linux-sg2042/drivers/net/ethernet/renesas/ravb_main.c

2416 lines
61 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Renesas Ethernet AVB device driver
*
* Copyright (C) 2014-2019 Renesas Electronics Corporation
* Copyright (C) 2015 Renesas Solutions Corp.
* Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
*
* Based on the SuperH Ethernet driver
*/
#include <linux/cache.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/net_tstamp.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/sys_soc.h>
#include <asm/div64.h>
#include "ravb.h"
#define RAVB_DEF_MSG_ENABLE \
(NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
"ch0", /* RAVB_BE */
"ch1", /* RAVB_NC */
};
static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
"ch18", /* RAVB_BE */
"ch19", /* RAVB_NC */
};
void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
u32 set)
{
ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
}
int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
{
int i;
for (i = 0; i < 10000; i++) {
if ((ravb_read(ndev, reg) & mask) == value)
return 0;
udelay(10);
}
return -ETIMEDOUT;
}
static int ravb_config(struct net_device *ndev)
{
int error;
/* Set config mode */
ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
/* Check if the operating mode is changed to the config mode */
error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
if (error)
netdev_err(ndev, "failed to switch device to config mode\n");
return error;
}
static void ravb_set_rate(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
switch (priv->speed) {
case 100: /* 100BASE */
ravb_write(ndev, GECMR_SPEED_100, GECMR);
break;
case 1000: /* 1000BASE */
ravb_write(ndev, GECMR_SPEED_1000, GECMR);
break;
}
}
static void ravb_set_buffer_align(struct sk_buff *skb)
{
u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
if (reserve)
skb_reserve(skb, RAVB_ALIGN - reserve);
}
/* Get MAC address from the MAC address registers
*
* Ethernet AVB device doesn't have ROM for MAC address.
* This function gets the MAC address that was used by a bootloader.
*/
static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
{
if (!IS_ERR(mac)) {
ether_addr_copy(ndev->dev_addr, mac);
} else {
u32 mahr = ravb_read(ndev, MAHR);
u32 malr = ravb_read(ndev, MALR);
ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
ndev->dev_addr[4] = (malr >> 8) & 0xFF;
ndev->dev_addr[5] = (malr >> 0) & 0xFF;
}
}
static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
{
struct ravb_private *priv = container_of(ctrl, struct ravb_private,
mdiobb);
ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
}
/* MDC pin control */
static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
{
ravb_mdio_ctrl(ctrl, PIR_MDC, level);
}
/* Data I/O pin control */
static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
{
ravb_mdio_ctrl(ctrl, PIR_MMD, output);
}
/* Set data bit */
static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
{
ravb_mdio_ctrl(ctrl, PIR_MDO, value);
}
/* Get data bit */
static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
{
struct ravb_private *priv = container_of(ctrl, struct ravb_private,
mdiobb);
return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
}
/* MDIO bus control struct */
static const struct mdiobb_ops bb_ops = {
.owner = THIS_MODULE,
.set_mdc = ravb_set_mdc,
.set_mdio_dir = ravb_set_mdio_dir,
.set_mdio_data = ravb_set_mdio_data,
.get_mdio_data = ravb_get_mdio_data,
};
/* Free TX skb function for AVB-IP */
static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
{
struct ravb_private *priv = netdev_priv(ndev);
struct net_device_stats *stats = &priv->stats[q];
int num_tx_desc = priv->num_tx_desc;
struct ravb_tx_desc *desc;
int free_num = 0;
int entry;
u32 size;
for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
bool txed;
entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
num_tx_desc);
desc = &priv->tx_ring[q][entry];
txed = desc->die_dt == DT_FEMPTY;
if (free_txed_only && !txed)
break;
/* Descriptor type must be checked before all other reads */
dma_rmb();
size = le16_to_cpu(desc->ds_tagl) & TX_DS;
/* Free the original skb. */
if (priv->tx_skb[q][entry / num_tx_desc]) {
dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
size, DMA_TO_DEVICE);
/* Last packet descriptor? */
if (entry % num_tx_desc == num_tx_desc - 1) {
entry /= num_tx_desc;
dev_kfree_skb_any(priv->tx_skb[q][entry]);
priv->tx_skb[q][entry] = NULL;
if (txed)
stats->tx_packets++;
}
free_num++;
}
if (txed)
stats->tx_bytes += size;
desc->die_dt = DT_EEMPTY;
}
return free_num;
}
/* Free skb's and DMA buffers for Ethernet AVB */
static void ravb_ring_free(struct net_device *ndev, int q)
{
struct ravb_private *priv = netdev_priv(ndev);
int num_tx_desc = priv->num_tx_desc;
int ring_size;
int i;
if (priv->rx_ring[q]) {
for (i = 0; i < priv->num_rx_ring[q]; i++) {
struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
if (!dma_mapping_error(ndev->dev.parent,
le32_to_cpu(desc->dptr)))
dma_unmap_single(ndev->dev.parent,
le32_to_cpu(desc->dptr),
RX_BUF_SZ,
DMA_FROM_DEVICE);
}
ring_size = sizeof(struct ravb_ex_rx_desc) *
(priv->num_rx_ring[q] + 1);
dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
priv->rx_desc_dma[q]);
priv->rx_ring[q] = NULL;
}
if (priv->tx_ring[q]) {
ravb_tx_free(ndev, q, false);
ring_size = sizeof(struct ravb_tx_desc) *
(priv->num_tx_ring[q] * num_tx_desc + 1);
dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
priv->tx_desc_dma[q]);
priv->tx_ring[q] = NULL;
}
/* Free RX skb ringbuffer */
if (priv->rx_skb[q]) {
for (i = 0; i < priv->num_rx_ring[q]; i++)
dev_kfree_skb(priv->rx_skb[q][i]);
}
kfree(priv->rx_skb[q]);
priv->rx_skb[q] = NULL;
/* Free aligned TX buffers */
kfree(priv->tx_align[q]);
priv->tx_align[q] = NULL;
/* Free TX skb ringbuffer.
* SKBs are freed by ravb_tx_free() call above.
*/
kfree(priv->tx_skb[q]);
priv->tx_skb[q] = NULL;
}
/* Format skb and descriptor buffer for Ethernet AVB */
static void ravb_ring_format(struct net_device *ndev, int q)
{
struct ravb_private *priv = netdev_priv(ndev);
int num_tx_desc = priv->num_tx_desc;
struct ravb_ex_rx_desc *rx_desc;
struct ravb_tx_desc *tx_desc;
struct ravb_desc *desc;
int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
num_tx_desc;
dma_addr_t dma_addr;
int i;
priv->cur_rx[q] = 0;
priv->cur_tx[q] = 0;
priv->dirty_rx[q] = 0;
priv->dirty_tx[q] = 0;
memset(priv->rx_ring[q], 0, rx_ring_size);
/* Build RX ring buffer */
for (i = 0; i < priv->num_rx_ring[q]; i++) {
/* RX descriptor */
rx_desc = &priv->rx_ring[q][i];
rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
RX_BUF_SZ,
DMA_FROM_DEVICE);
/* We just set the data size to 0 for a failed mapping which
* should prevent DMA from happening...
*/
if (dma_mapping_error(ndev->dev.parent, dma_addr))
rx_desc->ds_cc = cpu_to_le16(0);
rx_desc->dptr = cpu_to_le32(dma_addr);
rx_desc->die_dt = DT_FEMPTY;
}
rx_desc = &priv->rx_ring[q][i];
rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
rx_desc->die_dt = DT_LINKFIX; /* type */
memset(priv->tx_ring[q], 0, tx_ring_size);
/* Build TX ring buffer */
for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
i++, tx_desc++) {
tx_desc->die_dt = DT_EEMPTY;
if (num_tx_desc > 1) {
tx_desc++;
tx_desc->die_dt = DT_EEMPTY;
}
}
tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
tx_desc->die_dt = DT_LINKFIX; /* type */
/* RX descriptor base address for best effort */
desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
desc->die_dt = DT_LINKFIX; /* type */
desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
/* TX descriptor base address for best effort */
desc = &priv->desc_bat[q];
desc->die_dt = DT_LINKFIX; /* type */
desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
}
/* Init skb and descriptor buffer for Ethernet AVB */
static int ravb_ring_init(struct net_device *ndev, int q)
{
struct ravb_private *priv = netdev_priv(ndev);
int num_tx_desc = priv->num_tx_desc;
struct sk_buff *skb;
int ring_size;
int i;
/* Allocate RX and TX skb rings */
priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
sizeof(*priv->rx_skb[q]), GFP_KERNEL);
priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
sizeof(*priv->tx_skb[q]), GFP_KERNEL);
if (!priv->rx_skb[q] || !priv->tx_skb[q])
goto error;
for (i = 0; i < priv->num_rx_ring[q]; i++) {
skb = netdev_alloc_skb(ndev, RX_BUF_SZ + RAVB_ALIGN - 1);
if (!skb)
goto error;
ravb_set_buffer_align(skb);
priv->rx_skb[q][i] = skb;
}
if (num_tx_desc > 1) {
/* Allocate rings for the aligned buffers */
priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
DPTR_ALIGN - 1, GFP_KERNEL);
if (!priv->tx_align[q])
goto error;
}
/* Allocate all RX descriptors. */
ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
&priv->rx_desc_dma[q],
GFP_KERNEL);
if (!priv->rx_ring[q])
goto error;
priv->dirty_rx[q] = 0;
/* Allocate all TX descriptors. */
ring_size = sizeof(struct ravb_tx_desc) *
(priv->num_tx_ring[q] * num_tx_desc + 1);
priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
&priv->tx_desc_dma[q],
GFP_KERNEL);
if (!priv->tx_ring[q])
goto error;
return 0;
error:
ravb_ring_free(ndev, q);
return -ENOMEM;
}
/* E-MAC init function */
static void ravb_emac_init(struct net_device *ndev)
{
/* Receive frame limit set register */
ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
ravb_write(ndev, ECMR_ZPF | ECMR_DM |
(ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
ECMR_TE | ECMR_RE, ECMR);
ravb_set_rate(ndev);
/* Set MAC address */
ravb_write(ndev,
(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
ravb_write(ndev,
(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
/* E-MAC status register clear */
ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
/* E-MAC interrupt enable register */
ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
}
/* Device init function for Ethernet AVB */
static int ravb_dmac_init(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
int error;
/* Set CONFIG mode */
error = ravb_config(ndev);
if (error)
return error;
error = ravb_ring_init(ndev, RAVB_BE);
if (error)
return error;
error = ravb_ring_init(ndev, RAVB_NC);
if (error) {
ravb_ring_free(ndev, RAVB_BE);
return error;
}
/* Descriptor format */
ravb_ring_format(ndev, RAVB_BE);
ravb_ring_format(ndev, RAVB_NC);
/* Set AVB RX */
ravb_write(ndev,
RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
/* Set FIFO size */
ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
/* Timestamp enable */
ravb_write(ndev, TCCR_TFEN, TCCR);
/* Interrupt init: */
if (priv->chip_id == RCAR_GEN3) {
/* Clear DIL.DPLx */
ravb_write(ndev, 0, DIL);
/* Set queue specific interrupt */
ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
}
/* Frame receive */
ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
/* Disable FIFO full warning */
ravb_write(ndev, 0, RIC1);
/* Receive FIFO full error, descriptor empty */
ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
/* Frame transmitted, timestamp FIFO updated */
ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
/* Setting the control will start the AVB-DMAC process. */
ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
return 0;
}
static void ravb_get_tx_tstamp(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
struct ravb_tstamp_skb *ts_skb, *ts_skb2;
struct skb_shared_hwtstamps shhwtstamps;
struct sk_buff *skb;
struct timespec64 ts;
u16 tag, tfa_tag;
int count;
u32 tfa2;
count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
while (count--) {
tfa2 = ravb_read(ndev, TFA2);
tfa_tag = (tfa2 & TFA2_TST) >> 16;
ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
ravb_read(ndev, TFA1);
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
list) {
skb = ts_skb->skb;
tag = ts_skb->tag;
list_del(&ts_skb->list);
kfree(ts_skb);
if (tag == tfa_tag) {
skb_tstamp_tx(skb, &shhwtstamps);
dev_consume_skb_any(skb);
break;
} else {
dev_kfree_skb_any(skb);
}
}
ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
}
}
static void ravb_rx_csum(struct sk_buff *skb)
{
u8 *hw_csum;
/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
* appended to packet data
*/
if (unlikely(skb->len < sizeof(__sum16)))
return;
hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
skb->ip_summed = CHECKSUM_COMPLETE;
skb_trim(skb, skb->len - sizeof(__sum16));
}
/* Packet receive function for Ethernet AVB */
static bool ravb_rx(struct net_device *ndev, int *quota, int q)
{
struct ravb_private *priv = netdev_priv(ndev);
int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
priv->cur_rx[q];
struct net_device_stats *stats = &priv->stats[q];
struct ravb_ex_rx_desc *desc;
struct sk_buff *skb;
dma_addr_t dma_addr;
struct timespec64 ts;
u8 desc_status;
u16 pkt_len;
int limit;
boguscnt = min(boguscnt, *quota);
limit = boguscnt;
desc = &priv->rx_ring[q][entry];
while (desc->die_dt != DT_FEMPTY) {
/* Descriptor type must be checked before all other reads */
dma_rmb();
desc_status = desc->msc;
pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
if (--boguscnt < 0)
break;
/* We use 0-byte descriptors to mark the DMA mapping errors */
if (!pkt_len)
continue;
if (desc_status & MSC_MC)
stats->multicast++;
if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
MSC_CEEF)) {
stats->rx_errors++;
if (desc_status & MSC_CRC)
stats->rx_crc_errors++;
if (desc_status & MSC_RFE)
stats->rx_frame_errors++;
if (desc_status & (MSC_RTLF | MSC_RTSF))
stats->rx_length_errors++;
if (desc_status & MSC_CEEF)
stats->rx_missed_errors++;
} else {
u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
skb = priv->rx_skb[q][entry];
priv->rx_skb[q][entry] = NULL;
dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
RX_BUF_SZ,
DMA_FROM_DEVICE);
get_ts &= (q == RAVB_NC) ?
RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
if (get_ts) {
struct skb_shared_hwtstamps *shhwtstamps;
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
32) | le32_to_cpu(desc->ts_sl);
ts.tv_nsec = le32_to_cpu(desc->ts_n);
shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
}
skb_put(skb, pkt_len);
skb->protocol = eth_type_trans(skb, ndev);
if (ndev->features & NETIF_F_RXCSUM)
ravb_rx_csum(skb);
napi_gro_receive(&priv->napi[q], skb);
stats->rx_packets++;
stats->rx_bytes += pkt_len;
}
entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
desc = &priv->rx_ring[q][entry];
}
/* Refill the RX ring buffers. */
for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
desc = &priv->rx_ring[q][entry];
desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
if (!priv->rx_skb[q][entry]) {
skb = netdev_alloc_skb(ndev,
RX_BUF_SZ +
RAVB_ALIGN - 1);
if (!skb)
break; /* Better luck next round. */
ravb_set_buffer_align(skb);
dma_addr = dma_map_single(ndev->dev.parent, skb->data,
le16_to_cpu(desc->ds_cc),
DMA_FROM_DEVICE);
skb_checksum_none_assert(skb);
/* We just set the data size to 0 for a failed mapping
* which should prevent DMA from happening...
*/
if (dma_mapping_error(ndev->dev.parent, dma_addr))
desc->ds_cc = cpu_to_le16(0);
desc->dptr = cpu_to_le32(dma_addr);
priv->rx_skb[q][entry] = skb;
}
/* Descriptor type must be set after all the above writes */
dma_wmb();
desc->die_dt = DT_FEMPTY;
}
*quota -= limit - (++boguscnt);
return boguscnt <= 0;
}
static void ravb_rcv_snd_disable(struct net_device *ndev)
{
/* Disable TX and RX */
ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
}
static void ravb_rcv_snd_enable(struct net_device *ndev)
{
/* Enable TX and RX */
ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
}
/* function for waiting dma process finished */
static int ravb_stop_dma(struct net_device *ndev)
{
int error;
/* Wait for stopping the hardware TX process */
error = ravb_wait(ndev, TCCR,
TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
if (error)
return error;
error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
0);
if (error)
return error;
/* Stop the E-MAC's RX/TX processes. */
ravb_rcv_snd_disable(ndev);
/* Wait for stopping the RX DMA process */
error = ravb_wait(ndev, CSR, CSR_RPO, 0);
if (error)
return error;
/* Stop AVB-DMAC process */
return ravb_config(ndev);
}
/* E-MAC interrupt handler */
static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
u32 ecsr, psr;
ecsr = ravb_read(ndev, ECSR);
ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
if (ecsr & ECSR_MPD)
pm_wakeup_event(&priv->pdev->dev, 0);
if (ecsr & ECSR_ICD)
ndev->stats.tx_carrier_errors++;
if (ecsr & ECSR_LCHNG) {
/* Link changed */
if (priv->no_avb_link)
return;
psr = ravb_read(ndev, PSR);
if (priv->avb_link_active_low)
psr ^= PSR_LMON;
if (!(psr & PSR_LMON)) {
/* DIsable RX and TX */
ravb_rcv_snd_disable(ndev);
} else {
/* Enable RX and TX */
ravb_rcv_snd_enable(ndev);
}
}
}
static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct ravb_private *priv = netdev_priv(ndev);
spin_lock(&priv->lock);
ravb_emac_interrupt_unlocked(ndev);
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
/* Error interrupt handler */
static void ravb_error_interrupt(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
u32 eis, ris2;
eis = ravb_read(ndev, EIS);
ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
if (eis & EIS_QFS) {
ris2 = ravb_read(ndev, RIS2);
ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
RIS2);
/* Receive Descriptor Empty int */
if (ris2 & RIS2_QFF0)
priv->stats[RAVB_BE].rx_over_errors++;
/* Receive Descriptor Empty int */
if (ris2 & RIS2_QFF1)
priv->stats[RAVB_NC].rx_over_errors++;
/* Receive FIFO Overflow int */
if (ris2 & RIS2_RFFF)
priv->rx_fifo_errors++;
}
}
static bool ravb_queue_interrupt(struct net_device *ndev, int q)
{
struct ravb_private *priv = netdev_priv(ndev);
u32 ris0 = ravb_read(ndev, RIS0);
u32 ric0 = ravb_read(ndev, RIC0);
u32 tis = ravb_read(ndev, TIS);
u32 tic = ravb_read(ndev, TIC);
if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
if (napi_schedule_prep(&priv->napi[q])) {
/* Mask RX and TX interrupts */
if (priv->chip_id == RCAR_GEN2) {
ravb_write(ndev, ric0 & ~BIT(q), RIC0);
ravb_write(ndev, tic & ~BIT(q), TIC);
} else {
ravb_write(ndev, BIT(q), RID0);
ravb_write(ndev, BIT(q), TID);
}
__napi_schedule(&priv->napi[q]);
} else {
netdev_warn(ndev,
"ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
ris0, ric0);
netdev_warn(ndev,
" tx status 0x%08x, tx mask 0x%08x.\n",
tis, tic);
}
return true;
}
return false;
}
static bool ravb_timestamp_interrupt(struct net_device *ndev)
{
u32 tis = ravb_read(ndev, TIS);
if (tis & TIS_TFUF) {
ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
ravb_get_tx_tstamp(ndev);
return true;
}
return false;
}
static irqreturn_t ravb_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct ravb_private *priv = netdev_priv(ndev);
irqreturn_t result = IRQ_NONE;
u32 iss;
spin_lock(&priv->lock);
/* Get interrupt status */
iss = ravb_read(ndev, ISS);
/* Received and transmitted interrupts */
if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
int q;
/* Timestamp updated */
if (ravb_timestamp_interrupt(ndev))
result = IRQ_HANDLED;
/* Network control and best effort queue RX/TX */
for (q = RAVB_NC; q >= RAVB_BE; q--) {
if (ravb_queue_interrupt(ndev, q))
result = IRQ_HANDLED;
}
}
/* E-MAC status summary */
if (iss & ISS_MS) {
ravb_emac_interrupt_unlocked(ndev);
result = IRQ_HANDLED;
}
/* Error status summary */
if (iss & ISS_ES) {
ravb_error_interrupt(ndev);
result = IRQ_HANDLED;
}
/* gPTP interrupt status summary */
if (iss & ISS_CGIS) {
ravb_ptp_interrupt(ndev);
result = IRQ_HANDLED;
}
spin_unlock(&priv->lock);
return result;
}
/* Timestamp/Error/gPTP interrupt handler */
static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct ravb_private *priv = netdev_priv(ndev);
irqreturn_t result = IRQ_NONE;
u32 iss;
spin_lock(&priv->lock);
/* Get interrupt status */
iss = ravb_read(ndev, ISS);
/* Timestamp updated */
if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
result = IRQ_HANDLED;
/* Error status summary */
if (iss & ISS_ES) {
ravb_error_interrupt(ndev);
result = IRQ_HANDLED;
}
/* gPTP interrupt status summary */
if (iss & ISS_CGIS) {
ravb_ptp_interrupt(ndev);
result = IRQ_HANDLED;
}
spin_unlock(&priv->lock);
return result;
}
static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
{
struct net_device *ndev = dev_id;
struct ravb_private *priv = netdev_priv(ndev);
irqreturn_t result = IRQ_NONE;
spin_lock(&priv->lock);
/* Network control/Best effort queue RX/TX */
if (ravb_queue_interrupt(ndev, q))
result = IRQ_HANDLED;
spin_unlock(&priv->lock);
return result;
}
static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
{
return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
}
static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
{
return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
}
static int ravb_poll(struct napi_struct *napi, int budget)
{
struct net_device *ndev = napi->dev;
struct ravb_private *priv = netdev_priv(ndev);
unsigned long flags;
int q = napi - priv->napi;
int mask = BIT(q);
int quota = budget;
u32 ris0, tis;
for (;;) {
tis = ravb_read(ndev, TIS);
ris0 = ravb_read(ndev, RIS0);
if (!((ris0 & mask) || (tis & mask)))
break;
/* Processing RX Descriptor Ring */
if (ris0 & mask) {
/* Clear RX interrupt */
ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
if (ravb_rx(ndev, &quota, q))
goto out;
}
/* Processing TX Descriptor Ring */
if (tis & mask) {
spin_lock_irqsave(&priv->lock, flags);
/* Clear TX interrupt */
ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
ravb_tx_free(ndev, q, true);
netif_wake_subqueue(ndev, q);
spin_unlock_irqrestore(&priv->lock, flags);
}
}
napi_complete(napi);
/* Re-enable RX/TX interrupts */
spin_lock_irqsave(&priv->lock, flags);
if (priv->chip_id == RCAR_GEN2) {
ravb_modify(ndev, RIC0, mask, mask);
ravb_modify(ndev, TIC, mask, mask);
} else {
ravb_write(ndev, mask, RIE0);
ravb_write(ndev, mask, TIE);
}
spin_unlock_irqrestore(&priv->lock, flags);
/* Receive error message handling */
priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
if (priv->rx_over_errors != ndev->stats.rx_over_errors)
ndev->stats.rx_over_errors = priv->rx_over_errors;
if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
out:
return budget - quota;
}
/* PHY state control function */
static void ravb_adjust_link(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
struct phy_device *phydev = ndev->phydev;
bool new_state = false;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
/* Disable TX and RX right over here, if E-MAC change is ignored */
if (priv->no_avb_link)
ravb_rcv_snd_disable(ndev);
if (phydev->link) {
if (phydev->speed != priv->speed) {
new_state = true;
priv->speed = phydev->speed;
ravb_set_rate(ndev);
}
if (!priv->link) {
ravb_modify(ndev, ECMR, ECMR_TXF, 0);
new_state = true;
priv->link = phydev->link;
}
} else if (priv->link) {
new_state = true;
priv->link = 0;
priv->speed = 0;
}
/* Enable TX and RX right over here, if E-MAC change is ignored */
if (priv->no_avb_link && phydev->link)
ravb_rcv_snd_enable(ndev);
spin_unlock_irqrestore(&priv->lock, flags);
if (new_state && netif_msg_link(priv))
phy_print_status(phydev);
}
static const struct soc_device_attribute r8a7795es10[] = {
{ .soc_id = "r8a7795", .revision = "ES1.0", },
{ /* sentinel */ }
};
/* PHY init function */
static int ravb_phy_init(struct net_device *ndev)
{
struct device_node *np = ndev->dev.parent->of_node;
struct ravb_private *priv = netdev_priv(ndev);
struct phy_device *phydev;
struct device_node *pn;
phy_interface_t iface;
int err;
priv->link = 0;
priv->speed = 0;
/* Try connecting to PHY */
pn = of_parse_phandle(np, "phy-handle", 0);
if (!pn) {
/* In the case of a fixed PHY, the DT node associated
* to the PHY is the Ethernet MAC DT node.
*/
if (of_phy_is_fixed_link(np)) {
err = of_phy_register_fixed_link(np);
if (err)
return err;
}
pn = of_node_get(np);
}
iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
: priv->phy_interface;
phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
of_node_put(pn);
if (!phydev) {
netdev_err(ndev, "failed to connect PHY\n");
err = -ENOENT;
goto err_deregister_fixed_link;
}
/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
* at this time.
*/
if (soc_device_match(r8a7795es10)) {
err = phy_set_max_speed(phydev, SPEED_100);
if (err) {
netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
goto err_phy_disconnect;
}
netdev_info(ndev, "limited PHY to 100Mbit/s\n");
}
/* 10BASE, Pause and Asym Pause is not supported */
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
/* Half Duplex is not supported */
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
phy_attached_info(phydev);
return 0;
err_phy_disconnect:
phy_disconnect(phydev);
err_deregister_fixed_link:
if (of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
return err;
}
/* PHY control start function */
static int ravb_phy_start(struct net_device *ndev)
{
int error;
error = ravb_phy_init(ndev);
if (error)
return error;
phy_start(ndev->phydev);
return 0;
}
static u32 ravb_get_msglevel(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
return priv->msg_enable;
}
static void ravb_set_msglevel(struct net_device *ndev, u32 value)
{
struct ravb_private *priv = netdev_priv(ndev);
priv->msg_enable = value;
}
static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
"rx_queue_0_current",
"tx_queue_0_current",
"rx_queue_0_dirty",
"tx_queue_0_dirty",
"rx_queue_0_packets",
"tx_queue_0_packets",
"rx_queue_0_bytes",
"tx_queue_0_bytes",
"rx_queue_0_mcast_packets",
"rx_queue_0_errors",
"rx_queue_0_crc_errors",
"rx_queue_0_frame_errors",
"rx_queue_0_length_errors",
"rx_queue_0_missed_errors",
"rx_queue_0_over_errors",
"rx_queue_1_current",
"tx_queue_1_current",
"rx_queue_1_dirty",
"tx_queue_1_dirty",
"rx_queue_1_packets",
"tx_queue_1_packets",
"rx_queue_1_bytes",
"tx_queue_1_bytes",
"rx_queue_1_mcast_packets",
"rx_queue_1_errors",
"rx_queue_1_crc_errors",
"rx_queue_1_frame_errors",
"rx_queue_1_length_errors",
"rx_queue_1_missed_errors",
"rx_queue_1_over_errors",
};
#define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
static int ravb_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return RAVB_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void ravb_get_ethtool_stats(struct net_device *ndev,
struct ethtool_stats *estats, u64 *data)
{
struct ravb_private *priv = netdev_priv(ndev);
int i = 0;
int q;
/* Device-specific stats */
for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
struct net_device_stats *stats = &priv->stats[q];
data[i++] = priv->cur_rx[q];
data[i++] = priv->cur_tx[q];
data[i++] = priv->dirty_rx[q];
data[i++] = priv->dirty_tx[q];
data[i++] = stats->rx_packets;
data[i++] = stats->tx_packets;
data[i++] = stats->rx_bytes;
data[i++] = stats->tx_bytes;
data[i++] = stats->multicast;
data[i++] = stats->rx_errors;
data[i++] = stats->rx_crc_errors;
data[i++] = stats->rx_frame_errors;
data[i++] = stats->rx_length_errors;
data[i++] = stats->rx_missed_errors;
data[i++] = stats->rx_over_errors;
}
}
static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
break;
}
}
static void ravb_get_ringparam(struct net_device *ndev,
struct ethtool_ringparam *ring)
{
struct ravb_private *priv = netdev_priv(ndev);
ring->rx_max_pending = BE_RX_RING_MAX;
ring->tx_max_pending = BE_TX_RING_MAX;
ring->rx_pending = priv->num_rx_ring[RAVB_BE];
ring->tx_pending = priv->num_tx_ring[RAVB_BE];
}
static int ravb_set_ringparam(struct net_device *ndev,
struct ethtool_ringparam *ring)
{
struct ravb_private *priv = netdev_priv(ndev);
int error;
if (ring->tx_pending > BE_TX_RING_MAX ||
ring->rx_pending > BE_RX_RING_MAX ||
ring->tx_pending < BE_TX_RING_MIN ||
ring->rx_pending < BE_RX_RING_MIN)
return -EINVAL;
if (ring->rx_mini_pending || ring->rx_jumbo_pending)
return -EINVAL;
if (netif_running(ndev)) {
netif_device_detach(ndev);
/* Stop PTP Clock driver */
if (priv->chip_id == RCAR_GEN2)
ravb_ptp_stop(ndev);
/* Wait for DMA stopping */
error = ravb_stop_dma(ndev);
if (error) {
netdev_err(ndev,
"cannot set ringparam! Any AVB processes are still running?\n");
return error;
}
synchronize_irq(ndev->irq);
/* Free all the skb's in the RX queue and the DMA buffers. */
ravb_ring_free(ndev, RAVB_BE);
ravb_ring_free(ndev, RAVB_NC);
}
/* Set new parameters */
priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
if (netif_running(ndev)) {
error = ravb_dmac_init(ndev);
if (error) {
netdev_err(ndev,
"%s: ravb_dmac_init() failed, error %d\n",
__func__, error);
return error;
}
ravb_emac_init(ndev);
/* Initialise PTP Clock driver */
if (priv->chip_id == RCAR_GEN2)
ravb_ptp_init(ndev, priv->pdev);
netif_device_attach(ndev);
}
return 0;
}
static int ravb_get_ts_info(struct net_device *ndev,
struct ethtool_ts_info *info)
{
struct ravb_private *priv = netdev_priv(ndev);
info->so_timestamping =
SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
info->rx_filters =
(1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_ALL);
info->phc_index = ptp_clock_index(priv->ptp.clock);
return 0;
}
static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
struct ravb_private *priv = netdev_priv(ndev);
wol->supported = WAKE_MAGIC;
wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
}
static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
struct ravb_private *priv = netdev_priv(ndev);
if (wol->wolopts & ~WAKE_MAGIC)
return -EOPNOTSUPP;
priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
return 0;
}
static const struct ethtool_ops ravb_ethtool_ops = {
.nway_reset = phy_ethtool_nway_reset,
.get_msglevel = ravb_get_msglevel,
.set_msglevel = ravb_set_msglevel,
.get_link = ethtool_op_get_link,
.get_strings = ravb_get_strings,
.get_ethtool_stats = ravb_get_ethtool_stats,
.get_sset_count = ravb_get_sset_count,
.get_ringparam = ravb_get_ringparam,
.set_ringparam = ravb_set_ringparam,
.get_ts_info = ravb_get_ts_info,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
.get_wol = ravb_get_wol,
.set_wol = ravb_set_wol,
};
static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
struct net_device *ndev, struct device *dev,
const char *ch)
{
char *name;
int error;
name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
if (!name)
return -ENOMEM;
error = request_irq(irq, handler, 0, name, ndev);
if (error)
netdev_err(ndev, "cannot request IRQ %s\n", name);
return error;
}
/* Network device open function for Ethernet AVB */
static int ravb_open(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
int error;
napi_enable(&priv->napi[RAVB_BE]);
napi_enable(&priv->napi[RAVB_NC]);
if (priv->chip_id == RCAR_GEN2) {
error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
ndev->name, ndev);
if (error) {
netdev_err(ndev, "cannot request IRQ\n");
goto out_napi_off;
}
} else {
error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
dev, "ch22:multi");
if (error)
goto out_napi_off;
error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
dev, "ch24:emac");
if (error)
goto out_free_irq;
error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
ndev, dev, "ch0:rx_be");
if (error)
goto out_free_irq_emac;
error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
ndev, dev, "ch18:tx_be");
if (error)
goto out_free_irq_be_rx;
error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
ndev, dev, "ch1:rx_nc");
if (error)
goto out_free_irq_be_tx;
error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
ndev, dev, "ch19:tx_nc");
if (error)
goto out_free_irq_nc_rx;
}
/* Device init */
error = ravb_dmac_init(ndev);
if (error)
goto out_free_irq_nc_tx;
ravb_emac_init(ndev);
/* Initialise PTP Clock driver */
if (priv->chip_id == RCAR_GEN2)
ravb_ptp_init(ndev, priv->pdev);
netif_tx_start_all_queues(ndev);
/* PHY control start */
error = ravb_phy_start(ndev);
if (error)
goto out_ptp_stop;
return 0;
out_ptp_stop:
/* Stop PTP Clock driver */
if (priv->chip_id == RCAR_GEN2)
ravb_ptp_stop(ndev);
out_free_irq_nc_tx:
if (priv->chip_id == RCAR_GEN2)
goto out_free_irq;
free_irq(priv->tx_irqs[RAVB_NC], ndev);
out_free_irq_nc_rx:
free_irq(priv->rx_irqs[RAVB_NC], ndev);
out_free_irq_be_tx:
free_irq(priv->tx_irqs[RAVB_BE], ndev);
out_free_irq_be_rx:
free_irq(priv->rx_irqs[RAVB_BE], ndev);
out_free_irq_emac:
free_irq(priv->emac_irq, ndev);
out_free_irq:
free_irq(ndev->irq, ndev);
out_napi_off:
napi_disable(&priv->napi[RAVB_NC]);
napi_disable(&priv->napi[RAVB_BE]);
return error;
}
/* Timeout function for Ethernet AVB */
static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
{
struct ravb_private *priv = netdev_priv(ndev);
netif_err(priv, tx_err, ndev,
"transmit timed out, status %08x, resetting...\n",
ravb_read(ndev, ISS));
/* tx_errors count up */
ndev->stats.tx_errors++;
schedule_work(&priv->work);
}
static void ravb_tx_timeout_work(struct work_struct *work)
{
struct ravb_private *priv = container_of(work, struct ravb_private,
work);
struct net_device *ndev = priv->ndev;
int error;
netif_tx_stop_all_queues(ndev);
/* Stop PTP Clock driver */
if (priv->chip_id == RCAR_GEN2)
ravb_ptp_stop(ndev);
/* Wait for DMA stopping */
if (ravb_stop_dma(ndev)) {
/* If ravb_stop_dma() fails, the hardware is still operating
* for TX and/or RX. So, this should not call the following
* functions because ravb_dmac_init() is possible to fail too.
* Also, this should not retry ravb_stop_dma() again and again
* here because it's possible to wait forever. So, this just
* re-enables the TX and RX and skip the following
* re-initialization procedure.
*/
ravb_rcv_snd_enable(ndev);
goto out;
}
ravb_ring_free(ndev, RAVB_BE);
ravb_ring_free(ndev, RAVB_NC);
/* Device init */
error = ravb_dmac_init(ndev);
if (error) {
/* If ravb_dmac_init() fails, descriptors are freed. So, this
* should return here to avoid re-enabling the TX and RX in
* ravb_emac_init().
*/
netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
__func__, error);
return;
}
ravb_emac_init(ndev);
out:
/* Initialise PTP Clock driver */
if (priv->chip_id == RCAR_GEN2)
ravb_ptp_init(ndev, priv->pdev);
netif_tx_start_all_queues(ndev);
}
/* Packet transmit function for Ethernet AVB */
static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
int num_tx_desc = priv->num_tx_desc;
u16 q = skb_get_queue_mapping(skb);
struct ravb_tstamp_skb *ts_skb;
struct ravb_tx_desc *desc;
unsigned long flags;
u32 dma_addr;
void *buffer;
u32 entry;
u32 len;
spin_lock_irqsave(&priv->lock, flags);
if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
num_tx_desc) {
netif_err(priv, tx_queued, ndev,
"still transmitting with the full ring!\n");
netif_stop_subqueue(ndev, q);
spin_unlock_irqrestore(&priv->lock, flags);
return NETDEV_TX_BUSY;
}
if (skb_put_padto(skb, ETH_ZLEN))
goto exit;
entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
priv->tx_skb[q][entry / num_tx_desc] = skb;
if (num_tx_desc > 1) {
buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
entry / num_tx_desc * DPTR_ALIGN;
len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
/* Zero length DMA descriptors are problematic as they seem
* to terminate DMA transfers. Avoid them by simply using a
* length of DPTR_ALIGN (4) when skb data is aligned to
* DPTR_ALIGN.
*
* As skb is guaranteed to have at least ETH_ZLEN (60)
* bytes of data by the call to skb_put_padto() above this
* is safe with respect to both the length of the first DMA
* descriptor (len) overflowing the available data and the
* length of the second DMA descriptor (skb->len - len)
* being negative.
*/
if (len == 0)
len = DPTR_ALIGN;
memcpy(buffer, skb->data, len);
dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
DMA_TO_DEVICE);
if (dma_mapping_error(ndev->dev.parent, dma_addr))
goto drop;
desc = &priv->tx_ring[q][entry];
desc->ds_tagl = cpu_to_le16(len);
desc->dptr = cpu_to_le32(dma_addr);
buffer = skb->data + len;
len = skb->len - len;
dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
DMA_TO_DEVICE);
if (dma_mapping_error(ndev->dev.parent, dma_addr))
goto unmap;
desc++;
} else {
desc = &priv->tx_ring[q][entry];
len = skb->len;
dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(ndev->dev.parent, dma_addr))
goto drop;
}
desc->ds_tagl = cpu_to_le16(len);
desc->dptr = cpu_to_le32(dma_addr);
/* TX timestamp required */
if (q == RAVB_NC) {
ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
if (!ts_skb) {
if (num_tx_desc > 1) {
desc--;
dma_unmap_single(ndev->dev.parent, dma_addr,
len, DMA_TO_DEVICE);
}
goto unmap;
}
ts_skb->skb = skb_get(skb);
ts_skb->tag = priv->ts_skb_tag++;
priv->ts_skb_tag &= 0x3ff;
list_add_tail(&ts_skb->list, &priv->ts_skb_list);
/* TAG and timestamp required flag */
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
}
skb_tx_timestamp(skb);
/* Descriptor type must be set after all the above writes */
dma_wmb();
if (num_tx_desc > 1) {
desc->die_dt = DT_FEND;
desc--;
desc->die_dt = DT_FSTART;
} else {
desc->die_dt = DT_FSINGLE;
}
ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
priv->cur_tx[q] += num_tx_desc;
if (priv->cur_tx[q] - priv->dirty_tx[q] >
(priv->num_tx_ring[q] - 1) * num_tx_desc &&
!ravb_tx_free(ndev, q, true))
netif_stop_subqueue(ndev, q);
exit:
spin_unlock_irqrestore(&priv->lock, flags);
return NETDEV_TX_OK;
unmap:
dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
drop:
dev_kfree_skb_any(skb);
priv->tx_skb[q][entry / num_tx_desc] = NULL;
goto exit;
}
static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
struct net_device *sb_dev)
{
/* If skb needs TX timestamp, it is handled in network control queue */
return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
RAVB_BE;
}
static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
struct net_device_stats *nstats, *stats0, *stats1;
nstats = &ndev->stats;
stats0 = &priv->stats[RAVB_BE];
stats1 = &priv->stats[RAVB_NC];
if (priv->chip_id == RCAR_GEN3) {
nstats->tx_dropped += ravb_read(ndev, TROCR);
ravb_write(ndev, 0, TROCR); /* (write clear) */
}
nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
nstats->multicast = stats0->multicast + stats1->multicast;
nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
nstats->rx_frame_errors =
stats0->rx_frame_errors + stats1->rx_frame_errors;
nstats->rx_length_errors =
stats0->rx_length_errors + stats1->rx_length_errors;
nstats->rx_missed_errors =
stats0->rx_missed_errors + stats1->rx_missed_errors;
nstats->rx_over_errors =
stats0->rx_over_errors + stats1->rx_over_errors;
return nstats;
}
/* Update promiscuous bit */
static void ravb_set_rx_mode(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
ravb_modify(ndev, ECMR, ECMR_PRM,
ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
spin_unlock_irqrestore(&priv->lock, flags);
}
/* Device close function for Ethernet AVB */
static int ravb_close(struct net_device *ndev)
{
struct device_node *np = ndev->dev.parent->of_node;
struct ravb_private *priv = netdev_priv(ndev);
struct ravb_tstamp_skb *ts_skb, *ts_skb2;
netif_tx_stop_all_queues(ndev);
/* Disable interrupts by clearing the interrupt masks. */
ravb_write(ndev, 0, RIC0);
ravb_write(ndev, 0, RIC2);
ravb_write(ndev, 0, TIC);
/* Stop PTP Clock driver */
if (priv->chip_id == RCAR_GEN2)
ravb_ptp_stop(ndev);
/* Set the config mode to stop the AVB-DMAC's processes */
if (ravb_stop_dma(ndev) < 0)
netdev_err(ndev,
"device will be stopped after h/w processes are done.\n");
/* Clear the timestamp list */
list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
list_del(&ts_skb->list);
kfree_skb(ts_skb->skb);
kfree(ts_skb);
}
/* PHY disconnect */
if (ndev->phydev) {
phy_stop(ndev->phydev);
phy_disconnect(ndev->phydev);
if (of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
}
if (priv->chip_id != RCAR_GEN2) {
free_irq(priv->tx_irqs[RAVB_NC], ndev);
free_irq(priv->rx_irqs[RAVB_NC], ndev);
free_irq(priv->tx_irqs[RAVB_BE], ndev);
free_irq(priv->rx_irqs[RAVB_BE], ndev);
free_irq(priv->emac_irq, ndev);
}
free_irq(ndev->irq, ndev);
napi_disable(&priv->napi[RAVB_NC]);
napi_disable(&priv->napi[RAVB_BE]);
/* Free all the skb's in the RX queue and the DMA buffers. */
ravb_ring_free(ndev, RAVB_BE);
ravb_ring_free(ndev, RAVB_NC);
return 0;
}
static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
{
struct ravb_private *priv = netdev_priv(ndev);
struct hwtstamp_config config;
config.flags = 0;
config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
HWTSTAMP_TX_OFF;
switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
break;
case RAVB_RXTSTAMP_TYPE_ALL:
config.rx_filter = HWTSTAMP_FILTER_ALL;
break;
default:
config.rx_filter = HWTSTAMP_FILTER_NONE;
}
return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
/* Control hardware time stamping */
static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
{
struct ravb_private *priv = netdev_priv(ndev);
struct hwtstamp_config config;
u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
u32 tstamp_tx_ctrl;
if (copy_from_user(&config, req->ifr_data, sizeof(config)))
return -EFAULT;
/* Reserved for future extensions */
if (config.flags)
return -EINVAL;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
tstamp_tx_ctrl = 0;
break;
case HWTSTAMP_TX_ON:
tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
break;
default:
return -ERANGE;
}
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
tstamp_rx_ctrl = 0;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
break;
default:
config.rx_filter = HWTSTAMP_FILTER_ALL;
tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
}
priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
/* ioctl to device function */
static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
{
struct phy_device *phydev = ndev->phydev;
if (!netif_running(ndev))
return -EINVAL;
if (!phydev)
return -ENODEV;
switch (cmd) {
case SIOCGHWTSTAMP:
return ravb_hwtstamp_get(ndev, req);
case SIOCSHWTSTAMP:
return ravb_hwtstamp_set(ndev, req);
}
return phy_mii_ioctl(phydev, req, cmd);
}
static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
{
struct ravb_private *priv = netdev_priv(ndev);
ndev->mtu = new_mtu;
if (netif_running(ndev)) {
synchronize_irq(priv->emac_irq);
ravb_emac_init(ndev);
}
netdev_update_features(ndev);
return 0;
}
static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
{
struct ravb_private *priv = netdev_priv(ndev);
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
/* Disable TX and RX */
ravb_rcv_snd_disable(ndev);
/* Modify RX Checksum setting */
ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
/* Enable TX and RX */
ravb_rcv_snd_enable(ndev);
spin_unlock_irqrestore(&priv->lock, flags);
}
static int ravb_set_features(struct net_device *ndev,
netdev_features_t features)
{
netdev_features_t changed = ndev->features ^ features;
if (changed & NETIF_F_RXCSUM)
ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
ndev->features = features;
return 0;
}
static const struct net_device_ops ravb_netdev_ops = {
.ndo_open = ravb_open,
.ndo_stop = ravb_close,
.ndo_start_xmit = ravb_start_xmit,
.ndo_select_queue = ravb_select_queue,
.ndo_get_stats = ravb_get_stats,
.ndo_set_rx_mode = ravb_set_rx_mode,
.ndo_tx_timeout = ravb_tx_timeout,
.ndo_do_ioctl = ravb_do_ioctl,
.ndo_change_mtu = ravb_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_set_features = ravb_set_features,
};
/* MDIO bus init function */
static int ravb_mdio_init(struct ravb_private *priv)
{
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
int error;
/* Bitbang init */
priv->mdiobb.ops = &bb_ops;
/* MII controller setting */
priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
if (!priv->mii_bus)
return -ENOMEM;
/* Hook up MII support for ethtool */
priv->mii_bus->name = "ravb_mii";
priv->mii_bus->parent = dev;
snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
pdev->name, pdev->id);
/* Register MDIO bus */
error = of_mdiobus_register(priv->mii_bus, dev->of_node);
if (error)
goto out_free_bus;
return 0;
out_free_bus:
free_mdio_bitbang(priv->mii_bus);
return error;
}
/* MDIO bus release function */
static int ravb_mdio_release(struct ravb_private *priv)
{
/* Unregister mdio bus */
mdiobus_unregister(priv->mii_bus);
/* Free bitbang info */
free_mdio_bitbang(priv->mii_bus);
return 0;
}
static const struct of_device_id ravb_match_table[] = {
{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
{ }
};
MODULE_DEVICE_TABLE(of, ravb_match_table);
static int ravb_set_gti(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
struct device *dev = ndev->dev.parent;
unsigned long rate;
uint64_t inc;
rate = clk_get_rate(priv->clk);
if (!rate)
return -EINVAL;
inc = 1000000000ULL << 20;
do_div(inc, rate);
if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
inc, GTI_TIV_MIN, GTI_TIV_MAX);
return -EINVAL;
}
ravb_write(ndev, inc, GTI);
return 0;
}
static void ravb_set_config_mode(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
if (priv->chip_id == RCAR_GEN2) {
ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
/* Set CSEL value */
ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
} else {
ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
CCC_GAC | CCC_CSEL_HPB);
}
}
static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
{ .soc_id = "r8a774c0" },
{ .soc_id = "r8a77990" },
{ .soc_id = "r8a77995" },
{ /* sentinel */ }
};
/* Set tx and rx clock internal delay modes */
static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
bool explicit_delay = false;
u32 delay;
if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
/* Valid values are 0 and 1800, according to DT bindings */
priv->rxcidm = !!delay;
explicit_delay = true;
}
if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
/* Valid values are 0 and 2000, according to DT bindings */
priv->txcidm = !!delay;
explicit_delay = true;
}
if (explicit_delay)
return;
/* Fall back to legacy rgmii-*id behavior */
if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
priv->rxcidm = 1;
priv->rgmii_override = 1;
}
if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
"phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
phy_modes(priv->phy_interface))) {
priv->txcidm = 1;
priv->rgmii_override = 1;
}
}
}
static void ravb_set_delay_mode(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
u32 set = 0;
if (priv->rxcidm)
set |= APSR_DM_RDM;
if (priv->txcidm)
set |= APSR_DM_TDM;
ravb_modify(ndev, APSR, APSR_DM, set);
}
static int ravb_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct ravb_private *priv;
enum ravb_chip_id chip_id;
struct net_device *ndev;
int error, irq, q;
struct resource *res;
int i;
if (!np) {
dev_err(&pdev->dev,
"this driver is required to be instantiated from device tree\n");
return -EINVAL;
}
/* Get base address */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "invalid resource\n");
return -EINVAL;
}
ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
NUM_TX_QUEUE, NUM_RX_QUEUE);
if (!ndev)
return -ENOMEM;
ndev->features = NETIF_F_RXCSUM;
ndev->hw_features = NETIF_F_RXCSUM;
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
/* The Ether-specific entries in the device structure. */
ndev->base_addr = res->start;
chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
if (chip_id == RCAR_GEN3)
irq = platform_get_irq_byname(pdev, "ch22");
else
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
error = irq;
goto out_release;
}
ndev->irq = irq;
SET_NETDEV_DEV(ndev, &pdev->dev);
priv = netdev_priv(ndev);
priv->ndev = ndev;
priv->pdev = pdev;
priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
priv->addr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->addr)) {
error = PTR_ERR(priv->addr);
goto out_release;
}
spin_lock_init(&priv->lock);
INIT_WORK(&priv->work, ravb_tx_timeout_work);
error = of_get_phy_mode(np, &priv->phy_interface);
if (error && error != -ENODEV)
goto out_release;
priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
priv->avb_link_active_low =
of_property_read_bool(np, "renesas,ether-link-active-low");
if (chip_id == RCAR_GEN3) {
irq = platform_get_irq_byname(pdev, "ch24");
if (irq < 0) {
error = irq;
goto out_release;
}
priv->emac_irq = irq;
for (i = 0; i < NUM_RX_QUEUE; i++) {
irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
if (irq < 0) {
error = irq;
goto out_release;
}
priv->rx_irqs[i] = irq;
}
for (i = 0; i < NUM_TX_QUEUE; i++) {
irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
if (irq < 0) {
error = irq;
goto out_release;
}
priv->tx_irqs[i] = irq;
}
}
priv->chip_id = chip_id;
priv->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(priv->clk)) {
error = PTR_ERR(priv->clk);
goto out_release;
}
ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
ndev->min_mtu = ETH_MIN_MTU;
priv->num_tx_desc = chip_id == RCAR_GEN2 ?
NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
/* Set function */
ndev->netdev_ops = &ravb_netdev_ops;
ndev->ethtool_ops = &ravb_ethtool_ops;
/* Set AVB config mode */
ravb_set_config_mode(ndev);
/* Set GTI value */
error = ravb_set_gti(ndev);
if (error)
goto out_release;
/* Request GTI loading */
ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
if (priv->chip_id != RCAR_GEN2) {
ravb_parse_delay_mode(np, ndev);
ravb_set_delay_mode(ndev);
}
/* Allocate descriptor base address table */
priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
&priv->desc_bat_dma, GFP_KERNEL);
if (!priv->desc_bat) {
dev_err(&pdev->dev,
"Cannot allocate desc base address table (size %d bytes)\n",
priv->desc_bat_size);
error = -ENOMEM;
goto out_release;
}
for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
priv->desc_bat[q].die_dt = DT_EOS;
ravb_write(ndev, priv->desc_bat_dma, DBAT);
/* Initialise HW timestamp list */
INIT_LIST_HEAD(&priv->ts_skb_list);
/* Initialise PTP Clock driver */
if (chip_id != RCAR_GEN2)
ravb_ptp_init(ndev, pdev);
/* Debug message level */
priv->msg_enable = RAVB_DEF_MSG_ENABLE;
/* Read and set MAC address */
ravb_read_mac_address(ndev, of_get_mac_address(np));
if (!is_valid_ether_addr(ndev->dev_addr)) {
dev_warn(&pdev->dev,
"no valid MAC address supplied, using a random one\n");
eth_hw_addr_random(ndev);
}
/* MDIO bus init */
error = ravb_mdio_init(priv);
if (error) {
dev_err(&pdev->dev, "failed to initialize MDIO\n");
goto out_dma_free;
}
netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
/* Network device register */
error = register_netdev(ndev);
if (error)
goto out_napi_del;
device_set_wakeup_capable(&pdev->dev, 1);
/* Print device information */
netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
(u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
platform_set_drvdata(pdev, ndev);
return 0;
out_napi_del:
netif_napi_del(&priv->napi[RAVB_NC]);
netif_napi_del(&priv->napi[RAVB_BE]);
ravb_mdio_release(priv);
out_dma_free:
dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
priv->desc_bat_dma);
/* Stop PTP Clock driver */
if (chip_id != RCAR_GEN2)
ravb_ptp_stop(ndev);
out_release:
free_netdev(ndev);
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return error;
}
static int ravb_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct ravb_private *priv = netdev_priv(ndev);
/* Stop PTP Clock driver */
if (priv->chip_id != RCAR_GEN2)
ravb_ptp_stop(ndev);
dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
priv->desc_bat_dma);
/* Set reset mode */
ravb_write(ndev, CCC_OPC_RESET, CCC);
pm_runtime_put_sync(&pdev->dev);
unregister_netdev(ndev);
netif_napi_del(&priv->napi[RAVB_NC]);
netif_napi_del(&priv->napi[RAVB_BE]);
ravb_mdio_release(priv);
pm_runtime_disable(&pdev->dev);
free_netdev(ndev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static int ravb_wol_setup(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
/* Disable interrupts by clearing the interrupt masks. */
ravb_write(ndev, 0, RIC0);
ravb_write(ndev, 0, RIC2);
ravb_write(ndev, 0, TIC);
/* Only allow ECI interrupts */
synchronize_irq(priv->emac_irq);
napi_disable(&priv->napi[RAVB_NC]);
napi_disable(&priv->napi[RAVB_BE]);
ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
/* Enable MagicPacket */
ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
return enable_irq_wake(priv->emac_irq);
}
static int ravb_wol_restore(struct net_device *ndev)
{
struct ravb_private *priv = netdev_priv(ndev);
int ret;
napi_enable(&priv->napi[RAVB_NC]);
napi_enable(&priv->napi[RAVB_BE]);
/* Disable MagicPacket */
ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
ret = ravb_close(ndev);
if (ret < 0)
return ret;
return disable_irq_wake(priv->emac_irq);
}
static int __maybe_unused ravb_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct ravb_private *priv = netdev_priv(ndev);
int ret;
if (!netif_running(ndev))
return 0;
netif_device_detach(ndev);
if (priv->wol_enabled)
ret = ravb_wol_setup(ndev);
else
ret = ravb_close(ndev);
return ret;
}
static int __maybe_unused ravb_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct ravb_private *priv = netdev_priv(ndev);
int ret = 0;
/* If WoL is enabled set reset mode to rearm the WoL logic */
if (priv->wol_enabled)
ravb_write(ndev, CCC_OPC_RESET, CCC);
/* All register have been reset to default values.
* Restore all registers which where setup at probe time and
* reopen device if it was running before system suspended.
*/
/* Set AVB config mode */
ravb_set_config_mode(ndev);
/* Set GTI value */
ret = ravb_set_gti(ndev);
if (ret)
return ret;
/* Request GTI loading */
ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
if (priv->chip_id != RCAR_GEN2)
ravb_set_delay_mode(ndev);
/* Restore descriptor base address table */
ravb_write(ndev, priv->desc_bat_dma, DBAT);
if (netif_running(ndev)) {
if (priv->wol_enabled) {
ret = ravb_wol_restore(ndev);
if (ret)
return ret;
}
ret = ravb_open(ndev);
if (ret < 0)
return ret;
netif_device_attach(ndev);
}
return ret;
}
static int __maybe_unused ravb_runtime_nop(struct device *dev)
{
/* Runtime PM callback shared between ->runtime_suspend()
* and ->runtime_resume(). Simply returns success.
*
* This driver re-initializes all registers after
* pm_runtime_get_sync() anyway so there is no need
* to save and restore registers here.
*/
return 0;
}
static const struct dev_pm_ops ravb_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
};
static struct platform_driver ravb_driver = {
.probe = ravb_probe,
.remove = ravb_remove,
.driver = {
.name = "ravb",
.pm = &ravb_dev_pm_ops,
.of_match_table = ravb_match_table,
},
};
module_platform_driver(ravb_driver);
MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
MODULE_LICENSE("GPL v2");