linux-sg2042/drivers/acpi/thermal.c

1446 lines
37 KiB
C

/*
* acpi_thermal.c - ACPI Thermal Zone Driver ($Revision: 41 $)
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This driver fully implements the ACPI thermal policy as described in the
* ACPI 2.0 Specification.
*
* TBD: 1. Implement passive cooling hysteresis.
* 2. Enhance passive cooling (CPU) states/limit interface to support
* concepts of 'multiple limiters', upper/lower limits, etc.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/kmod.h>
#include <linux/seq_file.h>
#include <asm/uaccess.h>
#include <acpi/acpi_bus.h>
#include <acpi/acpi_drivers.h>
#define ACPI_THERMAL_COMPONENT 0x04000000
#define ACPI_THERMAL_CLASS "thermal_zone"
#define ACPI_THERMAL_DRIVER_NAME "ACPI Thermal Zone Driver"
#define ACPI_THERMAL_DEVICE_NAME "Thermal Zone"
#define ACPI_THERMAL_FILE_STATE "state"
#define ACPI_THERMAL_FILE_TEMPERATURE "temperature"
#define ACPI_THERMAL_FILE_TRIP_POINTS "trip_points"
#define ACPI_THERMAL_FILE_COOLING_MODE "cooling_mode"
#define ACPI_THERMAL_FILE_POLLING_FREQ "polling_frequency"
#define ACPI_THERMAL_NOTIFY_TEMPERATURE 0x80
#define ACPI_THERMAL_NOTIFY_THRESHOLDS 0x81
#define ACPI_THERMAL_NOTIFY_DEVICES 0x82
#define ACPI_THERMAL_NOTIFY_CRITICAL 0xF0
#define ACPI_THERMAL_NOTIFY_HOT 0xF1
#define ACPI_THERMAL_MODE_ACTIVE 0x00
#define ACPI_THERMAL_MODE_PASSIVE 0x01
#define ACPI_THERMAL_MODE_CRITICAL 0xff
#define ACPI_THERMAL_PATH_POWEROFF "/sbin/poweroff"
#define ACPI_THERMAL_MAX_ACTIVE 10
#define ACPI_THERMAL_MAX_LIMIT_STR_LEN 65
#define KELVIN_TO_CELSIUS(t) (long)(((long)t-2732>=0) ? ((long)t-2732+5)/10 : ((long)t-2732-5)/10)
#define CELSIUS_TO_KELVIN(t) ((t+273)*10)
#define _COMPONENT ACPI_THERMAL_COMPONENT
ACPI_MODULE_NAME ("acpi_thermal")
MODULE_AUTHOR("Paul Diefenbaugh");
MODULE_DESCRIPTION(ACPI_THERMAL_DRIVER_NAME);
MODULE_LICENSE("GPL");
static int tzp;
module_param(tzp, int, 0);
MODULE_PARM_DESC(tzp, "Thermal zone polling frequency, in 1/10 seconds.\n");
static int acpi_thermal_add (struct acpi_device *device);
static int acpi_thermal_remove (struct acpi_device *device, int type);
static int acpi_thermal_state_open_fs(struct inode *inode, struct file *file);
static int acpi_thermal_temp_open_fs(struct inode *inode, struct file *file);
static int acpi_thermal_trip_open_fs(struct inode *inode, struct file *file);
static ssize_t acpi_thermal_write_trip_points (struct file*,const char __user *,size_t,loff_t *);
static int acpi_thermal_cooling_open_fs(struct inode *inode, struct file *file);
static ssize_t acpi_thermal_write_cooling_mode (struct file*,const char __user *,size_t,loff_t *);
static int acpi_thermal_polling_open_fs(struct inode *inode, struct file *file);
static ssize_t acpi_thermal_write_polling(struct file*,const char __user *,size_t,loff_t *);
static struct acpi_driver acpi_thermal_driver = {
.name = ACPI_THERMAL_DRIVER_NAME,
.class = ACPI_THERMAL_CLASS,
.ids = ACPI_THERMAL_HID,
.ops = {
.add = acpi_thermal_add,
.remove = acpi_thermal_remove,
},
};
struct acpi_thermal_state {
u8 critical:1;
u8 hot:1;
u8 passive:1;
u8 active:1;
u8 reserved:4;
int active_index;
};
struct acpi_thermal_state_flags {
u8 valid:1;
u8 enabled:1;
u8 reserved:6;
};
struct acpi_thermal_critical {
struct acpi_thermal_state_flags flags;
unsigned long temperature;
};
struct acpi_thermal_hot {
struct acpi_thermal_state_flags flags;
unsigned long temperature;
};
struct acpi_thermal_passive {
struct acpi_thermal_state_flags flags;
unsigned long temperature;
unsigned long tc1;
unsigned long tc2;
unsigned long tsp;
struct acpi_handle_list devices;
};
struct acpi_thermal_active {
struct acpi_thermal_state_flags flags;
unsigned long temperature;
struct acpi_handle_list devices;
};
struct acpi_thermal_trips {
struct acpi_thermal_critical critical;
struct acpi_thermal_hot hot;
struct acpi_thermal_passive passive;
struct acpi_thermal_active active[ACPI_THERMAL_MAX_ACTIVE];
};
struct acpi_thermal_flags {
u8 cooling_mode:1; /* _SCP */
u8 devices:1; /* _TZD */
u8 reserved:6;
};
struct acpi_thermal {
acpi_handle handle;
acpi_bus_id name;
unsigned long temperature;
unsigned long last_temperature;
unsigned long polling_frequency;
u8 cooling_mode;
volatile u8 zombie;
struct acpi_thermal_flags flags;
struct acpi_thermal_state state;
struct acpi_thermal_trips trips;
struct acpi_handle_list devices;
struct timer_list timer;
};
static struct file_operations acpi_thermal_state_fops = {
.open = acpi_thermal_state_open_fs,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static struct file_operations acpi_thermal_temp_fops = {
.open = acpi_thermal_temp_open_fs,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static struct file_operations acpi_thermal_trip_fops = {
.open = acpi_thermal_trip_open_fs,
.read = seq_read,
.write = acpi_thermal_write_trip_points,
.llseek = seq_lseek,
.release = single_release,
};
static struct file_operations acpi_thermal_cooling_fops = {
.open = acpi_thermal_cooling_open_fs,
.read = seq_read,
.write = acpi_thermal_write_cooling_mode,
.llseek = seq_lseek,
.release = single_release,
};
static struct file_operations acpi_thermal_polling_fops = {
.open = acpi_thermal_polling_open_fs,
.read = seq_read,
.write = acpi_thermal_write_polling,
.llseek = seq_lseek,
.release = single_release,
};
/* --------------------------------------------------------------------------
Thermal Zone Management
-------------------------------------------------------------------------- */
static int
acpi_thermal_get_temperature (
struct acpi_thermal *tz)
{
acpi_status status = AE_OK;
ACPI_FUNCTION_TRACE("acpi_thermal_get_temperature");
if (!tz)
return_VALUE(-EINVAL);
tz->last_temperature = tz->temperature;
status = acpi_evaluate_integer(tz->handle, "_TMP", NULL, &tz->temperature);
if (ACPI_FAILURE(status))
return_VALUE(-ENODEV);
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Temperature is %lu dK\n", tz->temperature));
return_VALUE(0);
}
static int
acpi_thermal_get_polling_frequency (
struct acpi_thermal *tz)
{
acpi_status status = AE_OK;
ACPI_FUNCTION_TRACE("acpi_thermal_get_polling_frequency");
if (!tz)
return_VALUE(-EINVAL);
status = acpi_evaluate_integer(tz->handle, "_TZP", NULL, &tz->polling_frequency);
if (ACPI_FAILURE(status))
return_VALUE(-ENODEV);
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Polling frequency is %lu dS\n", tz->polling_frequency));
return_VALUE(0);
}
static int
acpi_thermal_set_polling (
struct acpi_thermal *tz,
int seconds)
{
ACPI_FUNCTION_TRACE("acpi_thermal_set_polling");
if (!tz)
return_VALUE(-EINVAL);
tz->polling_frequency = seconds * 10; /* Convert value to deci-seconds */
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Polling frequency set to %lu seconds\n", tz->polling_frequency));
return_VALUE(0);
}
static int
acpi_thermal_set_cooling_mode (
struct acpi_thermal *tz,
int mode)
{
acpi_status status = AE_OK;
union acpi_object arg0 = {ACPI_TYPE_INTEGER};
struct acpi_object_list arg_list = {1, &arg0};
acpi_handle handle = NULL;
ACPI_FUNCTION_TRACE("acpi_thermal_set_cooling_mode");
if (!tz)
return_VALUE(-EINVAL);
status = acpi_get_handle(tz->handle, "_SCP", &handle);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "_SCP not present\n"));
return_VALUE(-ENODEV);
}
arg0.integer.value = mode;
status = acpi_evaluate_object(handle, NULL, &arg_list, NULL);
if (ACPI_FAILURE(status))
return_VALUE(-ENODEV);
tz->cooling_mode = mode;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cooling mode [%s]\n",
mode?"passive":"active"));
return_VALUE(0);
}
static int
acpi_thermal_get_trip_points (
struct acpi_thermal *tz)
{
acpi_status status = AE_OK;
int i = 0;
ACPI_FUNCTION_TRACE("acpi_thermal_get_trip_points");
if (!tz)
return_VALUE(-EINVAL);
/* Critical Shutdown (required) */
status = acpi_evaluate_integer(tz->handle, "_CRT", NULL,
&tz->trips.critical.temperature);
if (ACPI_FAILURE(status)) {
tz->trips.critical.flags.valid = 0;
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "No critical threshold\n"));
return_VALUE(-ENODEV);
}
else {
tz->trips.critical.flags.valid = 1;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found critical threshold [%lu]\n", tz->trips.critical.temperature));
}
/* Critical Sleep (optional) */
status = acpi_evaluate_integer(tz->handle, "_HOT", NULL, &tz->trips.hot.temperature);
if (ACPI_FAILURE(status)) {
tz->trips.hot.flags.valid = 0;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No hot threshold\n"));
}
else {
tz->trips.hot.flags.valid = 1;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found hot threshold [%lu]\n", tz->trips.hot.temperature));
}
/* Passive: Processors (optional) */
status = acpi_evaluate_integer(tz->handle, "_PSV", NULL, &tz->trips.passive.temperature);
if (ACPI_FAILURE(status)) {
tz->trips.passive.flags.valid = 0;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No passive threshold\n"));
}
else {
tz->trips.passive.flags.valid = 1;
status = acpi_evaluate_integer(tz->handle, "_TC1", NULL, &tz->trips.passive.tc1);
if (ACPI_FAILURE(status))
tz->trips.passive.flags.valid = 0;
status = acpi_evaluate_integer(tz->handle, "_TC2", NULL, &tz->trips.passive.tc2);
if (ACPI_FAILURE(status))
tz->trips.passive.flags.valid = 0;
status = acpi_evaluate_integer(tz->handle, "_TSP", NULL, &tz->trips.passive.tsp);
if (ACPI_FAILURE(status))
tz->trips.passive.flags.valid = 0;
status = acpi_evaluate_reference(tz->handle, "_PSL", NULL, &tz->trips.passive.devices);
if (ACPI_FAILURE(status))
tz->trips.passive.flags.valid = 0;
if (!tz->trips.passive.flags.valid)
ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Invalid passive threshold\n"));
else
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found passive threshold [%lu]\n", tz->trips.passive.temperature));
}
/* Active: Fans, etc. (optional) */
for (i=0; i<ACPI_THERMAL_MAX_ACTIVE; i++) {
char name[5] = {'_','A','C',('0'+i),'\0'};
status = acpi_evaluate_integer(tz->handle, name, NULL, &tz->trips.active[i].temperature);
if (ACPI_FAILURE(status))
break;
name[2] = 'L';
status = acpi_evaluate_reference(tz->handle, name, NULL, &tz->trips.active[i].devices);
if (ACPI_SUCCESS(status)) {
tz->trips.active[i].flags.valid = 1;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found active threshold [%d]:[%lu]\n", i, tz->trips.active[i].temperature));
}
else
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid active threshold [%d]\n", i));
}
return_VALUE(0);
}
static int
acpi_thermal_get_devices (
struct acpi_thermal *tz)
{
acpi_status status = AE_OK;
ACPI_FUNCTION_TRACE("acpi_thermal_get_devices");
if (!tz)
return_VALUE(-EINVAL);
status = acpi_evaluate_reference(tz->handle, "_TZD", NULL, &tz->devices);
if (ACPI_FAILURE(status))
return_VALUE(-ENODEV);
return_VALUE(0);
}
static int
acpi_thermal_call_usermode (
char *path)
{
char *argv[2] = {NULL, NULL};
char *envp[3] = {NULL, NULL, NULL};
ACPI_FUNCTION_TRACE("acpi_thermal_call_usermode");
if (!path)
return_VALUE(-EINVAL);
argv[0] = path;
/* minimal command environment */
envp[0] = "HOME=/";
envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
call_usermodehelper(argv[0], argv, envp, 0);
return_VALUE(0);
}
static int
acpi_thermal_critical (
struct acpi_thermal *tz)
{
int result = 0;
struct acpi_device *device = NULL;
ACPI_FUNCTION_TRACE("acpi_thermal_critical");
if (!tz || !tz->trips.critical.flags.valid)
return_VALUE(-EINVAL);
if (tz->temperature >= tz->trips.critical.temperature) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Critical trip point\n"));
tz->trips.critical.flags.enabled = 1;
}
else if (tz->trips.critical.flags.enabled)
tz->trips.critical.flags.enabled = 0;
result = acpi_bus_get_device(tz->handle, &device);
if (result)
return_VALUE(result);
printk(KERN_EMERG "Critical temperature reached (%ld C), shutting down.\n", KELVIN_TO_CELSIUS(tz->temperature));
acpi_bus_generate_event(device, ACPI_THERMAL_NOTIFY_CRITICAL, tz->trips.critical.flags.enabled);
acpi_thermal_call_usermode(ACPI_THERMAL_PATH_POWEROFF);
return_VALUE(0);
}
static int
acpi_thermal_hot (
struct acpi_thermal *tz)
{
int result = 0;
struct acpi_device *device = NULL;
ACPI_FUNCTION_TRACE("acpi_thermal_hot");
if (!tz || !tz->trips.hot.flags.valid)
return_VALUE(-EINVAL);
if (tz->temperature >= tz->trips.hot.temperature) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Hot trip point\n"));
tz->trips.hot.flags.enabled = 1;
}
else if (tz->trips.hot.flags.enabled)
tz->trips.hot.flags.enabled = 0;
result = acpi_bus_get_device(tz->handle, &device);
if (result)
return_VALUE(result);
acpi_bus_generate_event(device, ACPI_THERMAL_NOTIFY_HOT, tz->trips.hot.flags.enabled);
/* TBD: Call user-mode "sleep(S4)" function */
return_VALUE(0);
}
static int
acpi_thermal_passive (
struct acpi_thermal *tz)
{
int result = 0;
struct acpi_thermal_passive *passive = NULL;
int trend = 0;
int i = 0;
ACPI_FUNCTION_TRACE("acpi_thermal_passive");
if (!tz || !tz->trips.passive.flags.valid)
return_VALUE(-EINVAL);
passive = &(tz->trips.passive);
/*
* Above Trip?
* -----------
* Calculate the thermal trend (using the passive cooling equation)
* and modify the performance limit for all passive cooling devices
* accordingly. Note that we assume symmetry.
*/
if (tz->temperature >= passive->temperature) {
trend = (passive->tc1 * (tz->temperature - tz->last_temperature)) + (passive->tc2 * (tz->temperature - passive->temperature));
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"trend[%d]=(tc1[%lu]*(tmp[%lu]-last[%lu]))+(tc2[%lu]*(tmp[%lu]-psv[%lu]))\n",
trend, passive->tc1, tz->temperature,
tz->last_temperature, passive->tc2,
tz->temperature, passive->temperature));
tz->trips.passive.flags.enabled = 1;
/* Heating up? */
if (trend > 0)
for (i=0; i<passive->devices.count; i++)
acpi_processor_set_thermal_limit(
passive->devices.handles[i],
ACPI_PROCESSOR_LIMIT_INCREMENT);
/* Cooling off? */
else if (trend < 0)
for (i=0; i<passive->devices.count; i++)
acpi_processor_set_thermal_limit(
passive->devices.handles[i],
ACPI_PROCESSOR_LIMIT_DECREMENT);
}
/*
* Below Trip?
* -----------
* Implement passive cooling hysteresis to slowly increase performance
* and avoid thrashing around the passive trip point. Note that we
* assume symmetry.
*/
else if (tz->trips.passive.flags.enabled) {
for (i=0; i<passive->devices.count; i++)
result = acpi_processor_set_thermal_limit(
passive->devices.handles[i],
ACPI_PROCESSOR_LIMIT_DECREMENT);
if (result == 1) {
tz->trips.passive.flags.enabled = 0;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Disabling passive cooling (zone is cool)\n"));
}
}
return_VALUE(0);
}
static int
acpi_thermal_active (
struct acpi_thermal *tz)
{
int result = 0;
struct acpi_thermal_active *active = NULL;
int i = 0;
int j = 0;
unsigned long maxtemp = 0;
ACPI_FUNCTION_TRACE("acpi_thermal_active");
if (!tz)
return_VALUE(-EINVAL);
for (i=0; i<ACPI_THERMAL_MAX_ACTIVE; i++) {
active = &(tz->trips.active[i]);
if (!active || !active->flags.valid)
break;
/*
* Above Threshold?
* ----------------
* If not already enabled, turn ON all cooling devices
* associated with this active threshold.
*/
if (tz->temperature >= active->temperature) {
if (active->temperature > maxtemp)
tz->state.active_index = i, maxtemp = active->temperature;
if (!active->flags.enabled) {
for (j = 0; j < active->devices.count; j++) {
result = acpi_bus_set_power(active->devices.handles[j], ACPI_STATE_D0);
if (result) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Unable to turn cooling device [%p] 'on'\n", active->devices.handles[j]));
continue;
}
active->flags.enabled = 1;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cooling device [%p] now 'on'\n", active->devices.handles[j]));
}
}
}
/*
* Below Threshold?
* ----------------
* Turn OFF all cooling devices associated with this
* threshold.
*/
else if (active->flags.enabled) {
for (j = 0; j < active->devices.count; j++) {
result = acpi_bus_set_power(active->devices.handles[j], ACPI_STATE_D3);
if (result) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Unable to turn cooling device [%p] 'off'\n", active->devices.handles[j]));
continue;
}
active->flags.enabled = 0;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cooling device [%p] now 'off'\n", active->devices.handles[j]));
}
}
}
return_VALUE(0);
}
static void acpi_thermal_check (void *context);
static void
acpi_thermal_run (
unsigned long data)
{
struct acpi_thermal *tz = (struct acpi_thermal *)data;
if (!tz->zombie)
acpi_os_queue_for_execution(OSD_PRIORITY_GPE,
acpi_thermal_check, (void *) data);
}
static void
acpi_thermal_check (
void *data)
{
int result = 0;
struct acpi_thermal *tz = (struct acpi_thermal *) data;
unsigned long sleep_time = 0;
int i = 0;
struct acpi_thermal_state state;
ACPI_FUNCTION_TRACE("acpi_thermal_check");
if (!tz) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
return_VOID;
}
state = tz->state;
result = acpi_thermal_get_temperature(tz);
if (result)
return_VOID;
memset(&tz->state, 0, sizeof(tz->state));
/*
* Check Trip Points
* -----------------
* Compare the current temperature to the trip point values to see
* if we've entered one of the thermal policy states. Note that
* this function determines when a state is entered, but the
* individual policy decides when it is exited (e.g. hysteresis).
*/
if (tz->trips.critical.flags.valid)
state.critical |= (tz->temperature >= tz->trips.critical.temperature);
if (tz->trips.hot.flags.valid)
state.hot |= (tz->temperature >= tz->trips.hot.temperature);
if (tz->trips.passive.flags.valid)
state.passive |= (tz->temperature >= tz->trips.passive.temperature);
for (i=0; i<ACPI_THERMAL_MAX_ACTIVE; i++)
if (tz->trips.active[i].flags.valid)
state.active |= (tz->temperature >= tz->trips.active[i].temperature);
/*
* Invoke Policy
* -------------
* Separated from the above check to allow individual policy to
* determine when to exit a given state.
*/
if (state.critical)
acpi_thermal_critical(tz);
if (state.hot)
acpi_thermal_hot(tz);
if (state.passive)
acpi_thermal_passive(tz);
if (state.active)
acpi_thermal_active(tz);
/*
* Calculate State
* ---------------
* Again, separated from the above two to allow independent policy
* decisions.
*/
if (tz->trips.critical.flags.enabled)
tz->state.critical = 1;
if (tz->trips.hot.flags.enabled)
tz->state.hot = 1;
if (tz->trips.passive.flags.enabled)
tz->state.passive = 1;
for (i=0; i<ACPI_THERMAL_MAX_ACTIVE; i++)
if (tz->trips.active[i].flags.enabled)
tz->state.active = 1;
/*
* Calculate Sleep Time
* --------------------
* If we're in the passive state, use _TSP's value. Otherwise
* use the default polling frequency (e.g. _TZP). If no polling
* frequency is specified then we'll wait forever (at least until
* a thermal event occurs). Note that _TSP and _TZD values are
* given in 1/10th seconds (we must covert to milliseconds).
*/
if (tz->state.passive)
sleep_time = tz->trips.passive.tsp * 100;
else if (tz->polling_frequency > 0)
sleep_time = tz->polling_frequency * 100;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "%s: temperature[%lu] sleep[%lu]\n",
tz->name, tz->temperature, sleep_time));
/*
* Schedule Next Poll
* ------------------
*/
if (!sleep_time) {
if (timer_pending(&(tz->timer)))
del_timer(&(tz->timer));
}
else {
if (timer_pending(&(tz->timer)))
mod_timer(&(tz->timer), (HZ * sleep_time) / 1000);
else {
tz->timer.data = (unsigned long) tz;
tz->timer.function = acpi_thermal_run;
tz->timer.expires = jiffies + (HZ * sleep_time) / 1000;
add_timer(&(tz->timer));
}
}
return_VOID;
}
/* --------------------------------------------------------------------------
FS Interface (/proc)
-------------------------------------------------------------------------- */
static struct proc_dir_entry *acpi_thermal_dir;
static int acpi_thermal_state_seq_show(struct seq_file *seq, void *offset)
{
struct acpi_thermal *tz = (struct acpi_thermal *)seq->private;
ACPI_FUNCTION_TRACE("acpi_thermal_state_seq_show");
if (!tz)
goto end;
seq_puts(seq, "state: ");
if (!tz->state.critical && !tz->state.hot && !tz->state.passive && !tz->state.active)
seq_puts(seq, "ok\n");
else {
if (tz->state.critical)
seq_puts(seq, "critical ");
if (tz->state.hot)
seq_puts(seq, "hot ");
if (tz->state.passive)
seq_puts(seq, "passive ");
if (tz->state.active)
seq_printf(seq, "active[%d]", tz->state.active_index);
seq_puts(seq, "\n");
}
end:
return_VALUE(0);
}
static int acpi_thermal_state_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, acpi_thermal_state_seq_show, PDE(inode)->data);
}
static int acpi_thermal_temp_seq_show(struct seq_file *seq, void *offset)
{
int result = 0;
struct acpi_thermal *tz = (struct acpi_thermal *)seq->private;
ACPI_FUNCTION_TRACE("acpi_thermal_temp_seq_show");
if (!tz)
goto end;
result = acpi_thermal_get_temperature(tz);
if (result)
goto end;
seq_printf(seq, "temperature: %ld C\n",
KELVIN_TO_CELSIUS(tz->temperature));
end:
return_VALUE(0);
}
static int acpi_thermal_temp_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, acpi_thermal_temp_seq_show, PDE(inode)->data);
}
static int acpi_thermal_trip_seq_show(struct seq_file *seq, void *offset)
{
struct acpi_thermal *tz = (struct acpi_thermal *)seq->private;
int i = 0;
int j = 0;
ACPI_FUNCTION_TRACE("acpi_thermal_trip_seq_show");
if (!tz)
goto end;
if (tz->trips.critical.flags.valid)
seq_printf(seq, "critical (S5): %ld C\n",
KELVIN_TO_CELSIUS(tz->trips.critical.temperature));
if (tz->trips.hot.flags.valid)
seq_printf(seq, "hot (S4): %ld C\n",
KELVIN_TO_CELSIUS(tz->trips.hot.temperature));
if (tz->trips.passive.flags.valid) {
seq_printf(seq, "passive: %ld C: tc1=%lu tc2=%lu tsp=%lu devices=",
KELVIN_TO_CELSIUS(tz->trips.passive.temperature),
tz->trips.passive.tc1,
tz->trips.passive.tc2,
tz->trips.passive.tsp);
for (j=0; j<tz->trips.passive.devices.count; j++) {
seq_printf(seq, "0x%p ", tz->trips.passive.devices.handles[j]);
}
seq_puts(seq, "\n");
}
for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) {
if (!(tz->trips.active[i].flags.valid))
break;
seq_printf(seq, "active[%d]: %ld C: devices=",
i, KELVIN_TO_CELSIUS(tz->trips.active[i].temperature));
for (j = 0; j < tz->trips.active[i].devices.count; j++)
seq_printf(seq, "0x%p ",
tz->trips.active[i].devices.handles[j]);
seq_puts(seq, "\n");
}
end:
return_VALUE(0);
}
static int acpi_thermal_trip_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, acpi_thermal_trip_seq_show, PDE(inode)->data);
}
static ssize_t
acpi_thermal_write_trip_points (
struct file *file,
const char __user *buffer,
size_t count,
loff_t *ppos)
{
struct seq_file *m = (struct seq_file *)file->private_data;
struct acpi_thermal *tz = (struct acpi_thermal *)m->private;
char *limit_string;
int num, critical, hot, passive;
int *active;
int i = 0;
ACPI_FUNCTION_TRACE("acpi_thermal_write_trip_points");
limit_string = kmalloc(ACPI_THERMAL_MAX_LIMIT_STR_LEN, GFP_KERNEL);
if(!limit_string)
return_VALUE(-ENOMEM);
memset(limit_string, 0, ACPI_THERMAL_MAX_LIMIT_STR_LEN);
active = kmalloc(ACPI_THERMAL_MAX_ACTIVE *sizeof(int), GFP_KERNEL);
if(!active)
return_VALUE(-ENOMEM);
if (!tz || (count > ACPI_THERMAL_MAX_LIMIT_STR_LEN - 1)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid argument\n"));
count = -EINVAL;
goto end;
}
if (copy_from_user(limit_string, buffer, count)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data\n"));
count = -EFAULT;
goto end;
}
limit_string[count] = '\0';
num = sscanf(limit_string, "%d:%d:%d:%d:%d:%d:%d:%d:%d:%d:%d:%d:%d",
&critical, &hot, &passive,
&active[0], &active[1], &active[2], &active[3], &active[4],
&active[5], &active[6], &active[7], &active[8], &active[9]);
if(!(num >=5 && num < (ACPI_THERMAL_MAX_ACTIVE + 3))) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data format\n"));
count = -EINVAL;
goto end;
}
tz->trips.critical.temperature = CELSIUS_TO_KELVIN(critical);
tz->trips.hot.temperature = CELSIUS_TO_KELVIN(hot);
tz->trips.passive.temperature = CELSIUS_TO_KELVIN(passive);
for (i = 0; i < num - 3; i++) {
if (!(tz->trips.active[i].flags.valid))
break;
tz->trips.active[i].temperature = CELSIUS_TO_KELVIN(active[i]);
}
end:
kfree(active);
kfree(limit_string);
return_VALUE(count);
}
static int acpi_thermal_cooling_seq_show(struct seq_file *seq, void *offset)
{
struct acpi_thermal *tz = (struct acpi_thermal *)seq->private;
ACPI_FUNCTION_TRACE("acpi_thermal_cooling_seq_show");
if (!tz)
goto end;
if (!tz->flags.cooling_mode) {
seq_puts(seq, "<setting not supported>\n");
}
if ( tz->cooling_mode == ACPI_THERMAL_MODE_CRITICAL )
seq_printf(seq, "cooling mode: critical\n");
else
seq_printf(seq, "cooling mode: %s\n",
tz->cooling_mode?"passive":"active");
end:
return_VALUE(0);
}
static int acpi_thermal_cooling_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, acpi_thermal_cooling_seq_show,
PDE(inode)->data);
}
static ssize_t
acpi_thermal_write_cooling_mode (
struct file *file,
const char __user *buffer,
size_t count,
loff_t *ppos)
{
struct seq_file *m = (struct seq_file *)file->private_data;
struct acpi_thermal *tz = (struct acpi_thermal *)m->private;
int result = 0;
char mode_string[12] = {'\0'};
ACPI_FUNCTION_TRACE("acpi_thermal_write_cooling_mode");
if (!tz || (count > sizeof(mode_string) - 1))
return_VALUE(-EINVAL);
if (!tz->flags.cooling_mode)
return_VALUE(-ENODEV);
if (copy_from_user(mode_string, buffer, count))
return_VALUE(-EFAULT);
mode_string[count] = '\0';
result = acpi_thermal_set_cooling_mode(tz,
simple_strtoul(mode_string, NULL, 0));
if (result)
return_VALUE(result);
acpi_thermal_check(tz);
return_VALUE(count);
}
static int acpi_thermal_polling_seq_show(struct seq_file *seq, void *offset)
{
struct acpi_thermal *tz = (struct acpi_thermal *)seq->private;
ACPI_FUNCTION_TRACE("acpi_thermal_polling_seq_show");
if (!tz)
goto end;
if (!tz->polling_frequency) {
seq_puts(seq, "<polling disabled>\n");
goto end;
}
seq_printf(seq, "polling frequency: %lu seconds\n",
(tz->polling_frequency / 10));
end:
return_VALUE(0);
}
static int acpi_thermal_polling_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, acpi_thermal_polling_seq_show,
PDE(inode)->data);
}
static ssize_t
acpi_thermal_write_polling (
struct file *file,
const char __user *buffer,
size_t count,
loff_t *ppos)
{
struct seq_file *m = (struct seq_file *)file->private_data;
struct acpi_thermal *tz = (struct acpi_thermal *)m->private;
int result = 0;
char polling_string[12] = {'\0'};
int seconds = 0;
ACPI_FUNCTION_TRACE("acpi_thermal_write_polling");
if (!tz || (count > sizeof(polling_string) - 1))
return_VALUE(-EINVAL);
if (copy_from_user(polling_string, buffer, count))
return_VALUE(-EFAULT);
polling_string[count] = '\0';
seconds = simple_strtoul(polling_string, NULL, 0);
result = acpi_thermal_set_polling(tz, seconds);
if (result)
return_VALUE(result);
acpi_thermal_check(tz);
return_VALUE(count);
}
static int
acpi_thermal_add_fs (
struct acpi_device *device)
{
struct proc_dir_entry *entry = NULL;
ACPI_FUNCTION_TRACE("acpi_thermal_add_fs");
if (!acpi_device_dir(device)) {
acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device),
acpi_thermal_dir);
if (!acpi_device_dir(device))
return_VALUE(-ENODEV);
acpi_device_dir(device)->owner = THIS_MODULE;
}
/* 'state' [R] */
entry = create_proc_entry(ACPI_THERMAL_FILE_STATE,
S_IRUGO, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_THERMAL_FILE_STATE));
else {
entry->proc_fops = &acpi_thermal_state_fops;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
/* 'temperature' [R] */
entry = create_proc_entry(ACPI_THERMAL_FILE_TEMPERATURE,
S_IRUGO, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_THERMAL_FILE_TEMPERATURE));
else {
entry->proc_fops = &acpi_thermal_temp_fops;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
/* 'trip_points' [R/W] */
entry = create_proc_entry(ACPI_THERMAL_FILE_TRIP_POINTS,
S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_THERMAL_FILE_TRIP_POINTS));
else {
entry->proc_fops = &acpi_thermal_trip_fops;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
/* 'cooling_mode' [R/W] */
entry = create_proc_entry(ACPI_THERMAL_FILE_COOLING_MODE,
S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_THERMAL_FILE_COOLING_MODE));
else {
entry->proc_fops = &acpi_thermal_cooling_fops;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
/* 'polling_frequency' [R/W] */
entry = create_proc_entry(ACPI_THERMAL_FILE_POLLING_FREQ,
S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_THERMAL_FILE_POLLING_FREQ));
else {
entry->proc_fops = &acpi_thermal_polling_fops;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
return_VALUE(0);
}
static int
acpi_thermal_remove_fs (
struct acpi_device *device)
{
ACPI_FUNCTION_TRACE("acpi_thermal_remove_fs");
if (acpi_device_dir(device)) {
remove_proc_entry(ACPI_THERMAL_FILE_POLLING_FREQ,
acpi_device_dir(device));
remove_proc_entry(ACPI_THERMAL_FILE_COOLING_MODE,
acpi_device_dir(device));
remove_proc_entry(ACPI_THERMAL_FILE_TRIP_POINTS,
acpi_device_dir(device));
remove_proc_entry(ACPI_THERMAL_FILE_TEMPERATURE,
acpi_device_dir(device));
remove_proc_entry(ACPI_THERMAL_FILE_STATE,
acpi_device_dir(device));
remove_proc_entry(acpi_device_bid(device), acpi_thermal_dir);
acpi_device_dir(device) = NULL;
}
return_VALUE(0);
}
/* --------------------------------------------------------------------------
Driver Interface
-------------------------------------------------------------------------- */
static void
acpi_thermal_notify (
acpi_handle handle,
u32 event,
void *data)
{
struct acpi_thermal *tz = (struct acpi_thermal *) data;
struct acpi_device *device = NULL;
ACPI_FUNCTION_TRACE("acpi_thermal_notify");
if (!tz)
return_VOID;
if (acpi_bus_get_device(tz->handle, &device))
return_VOID;
switch (event) {
case ACPI_THERMAL_NOTIFY_TEMPERATURE:
acpi_thermal_check(tz);
break;
case ACPI_THERMAL_NOTIFY_THRESHOLDS:
acpi_thermal_get_trip_points(tz);
acpi_thermal_check(tz);
acpi_bus_generate_event(device, event, 0);
break;
case ACPI_THERMAL_NOTIFY_DEVICES:
if (tz->flags.devices)
acpi_thermal_get_devices(tz);
acpi_bus_generate_event(device, event, 0);
break;
default:
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Unsupported event [0x%x]\n", event));
break;
}
return_VOID;
}
static int
acpi_thermal_get_info (
struct acpi_thermal *tz)
{
int result = 0;
ACPI_FUNCTION_TRACE("acpi_thermal_get_info");
if (!tz)
return_VALUE(-EINVAL);
/* Get temperature [_TMP] (required) */
result = acpi_thermal_get_temperature(tz);
if (result)
return_VALUE(result);
/* Get trip points [_CRT, _PSV, etc.] (required) */
result = acpi_thermal_get_trip_points(tz);
if (result)
return_VALUE(result);
/* Set the cooling mode [_SCP] to active cooling (default) */
result = acpi_thermal_set_cooling_mode(tz, ACPI_THERMAL_MODE_ACTIVE);
if (!result)
tz->flags.cooling_mode = 1;
else {
/* Oh,we have not _SCP method.
Generally show cooling_mode by _ACx, _PSV,spec 12.2*/
tz->flags.cooling_mode = 0;
if ( tz->trips.active[0].flags.valid && tz->trips.passive.flags.valid ) {
if ( tz->trips.passive.temperature > tz->trips.active[0].temperature )
tz->cooling_mode = ACPI_THERMAL_MODE_ACTIVE;
else
tz->cooling_mode = ACPI_THERMAL_MODE_PASSIVE;
} else if ( !tz->trips.active[0].flags.valid && tz->trips.passive.flags.valid ) {
tz->cooling_mode = ACPI_THERMAL_MODE_PASSIVE;
} else if ( tz->trips.active[0].flags.valid && !tz->trips.passive.flags.valid ) {
tz->cooling_mode = ACPI_THERMAL_MODE_ACTIVE;
} else {
/* _ACx and _PSV are optional, but _CRT is required */
tz->cooling_mode = ACPI_THERMAL_MODE_CRITICAL;
}
}
/* Get default polling frequency [_TZP] (optional) */
if (tzp)
tz->polling_frequency = tzp;
else
acpi_thermal_get_polling_frequency(tz);
/* Get devices in this thermal zone [_TZD] (optional) */
result = acpi_thermal_get_devices(tz);
if (!result)
tz->flags.devices = 1;
return_VALUE(0);
}
static int
acpi_thermal_add (
struct acpi_device *device)
{
int result = 0;
acpi_status status = AE_OK;
struct acpi_thermal *tz = NULL;
ACPI_FUNCTION_TRACE("acpi_thermal_add");
if (!device)
return_VALUE(-EINVAL);
tz = kmalloc(sizeof(struct acpi_thermal), GFP_KERNEL);
if (!tz)
return_VALUE(-ENOMEM);
memset(tz, 0, sizeof(struct acpi_thermal));
tz->handle = device->handle;
strcpy(tz->name, device->pnp.bus_id);
strcpy(acpi_device_name(device), ACPI_THERMAL_DEVICE_NAME);
strcpy(acpi_device_class(device), ACPI_THERMAL_CLASS);
acpi_driver_data(device) = tz;
result = acpi_thermal_get_info(tz);
if (result)
goto end;
result = acpi_thermal_add_fs(device);
if (result)
return_VALUE(result);
init_timer(&tz->timer);
acpi_thermal_check(tz);
status = acpi_install_notify_handler(tz->handle,
ACPI_DEVICE_NOTIFY, acpi_thermal_notify, tz);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Error installing notify handler\n"));
result = -ENODEV;
goto end;
}
printk(KERN_INFO PREFIX "%s [%s] (%ld C)\n",
acpi_device_name(device), acpi_device_bid(device),
KELVIN_TO_CELSIUS(tz->temperature));
end:
if (result) {
acpi_thermal_remove_fs(device);
kfree(tz);
}
return_VALUE(result);
}
static int
acpi_thermal_remove (
struct acpi_device *device,
int type)
{
acpi_status status = AE_OK;
struct acpi_thermal *tz = NULL;
ACPI_FUNCTION_TRACE("acpi_thermal_remove");
if (!device || !acpi_driver_data(device))
return_VALUE(-EINVAL);
tz = (struct acpi_thermal *) acpi_driver_data(device);
/* avoid timer adding new defer task */
tz->zombie = 1;
/* wait for running timer (on other CPUs) finish */
del_timer_sync(&(tz->timer));
/* synchronize deferred task */
acpi_os_wait_events_complete(NULL);
/* deferred task may reinsert timer */
del_timer_sync(&(tz->timer));
status = acpi_remove_notify_handler(tz->handle,
ACPI_DEVICE_NOTIFY, acpi_thermal_notify);
if (ACPI_FAILURE(status))
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Error removing notify handler\n"));
/* Terminate policy */
if (tz->trips.passive.flags.valid
&& tz->trips.passive.flags.enabled) {
tz->trips.passive.flags.enabled = 0;
acpi_thermal_passive(tz);
}
if (tz->trips.active[0].flags.valid
&& tz->trips.active[0].flags.enabled) {
tz->trips.active[0].flags.enabled = 0;
acpi_thermal_active(tz);
}
acpi_thermal_remove_fs(device);
kfree(tz);
return_VALUE(0);
}
static int __init
acpi_thermal_init (void)
{
int result = 0;
ACPI_FUNCTION_TRACE("acpi_thermal_init");
acpi_thermal_dir = proc_mkdir(ACPI_THERMAL_CLASS, acpi_root_dir);
if (!acpi_thermal_dir)
return_VALUE(-ENODEV);
acpi_thermal_dir->owner = THIS_MODULE;
result = acpi_bus_register_driver(&acpi_thermal_driver);
if (result < 0) {
remove_proc_entry(ACPI_THERMAL_CLASS, acpi_root_dir);
return_VALUE(-ENODEV);
}
return_VALUE(0);
}
static void __exit
acpi_thermal_exit (void)
{
ACPI_FUNCTION_TRACE("acpi_thermal_exit");
acpi_bus_unregister_driver(&acpi_thermal_driver);
remove_proc_entry(ACPI_THERMAL_CLASS, acpi_root_dir);
return_VOID;
}
module_init(acpi_thermal_init);
module_exit(acpi_thermal_exit);