dma_desc tdma;
u8 padding[PAD_SIZE];
struct sk_buff *skb;
};
/*
* Warning: This structure is layed out in a certain way because HPC dma
* descriptors must be 8-byte aligned. So don't touch this without
* some care.
*/
struct sgiseeq_init_block { /* Note the name ;-) */
struct sgiseeq_rx_desc rxvector[SEEQ_RX_BUFFERS];
struct sgiseeq_tx_desc txvector[SEEQ_TX_BUFFERS];
};
struct sgiseeq_private {
struct sgiseeq_init_block *srings;
dma_addr_t srings_dma;
/* Ptrs to the descriptors in uncached space. */
struct sgiseeq_rx_desc *rx_desc;
struct sgiseeq_tx_desc *tx_desc;
char *name;
struct hpc3_ethregs *hregs;
struct sgiseeq_regs *sregs;
/* Ring entry counters. */
unsigned int rx_new, tx_new;
unsigned int rx_old, tx_old;
int is_edlc;
unsigned char control;
unsigned char mode;
spinlock_t tx_lock;
};
static inline void dma_sync_desc_cpu(struct net_device *dev, void *addr)
{
dma_cache_sync(dev->dev.parent, addr, sizeof(struct sgiseeq_rx_desc),
DMA_FROM_DEVICE);
}
static inline void dma_sync_desc_dev(struct net_device *dev, void *addr)
{
dma_cache_sync(dev->dev.parent, addr, sizeof(struct sgiseeq_rx_desc),
DMA_TO_DEVICE);
}
static inline void hpc3_eth_reset(struct hpc3_ethregs *hregs)
{
hregs->reset = HPC3_ERST_CRESET | HPC3_ERST_CLRIRQ;
udelay(20);
hregs->reset = 0;
}
static inline void reset_hpc3_and_seeq(struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
hregs->rx_ctrl = hregs->tx_ctrl = 0;
hpc3_eth_reset(hregs);
}
#define RSTAT_GO_BITS (SEEQ_RCMD_IGOOD | SEEQ_RCMD_IEOF | SEEQ_RCMD_ISHORT | \
SEEQ_RCMD_IDRIB | SEEQ_RCMD_ICRC)
static inline void seeq_go(struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
sregs->rstat = sp->mode | RSTAT_GO_BITS;
hregs->rx_ctrl = HPC3_ERXCTRL_ACTIVE;
}
static inline void __sgiseeq_set_mac_address(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sgiseeq_regs *sregs = sp->sregs;
int i;
sregs->tstat = SEEQ_TCMD_RB0;
for (i = 0; i < 6; i++)
sregs->rw.eth_addr[i] = dev->dev_addr[i];
}
static int sgiseeq_set_mac_address(struct net_device *dev, void *addr)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sockaddr *sa = addr;
memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
spin_lock_irq(&sp->tx_lock);
__sgiseeq_set_mac_address(dev);
spin_unlock_irq(&sp->tx_lock);
return 0;
}
#define TCNTINFO_INIT (HPCDMA_EOX | HPCDMA_ETXD)
#define RCNTCFG_INIT (HPCDMA_OWN | HPCDMA_EORP | HPCDMA_XIE)
#define RCNTINFO_INIT (RCNTCFG_INIT | (PKT_BUF_SZ & HPCDMA_BCNT))
static int seeq_init_ring(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
int i;
netif_stop_queue(dev);
sp->rx_new = sp->tx_new = 0;
sp->rx_old = sp->tx_old = 0;
__sgiseeq_set_mac_address(dev);
/* Setup tx ring. */
for(i = 0; i < SEEQ_TX_BUFFERS; i++) {
sp->tx_desc[i].tdma.cntinfo = TCNTINFO_INIT;
dma_sync_desc_dev(dev, &sp->tx_desc[i]);
}
/* And now the rx ring. */
for (i = 0; i < SEEQ_RX_BUFFERS; i++) {
if (!sp->rx_desc[i].skb) {
dma_addr_t dma_addr;
struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
if (skb == NULL)
return -ENOMEM;
skb_reserve(skb, 2);
dma_addr = dma_map_single(dev->dev.parent,
skb->data - 2,
PKT_BUF_SZ, DMA_FROM_DEVICE);
sp->rx_desc[i].skb = skb;
sp->rx_desc[i].rdma.pbuf = dma_addr;
}
sp->rx_desc[i].rdma.cntinfo = RCNTINFO_INIT;
dma_sync_desc_dev(dev, &sp->rx_desc[i]);
}
sp->rx_desc[i - 1].rdma.cntinfo |= HPCDMA_EOR;
dma_sync_desc_dev(dev, &sp->rx_desc[i - 1]);
return 0;
}
static void seeq_purge_ring(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
int i;
/* clear tx ring. */
for (i = 0; i < SEEQ_TX_BUFFERS; i++) {
if (sp->tx_desc[i].skb) {
dev_kfree_skb(sp->tx_desc[i].skb);
sp->tx_desc[i].skb = NULL;
}
}
/* And now the rx ring. */
for (i = 0; i < SEEQ_RX_BUFFERS; i++) {
if (sp->rx_desc[i].skb) {
dev_kfree_skb(sp->rx_desc[i].skb);
sp->rx_desc[i].skb = NULL;
}
}
}
#ifdef DEBUG
static struct sgiseeq_private *gpriv;
static struct net_device *gdev;
static void sgiseeq_dump_rings(void)
{
static int once;
struct sgiseeq_rx_desc *r = gpriv->rx_desc;
struct sgiseeq_tx_desc *t = gpriv->tx_desc;
struct hpc3_ethregs *hregs = gpriv->hregs;
int i;
if (once)
return;
once++;
printk("RING DUMP:\n");
for (i = 0; i < SEEQ_RX_BUFFERS; i++) {
printk("RX [%d]: @(%p) [%08x,%08x,%08x] ",
i, (&r[i]), r[i].rdma.pbuf, r[i].rdma.cntinfo,
r[i].rdma.pnext);
i += 1;
printk("-- [%d]: @(%p) [%08x,%08x,%08x]\n",
i, (&r[i]), r[i].rdma.pbuf, r[i].rdma.cntinfo,
r[i].rdma.pnext);
}
for (i = 0; i < SEEQ_TX_BUFFERS; i++) {
printk("TX [%d]: @(%p) [%08x,%08x,%08x] ",
i, (&t[i]), t[i].tdma.pbuf, t[i].tdma.cntinfo,
t[i].tdma.pnext);
i += 1;
printk("-- [%d]: @(%p) [%08x,%08x,%08x]\n",
i, (&t[i]), t[i].tdma.pbuf, t[i].tdma.cntinfo,
t[i].tdma.pnext);
}
printk("INFO: [rx_new = %d rx_old=%d] [tx_new = %d tx_old = %d]\n",
gpriv->rx_new, gpriv->rx_old, gpriv->tx_new, gpriv->tx_old);
printk("RREGS: rx_cbptr[%08x] rx_ndptr[%08x] rx_ctrl[%08x]\n",
hregs->rx_cbptr, hregs->rx_ndptr, hregs->rx_ctrl);
printk("TREGS: tx_cbptr[%08x] tx_ndptr[%08x] tx_ctrl[%08x]\n",
hregs->tx_cbptr, hregs->tx_ndptr, hregs->tx_ctrl);
}
#endif
#define TSTAT_INIT_SEEQ (SEEQ_TCMD_IPT|SEEQ_TCMD_I16|SEEQ_TCMD_IC|SEEQ_TCMD_IUF)
#define TSTAT_INIT_EDLC ((TSTAT_INIT_SEEQ) | SEEQ_TCMD_RB2)
static int init_seeq(struct net_device *dev, struct sgiseeq_private *sp,
struct sgiseeq_regs *sregs)
{
struct hpc3_ethregs *hregs = sp->hregs;
int err;
reset_hpc3_and_seeq(hregs, sregs);
err = seeq_init_ring(dev);
if (err)
return err;
/* Setup to field the proper interrupt types. */
if (sp->is_edlc) {
sregs->tstat = TSTAT_INIT_EDLC;
sregs->rw.wregs.control = sp->control;
sregs->rw.wregs.frame_gap = 0;
} else {
sregs->tstat = TSTAT_INIT_SEEQ;
}
hregs->rx_ndptr = VIRT_TO_DMA(sp, sp->rx_desc);
hregs->tx_ndptr = VIRT_TO_DMA(sp, sp->tx_desc);
seeq_go(sp, hregs, sregs);
return 0;
}
static void record_rx_errors(struct net_device *dev, unsigned char status)
{
if (status & SEEQ_RSTAT_OVERF ||
status & SEEQ_RSTAT_SFRAME)
dev->stats.rx_over_errors++;
if (status & SEEQ_RSTAT_CERROR)
dev->stats.rx_crc_errors++;
if (status & SEEQ_RSTAT_DERROR)
dev->stats.rx_frame_errors++;
if (status & SEEQ_RSTAT_REOF)
dev->stats.rx_errors++;
}
static inline void rx_maybe_restart(struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
if (!(hregs->rx_ctrl & HPC3_ERXCTRL_ACTIVE)) {
hregs->rx_ndptr = VIRT_TO_DMA(sp, sp->rx_desc + sp->rx_new);
seeq_go(sp, hregs, sregs);
}
}
static inline void sgiseeq_rx(struct net_device *dev, struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
struct sgiseeq_rx_desc *rd;
struct sk_buff *skb = NULL;
struct sk_buff *newskb;
unsigned char pkt_status;
int len = 0;
unsigned int orig_end = PREV_RX(sp->rx_new);
/* Service every received packet. */
rd = &sp->rx_desc[sp->rx_new];
dma_sync_desc_cpu(dev, rd);
while (!(rd->rdma.cntinfo & HPCDMA_OWN)) {
len = PKT_BUF_SZ - (rd->rdma.cntinfo & HPCDMA_BCNT) - 3;
dma_unmap_single(dev->dev.parent, rd->rdma.pbuf,
PKT_BUF_SZ, DMA_FROM_DEVICE);
pkt_status = rd->skb->data[len];
if (pkt_status & SEEQ_RSTAT_FIG) {
/* Packet is OK. */
/* We don't want to receive our own packets */
if (memcmp(rd->skb->data + 6, dev->dev_addr, ETH_ALEN)) {
if (len > rx_copybreak) {
skb = rd->skb;
newskb = netdev_alloc_skb(dev, PKT_BUF_SZ);
if (!newskb) {
newskb = skb;
skb = NULL;
goto memory_squeeze;
}
skb_reserve(newskb, 2);
} else {
skb = netdev_alloc_skb_ip_align(dev, len);
if (skb)
skb_copy_to_linear_data(skb, rd->skb->data, len);
newskb = rd->skb;
}
memory_squeeze:
if (skb) {
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
} else {
printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n",
dev->name);
dev->stats.rx_dropped++;
}
} else {
/* Silently drop my own packets */
newskb = rd->skb;
}
} else {
record_rx_errors(dev, pkt_status);
newskb = rd->skb;
}
rd->skb = newskb;
rd->rdma.pbuf = dma_map_single(dev->dev.parent,
newskb->data - 2,
PKT_BUF_SZ, DMA_FROM_DEVICE);
/* Return the entry to the ring pool. */
rd->rdma.cntinfo = RCNTINFO_INIT;
sp->rx_new = NEXT_RX(sp->rx_new);
dma_sync_desc_dev(dev, rd);
rd = &sp->rx_desc[sp->rx_new];
dma_sync_desc_cpu(dev, rd);
}
dma_sync_desc_cpu(dev, &sp->rx_desc[orig_end]);
sp->rx_desc[orig_end].rdma.cntinfo &= ~(HPCDMA_EOR);
dma_sync_desc_dev(dev, &sp->rx_desc[orig_end]);
dma_sync_desc_cpu(dev, &sp->rx_desc[PREV_RX(sp->rx_new)]);
sp->rx_desc[PREV_RX(sp->rx_new)].rdma.cntinfo |= HPCDMA_EOR;
dma_sync_desc_dev(dev, &sp->rx_desc[PREV_RX(sp->rx_new)]);
rx_maybe_restart(sp, hregs, sregs);
}
static inline void tx_maybe_reset_collisions(struct sgiseeq_private *sp,
struct sgiseeq_regs *sregs)
{
if (sp->is_edlc) {
sregs->rw.wregs.control = sp->control & ~(SEEQ_CTRL_XCNT);
sregs->rw.wregs.control = sp->control;
}
}
static inline void kick_tx(struct net_device *dev,
struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs)
{
struct sgiseeq_tx_desc *td;
int i = sp->tx_old;
/* If the HPC aint doin nothin, and there are more packets
* with ETXD cleared and XIU set we must make very certain
* that we restart the HPC else we risk locking up the
* adapter. The following code is only safe iff the HPCDMA
* is not active!
*/
td = &sp->tx_desc[i];
dma_sync_desc_cpu(dev, td);
while ((td->tdma.cntinfo & (HPCDMA_XIU | HPCDMA_ETXD)) ==
(HPCDMA_XIU | HPCDMA_ETXD)) {
i = NEXT_TX(i);
td = &sp->tx_desc[i];
dma_sync_desc_cpu(dev, td);
}
if (td->tdma.cntinfo & HPCDMA_XIU) {
hregs->tx_ndptr = VIRT_TO_DMA(sp, td);
hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE;
}
}
static inline void sgiseeq_tx(struct net_device *dev, struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
struct sgiseeq_tx_desc *td;
unsigned long status = hregs->tx_ctrl;
int j;
tx_maybe_reset_collisions(sp, sregs);
if (!(status & (HPC3_ETXCTRL_ACTIVE | SEEQ_TSTAT_PTRANS))) {
/* Oops, HPC detected some sort of error. */
if (status & SEEQ_TSTAT_R16)
dev->stats.tx_aborted_errors++;
if (status & SEEQ_TSTAT_UFLOW)
dev->stats.tx_fifo_errors++;
if (status & SEEQ_TSTAT_LCLS)
dev->stats.collisions++;
}
/* Ack 'em... */
for (j = sp->tx_old; j != sp->tx_new; j = NEXT_TX(j)) {
td = &sp->tx_desc[j];
dma_sync_desc_cpu(dev, td);
if (!(td->tdma.cntinfo & (HPCDMA_XIU)))
break;
if (!(td->tdma.cntinfo & (HPCDMA_ETXD))) {
if (!(status & HPC3_ETXCTRL_ACTIVE)) {
hregs->tx_ndptr = VIRT_TO_DMA(sp, td);
hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE;
}
break;
}
dev->stats.tx_packets++;
sp->tx_old = NEXT_TX(sp->tx_old);
td->tdma.cntinfo &= ~(HPCDMA_XIU | HPCDMA_XIE);
td->tdma.cntinfo |= HPCDMA_EOX;
if (td->skb) {
dev_kfree_skb_any(td->skb);
td->skb = NULL;
}
dma_sync_desc_dev(dev, td);
}
}
static irqreturn_t sgiseeq_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct sgiseeq_private *sp = netdev_priv(dev);
struct hpc3_ethregs *hregs = sp->hregs;
struct sgiseeq_regs *sregs = sp->sregs;
spin_lock(&sp->tx_lock);
/* Ack the IRQ and set software state. */
hregs->reset = HPC3_ERST_CLRIRQ;
/* Always check for received packets. */
sgiseeq_rx(dev, sp, hregs, sregs);
/* Only check for tx acks if we have something queued. */
if (sp->tx_old != sp->tx_new)
sgiseeq_tx(dev, sp, hregs, sregs);
if ((TX_BUFFS_AVAIL(sp) > 0) && netif_queue_stopped(dev)) {
netif_wake_queue(dev);
}
spin_unlock(&sp->tx_lock);
return IRQ_HANDLED;
}
static int sgiseeq_open(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sgiseeq_regs *sregs = sp->sregs;
unsigned int irq = dev->irq;
int err;
if (request_irq(irq, sgiseeq_interrupt, 0, sgiseeqstr, dev)) {
printk(KERN_ERR "Seeq8003: Can't get irq %d\n", dev->irq);
err = -EAGAIN;
}
err = init_seeq(dev, sp, sregs);
if (err)
goto out_free_irq;
netif_start_queue(dev);
return 0;
out_free_irq:
free_irq(irq, dev);
return err;
}
static int sgiseeq_close(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sgiseeq_regs *sregs = sp->sregs;
unsigned int irq = dev->irq;
netif_stop_queue(dev);
/* Shutdown the Seeq. */
reset_hpc3_and_seeq(sp->hregs, sregs);
free_irq(irq, dev);
seeq_purge_ring(dev);
return 0;
}
static inline int sgiseeq_reset(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sgiseeq_regs *sregs = sp->sregs;
int err;
err = init_seeq(dev, sp, sregs);
if (err)
return err;
dev->trans_start = jiffies;
netif_wake_queue(dev);
return 0;
}
static int sgiseeq_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct hpc3_ethregs *hregs = sp->hregs;
unsigned long flags;
struct sgiseeq_tx_desc *td;
int len, entry;
spin_lock_irqsave(&sp->tx_lock, flags);
/* Setup... */
len = skb->len;
if (len < ETH_ZLEN) {
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
len = ETH_ZLEN;
}
dev->stats.tx_bytes += len;
entry = sp->tx_new;
td = &sp->tx_desc[entry];
dma_sync_desc_cpu(dev, td);
/* Create entry. There are so many races with adding a new
* descriptor to the chain:
* 1) Assume that the HPC is off processing a DMA chain while
* we are changing all of the following.
* 2) Do no allow the HPC to look at a new descriptor until
* we have completely set up it's state. This means, do
* not clear HPCDMA_EOX in the current last descritptor
* until the one we are adding looks consistent and could
* be processes right now.
* 3) The tx interrupt code must notice when we've added a new
* entry and the HPC got to the end of the chain before we
* added this new entry and restarted it.
*/
td->skb = skb;
td->tdma.pbuf = dma_map_single(dev->dev.parent, skb->data,
len, DMA_TO_DEVICE);
td->tdma.cntinfo = (len & HPCDMA_BCNT) |
HPCDMA_XIU | HPCDMA_EOXP | HPCDMA_XIE | HPCDMA_EOX;
dma_sync_desc_dev(dev, td);
if (sp->tx_old != sp->tx_new) {
struct sgiseeq_tx_desc *backend;
backend = &sp->tx_desc[PREV_TX(sp->tx_new)];
dma_sync_desc_cpu(dev, backend);
backend->tdma.cntinfo &= ~HPCDMA_EOX;
dma_sync_desc_dev(dev, backend);
}
sp->tx_new = NEXT_TX(sp->tx_new); /* Advance. */
/* Maybe kick the HPC back into motion. */
if (!(hregs->tx_ctrl & HPC3_ETXCTRL_ACTIVE))
kick_tx(dev, sp, hregs);
dev->trans_start = jiffies;
if (!TX_BUFFS_AVAIL(sp))
netif_stop_queue(dev);
spin_unlock_irqrestore(&sp->tx_lock, flags);
return NETDEV_TX_OK;
}
static void timeout(struct net_device *dev)
{
printk(KERN_NOTICE "%s: transmit timed out, resetting\n", dev->name);
sgiseeq_reset(dev);
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
static void sgiseeq_set_multicast(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
unsigned char oldmode = sp->mode;
if(dev->flags & IFF_PROMISC)
sp->mode = SEEQ_RCMD_RANY;
else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev))
sp->mode = SEEQ_RCMD_RBMCAST;
else
sp->mode = SEEQ_RCMD_RBCAST;
/* XXX I know this sucks, but is there a better way to reprogram
* XXX the receiver? At least, this shouldn't happen too often.
*/
if (oldmode != sp->mode)
sgiseeq_reset(dev);
}
static inline void setup_tx_ring(struct net_device *dev,
struct sgiseeq_tx_desc *buf,
int nbufs)
{
struct sgiseeq_private *sp = netdev_priv(dev);
int i = 0;
while (i < (nbufs - 1)) {
buf[i].tdma.pnext = VIRT_TO_DMA(sp, buf + i + 1);
buf[i].tdma.pbuf = 0;
dma_sync_desc_dev(dev, &buf[i]);
i++;
}
buf[i].tdma.pnext = VIRT_TO_DMA(sp, buf);
dma_sync_desc_dev(dev, &buf[i]);
}
static inline void setup_rx_ring(struct net_device *dev,
struct sgiseeq_rx_desc *buf,
int nbufs)
{
struct sgiseeq_private *sp = netdev_priv(dev);
int i = 0;
while (i < (nbufs - 1)) {
buf[i].rdma.pnext = VIRT_TO_DMA(sp, buf + i + 1);
buf[i].rdma.pbuf = 0;
dma_sync_desc_dev(dev, &buf[i]);
i++;
}
buf[i].rdma.pbuf = 0;
buf[i].rdma.pnext = VIRT_TO_DMA(sp, buf);
dma_sync_desc_dev(dev, &buf[i]);
}
static const struct net_device_ops sgiseeq_netdev_ops = {
.ndo_open = sgiseeq_open,
.ndo_stop = sgiseeq_close,
.ndo_start_xmit = sgiseeq_start_xmit,
.ndo_tx_timeout = timeout,
.ndo_set_multicast_list = sgiseeq_set_multicast,
.ndo_set_mac_address = sgiseeq_set_mac_address,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
};
static int __devinit sgiseeq_probe(struct platform_device *pdev)
{
struct sgiseeq_platform_data *pd = pdev->dev.platform_data;
struct hpc3_regs *hpcregs = pd->hpc;
struct sgiseeq_init_block *sr;
unsigned int irq = pd->irq;
struct sgiseeq_private *sp;
struct net_device *dev;
int err;
dev = alloc_etherdev(sizeof (struct sgiseeq_private));
if (!dev) {
printk(KERN_ERR "Sgiseeq: Etherdev alloc failed, aborting.\n");
err = -ENOMEM;
goto err_out;
}
platform_set_drvdata(pdev, dev);
sp = netdev_priv(dev);
/* Make private data page aligned */
sr = dma_alloc_noncoherent(&pdev->dev, sizeof(*sp->srings),
&sp->srings_dma, GFP_KERNEL);
if (!sr) {
printk(KERN_ERR "Sgiseeq: Page alloc failed, aborting.\n");
err = -ENOMEM;
goto err_out_free_dev;
}
sp->srings = sr;
sp->rx_desc = sp->srings->rxvector;
sp->tx_desc = sp->srings->txvector;
/* A couple calculations now, saves many cycles later. */
setup_rx_ring(dev, sp->rx_desc, SEEQ_RX_BUFFERS);
setup_tx_ring(dev, sp->tx_desc, SEEQ_TX_BUFFERS);
memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
#ifdef DEBUG
gpriv = sp;
gdev = dev;
#endif
sp->sregs = (struct sgiseeq_regs *) &hpcregs->eth_ext[0];
sp->hregs = &hpcregs->ethregs;
sp->name = sgiseeqstr;
sp->mode = SEEQ_RCMD_RBCAST;
/* Setup PIO and DMA transfer timing */
sp->hregs->pconfig = 0x161;
sp->hregs->dconfig = HPC3_EDCFG_FIRQ | HPC3_EDCFG_FEOP |
HPC3_EDCFG_FRXDC | HPC3_EDCFG_PTO | 0x026;
/* Setup PIO and DMA transfer timing */
sp->hregs->pconfig = 0x161;
sp->hregs->dconfig = HPC3_EDCFG_FIRQ | HPC3_EDCFG_FEOP |
HPC3_EDCFG_FRXDC | HPC3_EDCFG_PTO | 0x026;
/* Reset the chip. */
hpc3_eth_reset(sp->hregs);
sp->is_edlc = !(sp->sregs->rw.rregs.collision_tx[0] & 0xff);
if (sp->is_edlc)
sp->control = SEEQ_CTRL_XCNT | SEEQ_CTRL_ACCNT |
SEEQ_CTRL_SFLAG | SEEQ_CTRL_ESHORT |
SEEQ_CTRL_ENCARR;
dev->netdev_ops = &sgiseeq_netdev_ops;
dev->watchdog_timeo = (200 * HZ) / 1000;
dev->irq = irq;
if (register_netdev(dev)) {
printk(KERN_ERR "Sgiseeq: Cannot register net device, "
"aborting.\n");
err = -ENODEV;
goto err_out_free_page;
}
printk(KERN_INFO "%s: %s %pM\n", dev->name, sgiseeqstr, dev->dev_addr);
return 0;
err_out_free_page:
free_page((unsigned long) sp->srings);
err_out_free_dev:
kfree(dev);
err_out:
return err;
}
static int __exit sgiseeq_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct sgiseeq_private *sp = netdev_priv(dev);
unregister_netdev(dev);
dma_free_noncoherent(&pdev->dev, sizeof(*sp->srings), sp->srings,
sp->srings_dma);
free_netdev(dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver sgiseeq_driver = {
.probe = sgiseeq_probe,
.remove = __exit_p(sgiseeq_remove),
.driver = {
.name = "sgiseeq",
.owner = THIS_MODULE,
}
};
static int __init sgiseeq_module_init(void)
{
if (platform_driver_register(&sgiseeq_driver)) {
printk(KERN_ERR "Driver registration failed\n");
return -ENODEV;
}
return 0;
}
static void __exit sgiseeq_module_exit(void)
{
platform_driver_unregister(&sgiseeq_driver);
}
module_init(sgiseeq_module_init);
module_exit(sgiseeq_module_exit);
MODULE_DESCRIPTION("SGI Seeq 8003 driver");
MODULE_AUTHOR("Linux/MIPS Mailing List <linux-mips@linux-mips.org>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:sgiseeq");