linux-sg2042/fs/xfs/xfs_aops.c

1932 lines
52 KiB
C

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_iomap.h"
#include "xfs_trace.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_bmap_btree.h"
#include <linux/gfp.h>
#include <linux/mpage.h>
#include <linux/pagevec.h>
#include <linux/writeback.h>
void
xfs_count_page_state(
struct page *page,
int *delalloc,
int *unwritten)
{
struct buffer_head *bh, *head;
*delalloc = *unwritten = 0;
bh = head = page_buffers(page);
do {
if (buffer_unwritten(bh))
(*unwritten) = 1;
else if (buffer_delay(bh))
(*delalloc) = 1;
} while ((bh = bh->b_this_page) != head);
}
STATIC struct block_device *
xfs_find_bdev_for_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
if (XFS_IS_REALTIME_INODE(ip))
return mp->m_rtdev_targp->bt_bdev;
else
return mp->m_ddev_targp->bt_bdev;
}
/*
* We're now finished for good with this ioend structure.
* Update the page state via the associated buffer_heads,
* release holds on the inode and bio, and finally free
* up memory. Do not use the ioend after this.
*/
STATIC void
xfs_destroy_ioend(
xfs_ioend_t *ioend)
{
struct buffer_head *bh, *next;
for (bh = ioend->io_buffer_head; bh; bh = next) {
next = bh->b_private;
bh->b_end_io(bh, !ioend->io_error);
}
mempool_free(ioend, xfs_ioend_pool);
}
/*
* Fast and loose check if this write could update the on-disk inode size.
*/
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
{
return ioend->io_offset + ioend->io_size >
XFS_I(ioend->io_inode)->i_d.di_size;
}
STATIC int
xfs_setfilesize_trans_alloc(
struct xfs_ioend *ioend)
{
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
struct xfs_trans *tp;
int error;
tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
if (error) {
xfs_trans_cancel(tp, 0);
return error;
}
ioend->io_append_trans = tp;
/*
* We may pass freeze protection with a transaction. So tell lockdep
* we released it.
*/
rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
1, _THIS_IP_);
/*
* We hand off the transaction to the completion thread now, so
* clear the flag here.
*/
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
return 0;
}
/*
* Update on-disk file size now that data has been written to disk.
*/
STATIC int
xfs_setfilesize(
struct xfs_inode *ip,
struct xfs_trans *tp,
xfs_off_t offset,
size_t size)
{
xfs_fsize_t isize;
xfs_ilock(ip, XFS_ILOCK_EXCL);
isize = xfs_new_eof(ip, offset + size);
if (!isize) {
xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_trans_cancel(tp, 0);
return 0;
}
trace_xfs_setfilesize(ip, offset, size);
ip->i_d.di_size = isize;
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
return xfs_trans_commit(tp, 0);
}
STATIC int
xfs_setfilesize_ioend(
struct xfs_ioend *ioend)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_trans *tp = ioend->io_append_trans;
/*
* The transaction may have been allocated in the I/O submission thread,
* thus we need to mark ourselves as being in a transaction manually.
* Similarly for freeze protection.
*/
current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
0, 1, _THIS_IP_);
return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
}
/*
* Schedule IO completion handling on the final put of an ioend.
*
* If there is no work to do we might as well call it a day and free the
* ioend right now.
*/
STATIC void
xfs_finish_ioend(
struct xfs_ioend *ioend)
{
if (atomic_dec_and_test(&ioend->io_remaining)) {
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
if (ioend->io_type == XFS_IO_UNWRITTEN)
queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
else if (ioend->io_append_trans)
queue_work(mp->m_data_workqueue, &ioend->io_work);
else
xfs_destroy_ioend(ioend);
}
}
/*
* IO write completion.
*/
STATIC void
xfs_end_io(
struct work_struct *work)
{
xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
struct xfs_inode *ip = XFS_I(ioend->io_inode);
int error = 0;
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
ioend->io_error = -EIO;
goto done;
}
if (ioend->io_error)
goto done;
/*
* For unwritten extents we need to issue transactions to convert a
* range to normal written extens after the data I/O has finished.
*/
if (ioend->io_type == XFS_IO_UNWRITTEN) {
error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
ioend->io_size);
} else if (ioend->io_append_trans) {
error = xfs_setfilesize_ioend(ioend);
} else {
ASSERT(!xfs_ioend_is_append(ioend));
}
done:
if (error)
ioend->io_error = error;
xfs_destroy_ioend(ioend);
}
/*
* Allocate and initialise an IO completion structure.
* We need to track unwritten extent write completion here initially.
* We'll need to extend this for updating the ondisk inode size later
* (vs. incore size).
*/
STATIC xfs_ioend_t *
xfs_alloc_ioend(
struct inode *inode,
unsigned int type)
{
xfs_ioend_t *ioend;
ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
/*
* Set the count to 1 initially, which will prevent an I/O
* completion callback from happening before we have started
* all the I/O from calling the completion routine too early.
*/
atomic_set(&ioend->io_remaining, 1);
ioend->io_error = 0;
ioend->io_list = NULL;
ioend->io_type = type;
ioend->io_inode = inode;
ioend->io_buffer_head = NULL;
ioend->io_buffer_tail = NULL;
ioend->io_offset = 0;
ioend->io_size = 0;
ioend->io_append_trans = NULL;
INIT_WORK(&ioend->io_work, xfs_end_io);
return ioend;
}
STATIC int
xfs_map_blocks(
struct inode *inode,
loff_t offset,
struct xfs_bmbt_irec *imap,
int type,
int nonblocking)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t count = 1 << inode->i_blkbits;
xfs_fileoff_t offset_fsb, end_fsb;
int error = 0;
int bmapi_flags = XFS_BMAPI_ENTIRE;
int nimaps = 1;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
if (type == XFS_IO_UNWRITTEN)
bmapi_flags |= XFS_BMAPI_IGSTATE;
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
if (nonblocking)
return -EAGAIN;
xfs_ilock(ip, XFS_ILOCK_SHARED);
}
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
(ip->i_df.if_flags & XFS_IFEXTENTS));
ASSERT(offset <= mp->m_super->s_maxbytes);
if (offset + count > mp->m_super->s_maxbytes)
count = mp->m_super->s_maxbytes - offset;
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
offset_fsb = XFS_B_TO_FSBT(mp, offset);
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
imap, &nimaps, bmapi_flags);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (error)
return error;
if (type == XFS_IO_DELALLOC &&
(!nimaps || isnullstartblock(imap->br_startblock))) {
error = xfs_iomap_write_allocate(ip, offset, imap);
if (!error)
trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
return error;
}
#ifdef DEBUG
if (type == XFS_IO_UNWRITTEN) {
ASSERT(nimaps);
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
}
#endif
if (nimaps)
trace_xfs_map_blocks_found(ip, offset, count, type, imap);
return 0;
}
STATIC int
xfs_imap_valid(
struct inode *inode,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
offset >>= inode->i_blkbits;
return offset >= imap->br_startoff &&
offset < imap->br_startoff + imap->br_blockcount;
}
/*
* BIO completion handler for buffered IO.
*/
STATIC void
xfs_end_bio(
struct bio *bio,
int error)
{
xfs_ioend_t *ioend = bio->bi_private;
ASSERT(atomic_read(&bio->bi_cnt) >= 1);
ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
/* Toss bio and pass work off to an xfsdatad thread */
bio->bi_private = NULL;
bio->bi_end_io = NULL;
bio_put(bio);
xfs_finish_ioend(ioend);
}
STATIC void
xfs_submit_ioend_bio(
struct writeback_control *wbc,
xfs_ioend_t *ioend,
struct bio *bio)
{
atomic_inc(&ioend->io_remaining);
bio->bi_private = ioend;
bio->bi_end_io = xfs_end_bio;
submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
}
STATIC struct bio *
xfs_alloc_ioend_bio(
struct buffer_head *bh)
{
int nvecs = bio_get_nr_vecs(bh->b_bdev);
struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
ASSERT(bio->bi_private == NULL);
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
bio->bi_bdev = bh->b_bdev;
return bio;
}
STATIC void
xfs_start_buffer_writeback(
struct buffer_head *bh)
{
ASSERT(buffer_mapped(bh));
ASSERT(buffer_locked(bh));
ASSERT(!buffer_delay(bh));
ASSERT(!buffer_unwritten(bh));
mark_buffer_async_write(bh);
set_buffer_uptodate(bh);
clear_buffer_dirty(bh);
}
STATIC void
xfs_start_page_writeback(
struct page *page,
int clear_dirty,
int buffers)
{
ASSERT(PageLocked(page));
ASSERT(!PageWriteback(page));
/*
* if the page was not fully cleaned, we need to ensure that the higher
* layers come back to it correctly. That means we need to keep the page
* dirty, and for WB_SYNC_ALL writeback we need to ensure the
* PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
* write this page in this writeback sweep will be made.
*/
if (clear_dirty) {
clear_page_dirty_for_io(page);
set_page_writeback(page);
} else
set_page_writeback_keepwrite(page);
unlock_page(page);
/* If no buffers on the page are to be written, finish it here */
if (!buffers)
end_page_writeback(page);
}
static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
{
return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
}
/*
* Submit all of the bios for all of the ioends we have saved up, covering the
* initial writepage page and also any probed pages.
*
* Because we may have multiple ioends spanning a page, we need to start
* writeback on all the buffers before we submit them for I/O. If we mark the
* buffers as we got, then we can end up with a page that only has buffers
* marked async write and I/O complete on can occur before we mark the other
* buffers async write.
*
* The end result of this is that we trip a bug in end_page_writeback() because
* we call it twice for the one page as the code in end_buffer_async_write()
* assumes that all buffers on the page are started at the same time.
*
* The fix is two passes across the ioend list - one to start writeback on the
* buffer_heads, and then submit them for I/O on the second pass.
*
* If @fail is non-zero, it means that we have a situation where some part of
* the submission process has failed after we have marked paged for writeback
* and unlocked them. In this situation, we need to fail the ioend chain rather
* than submit it to IO. This typically only happens on a filesystem shutdown.
*/
STATIC void
xfs_submit_ioend(
struct writeback_control *wbc,
xfs_ioend_t *ioend,
int fail)
{
xfs_ioend_t *head = ioend;
xfs_ioend_t *next;
struct buffer_head *bh;
struct bio *bio;
sector_t lastblock = 0;
/* Pass 1 - start writeback */
do {
next = ioend->io_list;
for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
xfs_start_buffer_writeback(bh);
} while ((ioend = next) != NULL);
/* Pass 2 - submit I/O */
ioend = head;
do {
next = ioend->io_list;
bio = NULL;
/*
* If we are failing the IO now, just mark the ioend with an
* error and finish it. This will run IO completion immediately
* as there is only one reference to the ioend at this point in
* time.
*/
if (fail) {
ioend->io_error = fail;
xfs_finish_ioend(ioend);
continue;
}
for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
if (!bio) {
retry:
bio = xfs_alloc_ioend_bio(bh);
} else if (bh->b_blocknr != lastblock + 1) {
xfs_submit_ioend_bio(wbc, ioend, bio);
goto retry;
}
if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
xfs_submit_ioend_bio(wbc, ioend, bio);
goto retry;
}
lastblock = bh->b_blocknr;
}
if (bio)
xfs_submit_ioend_bio(wbc, ioend, bio);
xfs_finish_ioend(ioend);
} while ((ioend = next) != NULL);
}
/*
* Cancel submission of all buffer_heads so far in this endio.
* Toss the endio too. Only ever called for the initial page
* in a writepage request, so only ever one page.
*/
STATIC void
xfs_cancel_ioend(
xfs_ioend_t *ioend)
{
xfs_ioend_t *next;
struct buffer_head *bh, *next_bh;
do {
next = ioend->io_list;
bh = ioend->io_buffer_head;
do {
next_bh = bh->b_private;
clear_buffer_async_write(bh);
/*
* The unwritten flag is cleared when added to the
* ioend. We're not submitting for I/O so mark the
* buffer unwritten again for next time around.
*/
if (ioend->io_type == XFS_IO_UNWRITTEN)
set_buffer_unwritten(bh);
unlock_buffer(bh);
} while ((bh = next_bh) != NULL);
mempool_free(ioend, xfs_ioend_pool);
} while ((ioend = next) != NULL);
}
/*
* Test to see if we've been building up a completion structure for
* earlier buffers -- if so, we try to append to this ioend if we
* can, otherwise we finish off any current ioend and start another.
* Return true if we've finished the given ioend.
*/
STATIC void
xfs_add_to_ioend(
struct inode *inode,
struct buffer_head *bh,
xfs_off_t offset,
unsigned int type,
xfs_ioend_t **result,
int need_ioend)
{
xfs_ioend_t *ioend = *result;
if (!ioend || need_ioend || type != ioend->io_type) {
xfs_ioend_t *previous = *result;
ioend = xfs_alloc_ioend(inode, type);
ioend->io_offset = offset;
ioend->io_buffer_head = bh;
ioend->io_buffer_tail = bh;
if (previous)
previous->io_list = ioend;
*result = ioend;
} else {
ioend->io_buffer_tail->b_private = bh;
ioend->io_buffer_tail = bh;
}
bh->b_private = NULL;
ioend->io_size += bh->b_size;
}
STATIC void
xfs_map_buffer(
struct inode *inode,
struct buffer_head *bh,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
sector_t bn;
struct xfs_mount *m = XFS_I(inode)->i_mount;
xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
((offset - iomap_offset) >> inode->i_blkbits);
ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
bh->b_blocknr = bn;
set_buffer_mapped(bh);
}
STATIC void
xfs_map_at_offset(
struct inode *inode,
struct buffer_head *bh,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
xfs_map_buffer(inode, bh, imap, offset);
set_buffer_mapped(bh);
clear_buffer_delay(bh);
clear_buffer_unwritten(bh);
}
/*
* Test if a given page contains at least one buffer of a given @type.
* If @check_all_buffers is true, then we walk all the buffers in the page to
* try to find one of the type passed in. If it is not set, then the caller only
* needs to check the first buffer on the page for a match.
*/
STATIC bool
xfs_check_page_type(
struct page *page,
unsigned int type,
bool check_all_buffers)
{
struct buffer_head *bh;
struct buffer_head *head;
if (PageWriteback(page))
return false;
if (!page->mapping)
return false;
if (!page_has_buffers(page))
return false;
bh = head = page_buffers(page);
do {
if (buffer_unwritten(bh)) {
if (type == XFS_IO_UNWRITTEN)
return true;
} else if (buffer_delay(bh)) {
if (type == XFS_IO_DELALLOC)
return true;
} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
if (type == XFS_IO_OVERWRITE)
return true;
}
/* If we are only checking the first buffer, we are done now. */
if (!check_all_buffers)
break;
} while ((bh = bh->b_this_page) != head);
return false;
}
/*
* Allocate & map buffers for page given the extent map. Write it out.
* except for the original page of a writepage, this is called on
* delalloc/unwritten pages only, for the original page it is possible
* that the page has no mapping at all.
*/
STATIC int
xfs_convert_page(
struct inode *inode,
struct page *page,
loff_t tindex,
struct xfs_bmbt_irec *imap,
xfs_ioend_t **ioendp,
struct writeback_control *wbc)
{
struct buffer_head *bh, *head;
xfs_off_t end_offset;
unsigned long p_offset;
unsigned int type;
int len, page_dirty;
int count = 0, done = 0, uptodate = 1;
xfs_off_t offset = page_offset(page);
if (page->index != tindex)
goto fail;
if (!trylock_page(page))
goto fail;
if (PageWriteback(page))
goto fail_unlock_page;
if (page->mapping != inode->i_mapping)
goto fail_unlock_page;
if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
goto fail_unlock_page;
/*
* page_dirty is initially a count of buffers on the page before
* EOF and is decremented as we move each into a cleanable state.
*
* Derivation:
*
* End offset is the highest offset that this page should represent.
* If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
* will evaluate non-zero and be less than PAGE_CACHE_SIZE and
* hence give us the correct page_dirty count. On any other page,
* it will be zero and in that case we need page_dirty to be the
* count of buffers on the page.
*/
end_offset = min_t(unsigned long long,
(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
i_size_read(inode));
/*
* If the current map does not span the entire page we are about to try
* to write, then give up. The only way we can write a page that spans
* multiple mappings in a single writeback iteration is via the
* xfs_vm_writepage() function. Data integrity writeback requires the
* entire page to be written in a single attempt, otherwise the part of
* the page we don't write here doesn't get written as part of the data
* integrity sync.
*
* For normal writeback, we also don't attempt to write partial pages
* here as it simply means that write_cache_pages() will see it under
* writeback and ignore the page until some point in the future, at
* which time this will be the only page in the file that needs
* writeback. Hence for more optimal IO patterns, we should always
* avoid partial page writeback due to multiple mappings on a page here.
*/
if (!xfs_imap_valid(inode, imap, end_offset))
goto fail_unlock_page;
len = 1 << inode->i_blkbits;
p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
PAGE_CACHE_SIZE);
p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
page_dirty = p_offset / len;
/*
* The moment we find a buffer that doesn't match our current type
* specification or can't be written, abort the loop and start
* writeback. As per the above xfs_imap_valid() check, only
* xfs_vm_writepage() can handle partial page writeback fully - we are
* limited here to the buffers that are contiguous with the current
* ioend, and hence a buffer we can't write breaks that contiguity and
* we have to defer the rest of the IO to xfs_vm_writepage().
*/
bh = head = page_buffers(page);
do {
if (offset >= end_offset)
break;
if (!buffer_uptodate(bh))
uptodate = 0;
if (!(PageUptodate(page) || buffer_uptodate(bh))) {
done = 1;
break;
}
if (buffer_unwritten(bh) || buffer_delay(bh) ||
buffer_mapped(bh)) {
if (buffer_unwritten(bh))
type = XFS_IO_UNWRITTEN;
else if (buffer_delay(bh))
type = XFS_IO_DELALLOC;
else
type = XFS_IO_OVERWRITE;
/*
* imap should always be valid because of the above
* partial page end_offset check on the imap.
*/
ASSERT(xfs_imap_valid(inode, imap, offset));
lock_buffer(bh);
if (type != XFS_IO_OVERWRITE)
xfs_map_at_offset(inode, bh, imap, offset);
xfs_add_to_ioend(inode, bh, offset, type,
ioendp, done);
page_dirty--;
count++;
} else {
done = 1;
break;
}
} while (offset += len, (bh = bh->b_this_page) != head);
if (uptodate && bh == head)
SetPageUptodate(page);
if (count) {
if (--wbc->nr_to_write <= 0 &&
wbc->sync_mode == WB_SYNC_NONE)
done = 1;
}
xfs_start_page_writeback(page, !page_dirty, count);
return done;
fail_unlock_page:
unlock_page(page);
fail:
return 1;
}
/*
* Convert & write out a cluster of pages in the same extent as defined
* by mp and following the start page.
*/
STATIC void
xfs_cluster_write(
struct inode *inode,
pgoff_t tindex,
struct xfs_bmbt_irec *imap,
xfs_ioend_t **ioendp,
struct writeback_control *wbc,
pgoff_t tlast)
{
struct pagevec pvec;
int done = 0, i;
pagevec_init(&pvec, 0);
while (!done && tindex <= tlast) {
unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
break;
for (i = 0; i < pagevec_count(&pvec); i++) {
done = xfs_convert_page(inode, pvec.pages[i], tindex++,
imap, ioendp, wbc);
if (done)
break;
}
pagevec_release(&pvec);
cond_resched();
}
}
STATIC void
xfs_vm_invalidatepage(
struct page *page,
unsigned int offset,
unsigned int length)
{
trace_xfs_invalidatepage(page->mapping->host, page, offset,
length);
block_invalidatepage(page, offset, length);
}
/*
* If the page has delalloc buffers on it, we need to punch them out before we
* invalidate the page. If we don't, we leave a stale delalloc mapping on the
* inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
* is done on that same region - the delalloc extent is returned when none is
* supposed to be there.
*
* We prevent this by truncating away the delalloc regions on the page before
* invalidating it. Because they are delalloc, we can do this without needing a
* transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
* truncation without a transaction as there is no space left for block
* reservation (typically why we see a ENOSPC in writeback).
*
* This is not a performance critical path, so for now just do the punching a
* buffer head at a time.
*/
STATIC void
xfs_aops_discard_page(
struct page *page)
{
struct inode *inode = page->mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct buffer_head *bh, *head;
loff_t offset = page_offset(page);
if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
goto out_invalidate;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
goto out_invalidate;
xfs_alert(ip->i_mount,
"page discard on page %p, inode 0x%llx, offset %llu.",
page, ip->i_ino, offset);
xfs_ilock(ip, XFS_ILOCK_EXCL);
bh = head = page_buffers(page);
do {
int error;
xfs_fileoff_t start_fsb;
if (!buffer_delay(bh))
goto next_buffer;
start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
if (error) {
/* something screwed, just bail */
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
xfs_alert(ip->i_mount,
"page discard unable to remove delalloc mapping.");
}
break;
}
next_buffer:
offset += 1 << inode->i_blkbits;
} while ((bh = bh->b_this_page) != head);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out_invalidate:
xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
return;
}
/*
* Write out a dirty page.
*
* For delalloc space on the page we need to allocate space and flush it.
* For unwritten space on the page we need to start the conversion to
* regular allocated space.
* For any other dirty buffer heads on the page we should flush them.
*/
STATIC int
xfs_vm_writepage(
struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct buffer_head *bh, *head;
struct xfs_bmbt_irec imap;
xfs_ioend_t *ioend = NULL, *iohead = NULL;
loff_t offset;
unsigned int type;
__uint64_t end_offset;
pgoff_t end_index, last_index;
ssize_t len;
int err, imap_valid = 0, uptodate = 1;
int count = 0;
int nonblocking = 0;
trace_xfs_writepage(inode, page, 0, 0);
ASSERT(page_has_buffers(page));
/*
* Refuse to write the page out if we are called from reclaim context.
*
* This avoids stack overflows when called from deeply used stacks in
* random callers for direct reclaim or memcg reclaim. We explicitly
* allow reclaim from kswapd as the stack usage there is relatively low.
*
* This should never happen except in the case of a VM regression so
* warn about it.
*/
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
PF_MEMALLOC))
goto redirty;
/*
* Given that we do not allow direct reclaim to call us, we should
* never be called while in a filesystem transaction.
*/
if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
goto redirty;
/* Is this page beyond the end of the file? */
offset = i_size_read(inode);
end_index = offset >> PAGE_CACHE_SHIFT;
last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
/*
* The page index is less than the end_index, adjust the end_offset
* to the highest offset that this page should represent.
* -----------------------------------------------------
* | file mapping | <EOF> |
* -----------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | |
* ^--------------------------------^----------|--------
* | desired writeback range | see else |
* ---------------------------------^------------------|
*/
if (page->index < end_index)
end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
else {
/*
* Check whether the page to write out is beyond or straddles
* i_size or not.
* -------------------------------------------------------
* | file mapping | <EOF> |
* -------------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
* ^--------------------------------^-----------|---------
* | | Straddles |
* ---------------------------------^-----------|--------|
*/
unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
/*
* Skip the page if it is fully outside i_size, e.g. due to a
* truncate operation that is in progress. We must redirty the
* page so that reclaim stops reclaiming it. Otherwise
* xfs_vm_releasepage() is called on it and gets confused.
*
* Note that the end_index is unsigned long, it would overflow
* if the given offset is greater than 16TB on 32-bit system
* and if we do check the page is fully outside i_size or not
* via "if (page->index >= end_index + 1)" as "end_index + 1"
* will be evaluated to 0. Hence this page will be redirtied
* and be written out repeatedly which would result in an
* infinite loop, the user program that perform this operation
* will hang. Instead, we can verify this situation by checking
* if the page to write is totally beyond the i_size or if it's
* offset is just equal to the EOF.
*/
if (page->index > end_index ||
(page->index == end_index && offset_into_page == 0))
goto redirty;
/*
* The page straddles i_size. It must be zeroed out on each
* and every writepage invocation because it may be mmapped.
* "A file is mapped in multiples of the page size. For a file
* that is not a multiple of the page size, the remaining
* memory is zeroed when mapped, and writes to that region are
* not written out to the file."
*/
zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
/* Adjust the end_offset to the end of file */
end_offset = offset;
}
len = 1 << inode->i_blkbits;
bh = head = page_buffers(page);
offset = page_offset(page);
type = XFS_IO_OVERWRITE;
if (wbc->sync_mode == WB_SYNC_NONE)
nonblocking = 1;
do {
int new_ioend = 0;
if (offset >= end_offset)
break;
if (!buffer_uptodate(bh))
uptodate = 0;
/*
* set_page_dirty dirties all buffers in a page, independent
* of their state. The dirty state however is entirely
* meaningless for holes (!mapped && uptodate), so skip
* buffers covering holes here.
*/
if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
imap_valid = 0;
continue;
}
if (buffer_unwritten(bh)) {
if (type != XFS_IO_UNWRITTEN) {
type = XFS_IO_UNWRITTEN;
imap_valid = 0;
}
} else if (buffer_delay(bh)) {
if (type != XFS_IO_DELALLOC) {
type = XFS_IO_DELALLOC;
imap_valid = 0;
}
} else if (buffer_uptodate(bh)) {
if (type != XFS_IO_OVERWRITE) {
type = XFS_IO_OVERWRITE;
imap_valid = 0;
}
} else {
if (PageUptodate(page))
ASSERT(buffer_mapped(bh));
/*
* This buffer is not uptodate and will not be
* written to disk. Ensure that we will put any
* subsequent writeable buffers into a new
* ioend.
*/
imap_valid = 0;
continue;
}
if (imap_valid)
imap_valid = xfs_imap_valid(inode, &imap, offset);
if (!imap_valid) {
/*
* If we didn't have a valid mapping then we need to
* put the new mapping into a separate ioend structure.
* This ensures non-contiguous extents always have
* separate ioends, which is particularly important
* for unwritten extent conversion at I/O completion
* time.
*/
new_ioend = 1;
err = xfs_map_blocks(inode, offset, &imap, type,
nonblocking);
if (err)
goto error;
imap_valid = xfs_imap_valid(inode, &imap, offset);
}
if (imap_valid) {
lock_buffer(bh);
if (type != XFS_IO_OVERWRITE)
xfs_map_at_offset(inode, bh, &imap, offset);
xfs_add_to_ioend(inode, bh, offset, type, &ioend,
new_ioend);
count++;
}
if (!iohead)
iohead = ioend;
} while (offset += len, ((bh = bh->b_this_page) != head));
if (uptodate && bh == head)
SetPageUptodate(page);
xfs_start_page_writeback(page, 1, count);
/* if there is no IO to be submitted for this page, we are done */
if (!ioend)
return 0;
ASSERT(iohead);
/*
* Any errors from this point onwards need tobe reported through the IO
* completion path as we have marked the initial page as under writeback
* and unlocked it.
*/
if (imap_valid) {
xfs_off_t end_index;
end_index = imap.br_startoff + imap.br_blockcount;
/* to bytes */
end_index <<= inode->i_blkbits;
/* to pages */
end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
/* check against file size */
if (end_index > last_index)
end_index = last_index;
xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
wbc, end_index);
}
/*
* Reserve log space if we might write beyond the on-disk inode size.
*/
err = 0;
if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
err = xfs_setfilesize_trans_alloc(ioend);
xfs_submit_ioend(wbc, iohead, err);
return 0;
error:
if (iohead)
xfs_cancel_ioend(iohead);
if (err == -EAGAIN)
goto redirty;
xfs_aops_discard_page(page);
ClearPageUptodate(page);
unlock_page(page);
return err;
redirty:
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return 0;
}
STATIC int
xfs_vm_writepages(
struct address_space *mapping,
struct writeback_control *wbc)
{
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
return generic_writepages(mapping, wbc);
}
/*
* Called to move a page into cleanable state - and from there
* to be released. The page should already be clean. We always
* have buffer heads in this call.
*
* Returns 1 if the page is ok to release, 0 otherwise.
*/
STATIC int
xfs_vm_releasepage(
struct page *page,
gfp_t gfp_mask)
{
int delalloc, unwritten;
trace_xfs_releasepage(page->mapping->host, page, 0, 0);
xfs_count_page_state(page, &delalloc, &unwritten);
if (WARN_ON_ONCE(delalloc))
return 0;
if (WARN_ON_ONCE(unwritten))
return 0;
return try_to_free_buffers(page);
}
/*
* When we map a DIO buffer, we may need to attach an ioend that describes the
* type of write IO we are doing. This passes to the completion function the
* operations it needs to perform. If the mapping is for an overwrite wholly
* within the EOF then we don't need an ioend and so we don't allocate one.
* This avoids the unnecessary overhead of allocating and freeing ioends for
* workloads that don't require transactions on IO completion.
*
* If we get multiple mappings in a single IO, we might be mapping different
* types. But because the direct IO can only have a single private pointer, we
* need to ensure that:
*
* a) i) the ioend spans the entire region of unwritten mappings; or
* ii) the ioend spans all the mappings that cross or are beyond EOF; and
* b) if it contains unwritten extents, it is *permanently* marked as such
*
* We could do this by chaining ioends like buffered IO does, but we only
* actually get one IO completion callback from the direct IO, and that spans
* the entire IO regardless of how many mappings and IOs are needed to complete
* the DIO. There is only going to be one reference to the ioend and its life
* cycle is constrained by the DIO completion code. hence we don't need
* reference counting here.
*/
static void
xfs_map_direct(
struct inode *inode,
struct buffer_head *bh_result,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
struct xfs_ioend *ioend;
xfs_off_t size = bh_result->b_size;
int type;
if (ISUNWRITTEN(imap))
type = XFS_IO_UNWRITTEN;
else
type = XFS_IO_OVERWRITE;
trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
if (bh_result->b_private) {
ioend = bh_result->b_private;
ASSERT(ioend->io_size > 0);
ASSERT(offset >= ioend->io_offset);
if (offset + size > ioend->io_offset + ioend->io_size)
ioend->io_size = offset - ioend->io_offset + size;
if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
ioend->io_type = XFS_IO_UNWRITTEN;
trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
ioend->io_size, ioend->io_type,
imap);
} else if (type == XFS_IO_UNWRITTEN ||
offset + size > i_size_read(inode)) {
ioend = xfs_alloc_ioend(inode, type);
ioend->io_offset = offset;
ioend->io_size = size;
bh_result->b_private = ioend;
set_buffer_defer_completion(bh_result);
trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
imap);
} else {
trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
imap);
}
}
/*
* If this is O_DIRECT or the mpage code calling tell them how large the mapping
* is, so that we can avoid repeated get_blocks calls.
*
* If the mapping spans EOF, then we have to break the mapping up as the mapping
* for blocks beyond EOF must be marked new so that sub block regions can be
* correctly zeroed. We can't do this for mappings within EOF unless the mapping
* was just allocated or is unwritten, otherwise the callers would overwrite
* existing data with zeros. Hence we have to split the mapping into a range up
* to and including EOF, and a second mapping for beyond EOF.
*/
static void
xfs_map_trim_size(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
struct xfs_bmbt_irec *imap,
xfs_off_t offset,
ssize_t size)
{
xfs_off_t mapping_size;
mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
mapping_size <<= inode->i_blkbits;
ASSERT(mapping_size > 0);
if (mapping_size > size)
mapping_size = size;
if (offset < i_size_read(inode) &&
offset + mapping_size >= i_size_read(inode)) {
/* limit mapping to block that spans EOF */
mapping_size = roundup_64(i_size_read(inode) - offset,
1 << inode->i_blkbits);
}
if (mapping_size > LONG_MAX)
mapping_size = LONG_MAX;
bh_result->b_size = mapping_size;
}
STATIC int
__xfs_get_blocks(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create,
int direct)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb, end_fsb;
int error = 0;
int lockmode = 0;
struct xfs_bmbt_irec imap;
int nimaps = 1;
xfs_off_t offset;
ssize_t size;
int new = 0;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
offset = (xfs_off_t)iblock << inode->i_blkbits;
ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
size = bh_result->b_size;
if (!create && direct && offset >= i_size_read(inode))
return 0;
/*
* Direct I/O is usually done on preallocated files, so try getting
* a block mapping without an exclusive lock first. For buffered
* writes we already have the exclusive iolock anyway, so avoiding
* a lock roundtrip here by taking the ilock exclusive from the
* beginning is a useful micro optimization.
*/
if (create && !direct) {
lockmode = XFS_ILOCK_EXCL;
xfs_ilock(ip, lockmode);
} else {
lockmode = xfs_ilock_data_map_shared(ip);
}
ASSERT(offset <= mp->m_super->s_maxbytes);
if (offset + size > mp->m_super->s_maxbytes)
size = mp->m_super->s_maxbytes - offset;
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
offset_fsb = XFS_B_TO_FSBT(mp, offset);
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
&imap, &nimaps, XFS_BMAPI_ENTIRE);
if (error)
goto out_unlock;
if (create &&
(!nimaps ||
(imap.br_startblock == HOLESTARTBLOCK ||
imap.br_startblock == DELAYSTARTBLOCK))) {
if (direct || xfs_get_extsz_hint(ip)) {
/*
* Drop the ilock in preparation for starting the block
* allocation transaction. It will be retaken
* exclusively inside xfs_iomap_write_direct for the
* actual allocation.
*/
xfs_iunlock(ip, lockmode);
error = xfs_iomap_write_direct(ip, offset, size,
&imap, nimaps);
if (error)
return error;
new = 1;
} else {
/*
* Delalloc reservations do not require a transaction,
* we can go on without dropping the lock here. If we
* are allocating a new delalloc block, make sure that
* we set the new flag so that we mark the buffer new so
* that we know that it is newly allocated if the write
* fails.
*/
if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
new = 1;
error = xfs_iomap_write_delay(ip, offset, size, &imap);
if (error)
goto out_unlock;
xfs_iunlock(ip, lockmode);
}
trace_xfs_get_blocks_alloc(ip, offset, size,
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
: XFS_IO_DELALLOC, &imap);
} else if (nimaps) {
trace_xfs_get_blocks_found(ip, offset, size,
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
: XFS_IO_OVERWRITE, &imap);
xfs_iunlock(ip, lockmode);
} else {
trace_xfs_get_blocks_notfound(ip, offset, size);
goto out_unlock;
}
/* trim mapping down to size requested */
if (direct || size > (1 << inode->i_blkbits))
xfs_map_trim_size(inode, iblock, bh_result,
&imap, offset, size);
/*
* For unwritten extents do not report a disk address in the buffered
* read case (treat as if we're reading into a hole).
*/
if (imap.br_startblock != HOLESTARTBLOCK &&
imap.br_startblock != DELAYSTARTBLOCK &&
(create || !ISUNWRITTEN(&imap))) {
xfs_map_buffer(inode, bh_result, &imap, offset);
if (ISUNWRITTEN(&imap))
set_buffer_unwritten(bh_result);
/* direct IO needs special help */
if (create && direct)
xfs_map_direct(inode, bh_result, &imap, offset);
}
/*
* If this is a realtime file, data may be on a different device.
* to that pointed to from the buffer_head b_bdev currently.
*/
bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
/*
* If we previously allocated a block out beyond eof and we are now
* coming back to use it then we will need to flag it as new even if it
* has a disk address.
*
* With sub-block writes into unwritten extents we also need to mark
* the buffer as new so that the unwritten parts of the buffer gets
* correctly zeroed.
*/
if (create &&
((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
(offset >= i_size_read(inode)) ||
(new || ISUNWRITTEN(&imap))))
set_buffer_new(bh_result);
if (imap.br_startblock == DELAYSTARTBLOCK) {
BUG_ON(direct);
if (create) {
set_buffer_uptodate(bh_result);
set_buffer_mapped(bh_result);
set_buffer_delay(bh_result);
}
}
return 0;
out_unlock:
xfs_iunlock(ip, lockmode);
return error;
}
int
xfs_get_blocks(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create)
{
return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
}
STATIC int
xfs_get_blocks_direct(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create)
{
return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
}
/*
* Complete a direct I/O write request.
*
* The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
* If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
* wholly within the EOF and so there is nothing for us to do. Note that in this
* case the completion can be called in interrupt context, whereas if we have an
* ioend we will always be called in task context (i.e. from a workqueue).
*/
STATIC void
xfs_end_io_direct_write(
struct kiocb *iocb,
loff_t offset,
ssize_t size,
void *private)
{
struct inode *inode = file_inode(iocb->ki_filp);
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
struct xfs_ioend *ioend = private;
trace_xfs_gbmap_direct_endio(ip, offset, size,
ioend ? ioend->io_type : 0, NULL);
if (!ioend) {
ASSERT(offset + size <= i_size_read(inode));
return;
}
if (XFS_FORCED_SHUTDOWN(mp))
goto out_end_io;
/*
* dio completion end_io functions are only called on writes if more
* than 0 bytes was written.
*/
ASSERT(size > 0);
/*
* The ioend only maps whole blocks, while the IO may be sector aligned.
* Hence the ioend offset/size may not match the IO offset/size exactly.
* Because we don't map overwrites within EOF into the ioend, the offset
* may not match, but only if the endio spans EOF. Either way, write
* the IO sizes into the ioend so that completion processing does the
* right thing.
*/
ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
ioend->io_size = size;
ioend->io_offset = offset;
/*
* The ioend tells us whether we are doing unwritten extent conversion
* or an append transaction that updates the on-disk file size. These
* cases are the only cases where we should *potentially* be needing
* to update the VFS inode size.
*
* We need to update the in-core inode size here so that we don't end up
* with the on-disk inode size being outside the in-core inode size. We
* have no other method of updating EOF for AIO, so always do it here
* if necessary.
*
* We need to lock the test/set EOF update as we can be racing with
* other IO completions here to update the EOF. Failing to serialise
* here can result in EOF moving backwards and Bad Things Happen when
* that occurs.
*/
spin_lock(&ip->i_flags_lock);
if (offset + size > i_size_read(inode))
i_size_write(inode, offset + size);
spin_unlock(&ip->i_flags_lock);
/*
* If we are doing an append IO that needs to update the EOF on disk,
* do the transaction reserve now so we can use common end io
* processing. Stashing the error (if there is one) in the ioend will
* result in the ioend processing passing on the error if it is
* possible as we can't return it from here.
*/
if (ioend->io_type == XFS_IO_OVERWRITE)
ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
out_end_io:
xfs_end_io(&ioend->io_work);
return;
}
STATIC ssize_t
xfs_vm_direct_IO(
struct kiocb *iocb,
struct iov_iter *iter,
loff_t offset)
{
struct inode *inode = iocb->ki_filp->f_mapping->host;
struct block_device *bdev = xfs_find_bdev_for_inode(inode);
if (iov_iter_rw(iter) == WRITE) {
return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
xfs_get_blocks_direct,
xfs_end_io_direct_write, NULL,
DIO_ASYNC_EXTEND);
}
return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
xfs_get_blocks_direct, NULL, NULL, 0);
}
/*
* Punch out the delalloc blocks we have already allocated.
*
* Don't bother with xfs_setattr given that nothing can have made it to disk yet
* as the page is still locked at this point.
*/
STATIC void
xfs_vm_kill_delalloc_range(
struct inode *inode,
loff_t start,
loff_t end)
{
struct xfs_inode *ip = XFS_I(inode);
xfs_fileoff_t start_fsb;
xfs_fileoff_t end_fsb;
int error;
start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
if (end_fsb <= start_fsb)
return;
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
end_fsb - start_fsb);
if (error) {
/* something screwed, just bail */
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
xfs_alert(ip->i_mount,
"xfs_vm_write_failed: unable to clean up ino %lld",
ip->i_ino);
}
}
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
STATIC void
xfs_vm_write_failed(
struct inode *inode,
struct page *page,
loff_t pos,
unsigned len)
{
loff_t block_offset;
loff_t block_start;
loff_t block_end;
loff_t from = pos & (PAGE_CACHE_SIZE - 1);
loff_t to = from + len;
struct buffer_head *bh, *head;
/*
* The request pos offset might be 32 or 64 bit, this is all fine
* on 64-bit platform. However, for 64-bit pos request on 32-bit
* platform, the high 32-bit will be masked off if we evaluate the
* block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
* 0xfffff000 as an unsigned long, hence the result is incorrect
* which could cause the following ASSERT failed in most cases.
* In order to avoid this, we can evaluate the block_offset of the
* start of the page by using shifts rather than masks the mismatch
* problem.
*/
block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
ASSERT(block_offset + from == pos);
head = page_buffers(page);
block_start = 0;
for (bh = head; bh != head || !block_start;
bh = bh->b_this_page, block_start = block_end,
block_offset += bh->b_size) {
block_end = block_start + bh->b_size;
/* skip buffers before the write */
if (block_end <= from)
continue;
/* if the buffer is after the write, we're done */
if (block_start >= to)
break;
if (!buffer_delay(bh))
continue;
if (!buffer_new(bh) && block_offset < i_size_read(inode))
continue;
xfs_vm_kill_delalloc_range(inode, block_offset,
block_offset + bh->b_size);
/*
* This buffer does not contain data anymore. make sure anyone
* who finds it knows that for certain.
*/
clear_buffer_delay(bh);
clear_buffer_uptodate(bh);
clear_buffer_mapped(bh);
clear_buffer_new(bh);
clear_buffer_dirty(bh);
}
}
/*
* This used to call block_write_begin(), but it unlocks and releases the page
* on error, and we need that page to be able to punch stale delalloc blocks out
* on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
* the appropriate point.
*/
STATIC int
xfs_vm_write_begin(
struct file *file,
struct address_space *mapping,
loff_t pos,
unsigned len,
unsigned flags,
struct page **pagep,
void **fsdata)
{
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
struct page *page;
int status;
ASSERT(len <= PAGE_CACHE_SIZE);
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
status = __block_write_begin(page, pos, len, xfs_get_blocks);
if (unlikely(status)) {
struct inode *inode = mapping->host;
size_t isize = i_size_read(inode);
xfs_vm_write_failed(inode, page, pos, len);
unlock_page(page);
/*
* If the write is beyond EOF, we only want to kill blocks
* allocated in this write, not blocks that were previously
* written successfully.
*/
if (pos + len > isize) {
ssize_t start = max_t(ssize_t, pos, isize);
truncate_pagecache_range(inode, start, pos + len);
}
page_cache_release(page);
page = NULL;
}
*pagep = page;
return status;
}
/*
* On failure, we only need to kill delalloc blocks beyond EOF in the range of
* this specific write because they will never be written. Previous writes
* beyond EOF where block allocation succeeded do not need to be trashed, so
* only new blocks from this write should be trashed. For blocks within
* EOF, generic_write_end() zeros them so they are safe to leave alone and be
* written with all the other valid data.
*/
STATIC int
xfs_vm_write_end(
struct file *file,
struct address_space *mapping,
loff_t pos,
unsigned len,
unsigned copied,
struct page *page,
void *fsdata)
{
int ret;
ASSERT(len <= PAGE_CACHE_SIZE);
ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
if (unlikely(ret < len)) {
struct inode *inode = mapping->host;
size_t isize = i_size_read(inode);
loff_t to = pos + len;
if (to > isize) {
/* only kill blocks in this write beyond EOF */
if (pos > isize)
isize = pos;
xfs_vm_kill_delalloc_range(inode, isize, to);
truncate_pagecache_range(inode, isize, to);
}
}
return ret;
}
STATIC sector_t
xfs_vm_bmap(
struct address_space *mapping,
sector_t block)
{
struct inode *inode = (struct inode *)mapping->host;
struct xfs_inode *ip = XFS_I(inode);
trace_xfs_vm_bmap(XFS_I(inode));
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait(mapping);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return generic_block_bmap(mapping, block, xfs_get_blocks);
}
STATIC int
xfs_vm_readpage(
struct file *unused,
struct page *page)
{
return mpage_readpage(page, xfs_get_blocks);
}
STATIC int
xfs_vm_readpages(
struct file *unused,
struct address_space *mapping,
struct list_head *pages,
unsigned nr_pages)
{
return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
}
/*
* This is basically a copy of __set_page_dirty_buffers() with one
* small tweak: buffers beyond EOF do not get marked dirty. If we mark them
* dirty, we'll never be able to clean them because we don't write buffers
* beyond EOF, and that means we can't invalidate pages that span EOF
* that have been marked dirty. Further, the dirty state can leak into
* the file interior if the file is extended, resulting in all sorts of
* bad things happening as the state does not match the underlying data.
*
* XXX: this really indicates that bufferheads in XFS need to die. Warts like
* this only exist because of bufferheads and how the generic code manages them.
*/
STATIC int
xfs_vm_set_page_dirty(
struct page *page)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
loff_t end_offset;
loff_t offset;
int newly_dirty;
if (unlikely(!mapping))
return !TestSetPageDirty(page);
end_offset = i_size_read(inode);
offset = page_offset(page);
spin_lock(&mapping->private_lock);
if (page_has_buffers(page)) {
struct buffer_head *head = page_buffers(page);
struct buffer_head *bh = head;
do {
if (offset < end_offset)
set_buffer_dirty(bh);
bh = bh->b_this_page;
offset += 1 << inode->i_blkbits;
} while (bh != head);
}
newly_dirty = !TestSetPageDirty(page);
spin_unlock(&mapping->private_lock);
if (newly_dirty) {
/* sigh - __set_page_dirty() is static, so copy it here, too */
unsigned long flags;
spin_lock_irqsave(&mapping->tree_lock, flags);
if (page->mapping) { /* Race with truncate? */
WARN_ON_ONCE(!PageUptodate(page));
account_page_dirtied(page, mapping);
radix_tree_tag_set(&mapping->page_tree,
page_index(page), PAGECACHE_TAG_DIRTY);
}
spin_unlock_irqrestore(&mapping->tree_lock, flags);
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
}
return newly_dirty;
}
const struct address_space_operations xfs_address_space_operations = {
.readpage = xfs_vm_readpage,
.readpages = xfs_vm_readpages,
.writepage = xfs_vm_writepage,
.writepages = xfs_vm_writepages,
.set_page_dirty = xfs_vm_set_page_dirty,
.releasepage = xfs_vm_releasepage,
.invalidatepage = xfs_vm_invalidatepage,
.write_begin = xfs_vm_write_begin,
.write_end = xfs_vm_write_end,
.bmap = xfs_vm_bmap,
.direct_IO = xfs_vm_direct_IO,
.migratepage = buffer_migrate_page,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};