linux-sg2042/arch/arm/plat-orion/gpio.c

404 lines
9.1 KiB
C

/*
* arch/arm/plat-orion/gpio.c
*
* Marvell Orion SoC GPIO handling.
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <asm/gpio.h>
static DEFINE_SPINLOCK(gpio_lock);
static const char *gpio_label[GPIO_MAX]; /* non null for allocated GPIOs */
static unsigned long gpio_valid_input[BITS_TO_LONGS(GPIO_MAX)];
static unsigned long gpio_valid_output[BITS_TO_LONGS(GPIO_MAX)];
static inline void __set_direction(unsigned pin, int input)
{
u32 u;
u = readl(GPIO_IO_CONF(pin));
if (input)
u |= 1 << (pin & 31);
else
u &= ~(1 << (pin & 31));
writel(u, GPIO_IO_CONF(pin));
}
static void __set_level(unsigned pin, int high)
{
u32 u;
u = readl(GPIO_OUT(pin));
if (high)
u |= 1 << (pin & 31);
else
u &= ~(1 << (pin & 31));
writel(u, GPIO_OUT(pin));
}
/*
* GENERIC_GPIO primitives.
*/
int gpio_direction_input(unsigned pin)
{
unsigned long flags;
if (pin >= GPIO_MAX || !test_bit(pin, gpio_valid_input)) {
pr_debug("%s: invalid GPIO %d\n", __func__, pin);
return -EINVAL;
}
spin_lock_irqsave(&gpio_lock, flags);
/*
* Some callers might not have used gpio_request(),
* so flag this pin as requested now.
*/
if (gpio_label[pin] == NULL)
gpio_label[pin] = "?";
/*
* Configure GPIO direction.
*/
__set_direction(pin, 1);
spin_unlock_irqrestore(&gpio_lock, flags);
return 0;
}
EXPORT_SYMBOL(gpio_direction_input);
int gpio_direction_output(unsigned pin, int value)
{
unsigned long flags;
u32 u;
if (pin >= GPIO_MAX || !test_bit(pin, gpio_valid_output)) {
pr_debug("%s: invalid GPIO %d\n", __func__, pin);
return -EINVAL;
}
spin_lock_irqsave(&gpio_lock, flags);
/*
* Some callers might not have used gpio_request(),
* so flag this pin as requested now.
*/
if (gpio_label[pin] == NULL)
gpio_label[pin] = "?";
/*
* Disable blinking.
*/
u = readl(GPIO_BLINK_EN(pin));
u &= ~(1 << (pin & 31));
writel(u, GPIO_BLINK_EN(pin));
/*
* Configure GPIO output value.
*/
__set_level(pin, value);
/*
* Configure GPIO direction.
*/
__set_direction(pin, 0);
spin_unlock_irqrestore(&gpio_lock, flags);
return 0;
}
EXPORT_SYMBOL(gpio_direction_output);
int gpio_get_value(unsigned pin)
{
int val;
if (readl(GPIO_IO_CONF(pin)) & (1 << (pin & 31)))
val = readl(GPIO_DATA_IN(pin)) ^ readl(GPIO_IN_POL(pin));
else
val = readl(GPIO_OUT(pin));
return (val >> (pin & 31)) & 1;
}
EXPORT_SYMBOL(gpio_get_value);
void gpio_set_value(unsigned pin, int value)
{
unsigned long flags;
u32 u;
spin_lock_irqsave(&gpio_lock, flags);
/*
* Disable blinking.
*/
u = readl(GPIO_BLINK_EN(pin));
u &= ~(1 << (pin & 31));
writel(u, GPIO_BLINK_EN(pin));
/*
* Configure GPIO output value.
*/
__set_level(pin, value);
spin_unlock_irqrestore(&gpio_lock, flags);
}
EXPORT_SYMBOL(gpio_set_value);
int gpio_request(unsigned pin, const char *label)
{
unsigned long flags;
int ret;
if (pin >= GPIO_MAX ||
!(test_bit(pin, gpio_valid_input) ||
test_bit(pin, gpio_valid_output))) {
pr_debug("%s: invalid GPIO %d\n", __func__, pin);
return -EINVAL;
}
spin_lock_irqsave(&gpio_lock, flags);
if (gpio_label[pin] == NULL) {
gpio_label[pin] = label ? label : "?";
ret = 0;
} else {
pr_debug("%s: GPIO %d already used as %s\n",
__func__, pin, gpio_label[pin]);
ret = -EBUSY;
}
spin_unlock_irqrestore(&gpio_lock, flags);
return ret;
}
EXPORT_SYMBOL(gpio_request);
void gpio_free(unsigned pin)
{
if (pin >= GPIO_MAX ||
!(test_bit(pin, gpio_valid_input) ||
test_bit(pin, gpio_valid_output))) {
pr_debug("%s: invalid GPIO %d\n", __func__, pin);
return;
}
if (gpio_label[pin] == NULL)
pr_warning("%s: GPIO %d already freed\n", __func__, pin);
else
gpio_label[pin] = NULL;
}
EXPORT_SYMBOL(gpio_free);
/*
* Orion-specific GPIO API extensions.
*/
void __init orion_gpio_set_unused(unsigned pin)
{
/*
* Configure as output, drive low.
*/
__set_level(pin, 0);
__set_direction(pin, 0);
}
void __init orion_gpio_set_valid(unsigned pin, int mode)
{
if (mode == 1)
mode = GPIO_INPUT_OK | GPIO_OUTPUT_OK;
if (mode & GPIO_INPUT_OK)
__set_bit(pin, gpio_valid_input);
else
__clear_bit(pin, gpio_valid_input);
if (mode & GPIO_OUTPUT_OK)
__set_bit(pin, gpio_valid_output);
else
__clear_bit(pin, gpio_valid_output);
}
void orion_gpio_set_blink(unsigned pin, int blink)
{
unsigned long flags;
u32 u;
spin_lock_irqsave(&gpio_lock, flags);
/*
* Set output value to zero.
*/
__set_level(pin, 0);
u = readl(GPIO_BLINK_EN(pin));
if (blink)
u |= 1 << (pin & 31);
else
u &= ~(1 << (pin & 31));
writel(u, GPIO_BLINK_EN(pin));
spin_unlock_irqrestore(&gpio_lock, flags);
}
EXPORT_SYMBOL(orion_gpio_set_blink);
/*****************************************************************************
* Orion GPIO IRQ
*
* GPIO_IN_POL register controls whether GPIO_DATA_IN will hold the same
* value of the line or the opposite value.
*
* Level IRQ handlers: DATA_IN is used directly as cause register.
* Interrupt are masked by LEVEL_MASK registers.
* Edge IRQ handlers: Change in DATA_IN are latched in EDGE_CAUSE.
* Interrupt are masked by EDGE_MASK registers.
* Both-edge handlers: Similar to regular Edge handlers, but also swaps
* the polarity to catch the next line transaction.
* This is a race condition that might not perfectly
* work on some use cases.
*
* Every eight GPIO lines are grouped (OR'ed) before going up to main
* cause register.
*
* EDGE cause mask
* data-in /--------| |-----| |----\
* -----| |----- ---- to main cause reg
* X \----------------| |----/
* polarity LEVEL mask
*
****************************************************************************/
static void gpio_irq_ack(u32 irq)
{
int type = irq_desc[irq].status & IRQ_TYPE_SENSE_MASK;
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
int pin = irq_to_gpio(irq);
writel(~(1 << (pin & 31)), GPIO_EDGE_CAUSE(pin));
}
}
static void gpio_irq_mask(u32 irq)
{
int pin = irq_to_gpio(irq);
int type = irq_desc[irq].status & IRQ_TYPE_SENSE_MASK;
u32 reg = (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) ?
GPIO_EDGE_MASK(pin) : GPIO_LEVEL_MASK(pin);
u32 u = readl(reg);
u &= ~(1 << (pin & 31));
writel(u, reg);
}
static void gpio_irq_unmask(u32 irq)
{
int pin = irq_to_gpio(irq);
int type = irq_desc[irq].status & IRQ_TYPE_SENSE_MASK;
u32 reg = (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) ?
GPIO_EDGE_MASK(pin) : GPIO_LEVEL_MASK(pin);
u32 u = readl(reg);
u |= 1 << (pin & 31);
writel(u, reg);
}
static int gpio_irq_set_type(u32 irq, u32 type)
{
int pin = irq_to_gpio(irq);
struct irq_desc *desc;
u32 u;
u = readl(GPIO_IO_CONF(pin)) & (1 << (pin & 31));
if (!u) {
printk(KERN_ERR "orion gpio_irq_set_type failed "
"(irq %d, pin %d).\n", irq, pin);
return -EINVAL;
}
desc = irq_desc + irq;
/*
* Set edge/level type.
*/
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
desc->handle_irq = handle_edge_irq;
} else if (type & (IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
desc->handle_irq = handle_level_irq;
} else {
printk(KERN_ERR "failed to set irq=%d (type=%d)\n", irq, type);
return -EINVAL;
}
/*
* Configure interrupt polarity.
*/
if (type == IRQ_TYPE_EDGE_RISING || type == IRQ_TYPE_LEVEL_HIGH) {
u = readl(GPIO_IN_POL(pin));
u &= ~(1 << (pin & 31));
writel(u, GPIO_IN_POL(pin));
} else if (type == IRQ_TYPE_EDGE_FALLING || type == IRQ_TYPE_LEVEL_LOW) {
u = readl(GPIO_IN_POL(pin));
u |= 1 << (pin & 31);
writel(u, GPIO_IN_POL(pin));
} else if (type == IRQ_TYPE_EDGE_BOTH) {
u32 v;
v = readl(GPIO_IN_POL(pin)) ^ readl(GPIO_DATA_IN(pin));
/*
* set initial polarity based on current input level
*/
u = readl(GPIO_IN_POL(pin));
if (v & (1 << (pin & 31)))
u |= 1 << (pin & 31); /* falling */
else
u &= ~(1 << (pin & 31)); /* rising */
writel(u, GPIO_IN_POL(pin));
}
desc->status = (desc->status & ~IRQ_TYPE_SENSE_MASK) | type;
return 0;
}
struct irq_chip orion_gpio_irq_chip = {
.name = "orion_gpio",
.ack = gpio_irq_ack,
.mask = gpio_irq_mask,
.unmask = gpio_irq_unmask,
.set_type = gpio_irq_set_type,
};
void orion_gpio_irq_handler(int pinoff)
{
u32 cause;
int pin;
cause = readl(GPIO_DATA_IN(pinoff)) & readl(GPIO_LEVEL_MASK(pinoff));
cause |= readl(GPIO_EDGE_CAUSE(pinoff)) & readl(GPIO_EDGE_MASK(pinoff));
for (pin = pinoff; pin < pinoff + 8; pin++) {
int irq = gpio_to_irq(pin);
struct irq_desc *desc = irq_desc + irq;
if (!(cause & (1 << (pin & 31))))
continue;
if ((desc->status & IRQ_TYPE_SENSE_MASK) == IRQ_TYPE_EDGE_BOTH) {
/* Swap polarity (race with GPIO line) */
u32 polarity;
polarity = readl(GPIO_IN_POL(pin));
polarity ^= 1 << (pin & 31);
writel(polarity, GPIO_IN_POL(pin));
}
desc_handle_irq(irq, desc);
}
}