852 lines
22 KiB
C
852 lines
22 KiB
C
/*
|
|
* VGIC MMIO handling functions
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <kvm/iodev.h>
|
|
#include <kvm/arm_arch_timer.h>
|
|
#include <kvm/arm_vgic.h>
|
|
|
|
#include "vgic.h"
|
|
#include "vgic-mmio.h"
|
|
|
|
unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return -1UL;
|
|
}
|
|
|
|
void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
|
|
unsigned int len, unsigned long val)
|
|
{
|
|
/* Ignore */
|
|
}
|
|
|
|
/*
|
|
* Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
|
|
* of the enabled bit, so there is only one function for both here.
|
|
*/
|
|
unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
u32 value = 0;
|
|
int i;
|
|
|
|
/* Loop over all IRQs affected by this read */
|
|
for (i = 0; i < len * 8; i++) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
if (irq->enabled)
|
|
value |= (1U << i);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
for_each_set_bit(i, &val, len * 8) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
irq->enabled = true;
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
for_each_set_bit(i, &val, len * 8) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
|
|
irq->enabled = false;
|
|
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
u32 value = 0;
|
|
int i;
|
|
|
|
/* Loop over all IRQs affected by this read */
|
|
for (i = 0; i < len * 8; i++) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
if (irq_is_pending(irq))
|
|
value |= (1U << i);
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* This function will return the VCPU that performed the MMIO access and
|
|
* trapped from within the VM, and will return NULL if this is a userspace
|
|
* access.
|
|
*
|
|
* We can disable preemption locally around accessing the per-CPU variable,
|
|
* and use the resolved vcpu pointer after enabling preemption again, because
|
|
* even if the current thread is migrated to another CPU, reading the per-CPU
|
|
* value later will give us the same value as we update the per-CPU variable
|
|
* in the preempt notifier handlers.
|
|
*/
|
|
static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
preempt_disable();
|
|
vcpu = kvm_arm_get_running_vcpu();
|
|
preempt_enable();
|
|
return vcpu;
|
|
}
|
|
|
|
/* Must be called with irq->irq_lock held */
|
|
static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
|
|
bool is_uaccess)
|
|
{
|
|
if (is_uaccess)
|
|
return;
|
|
|
|
irq->pending_latch = true;
|
|
vgic_irq_set_phys_active(irq, true);
|
|
}
|
|
|
|
void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
bool is_uaccess = !vgic_get_mmio_requester_vcpu();
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
for_each_set_bit(i, &val, len * 8) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
if (irq->hw)
|
|
vgic_hw_irq_spending(vcpu, irq, is_uaccess);
|
|
else
|
|
irq->pending_latch = true;
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
/* Must be called with irq->irq_lock held */
|
|
static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
|
|
bool is_uaccess)
|
|
{
|
|
if (is_uaccess)
|
|
return;
|
|
|
|
irq->pending_latch = false;
|
|
|
|
/*
|
|
* We don't want the guest to effectively mask the physical
|
|
* interrupt by doing a write to SPENDR followed by a write to
|
|
* CPENDR for HW interrupts, so we clear the active state on
|
|
* the physical side if the virtual interrupt is not active.
|
|
* This may lead to taking an additional interrupt on the
|
|
* host, but that should not be a problem as the worst that
|
|
* can happen is an additional vgic injection. We also clear
|
|
* the pending state to maintain proper semantics for edge HW
|
|
* interrupts.
|
|
*/
|
|
vgic_irq_set_phys_pending(irq, false);
|
|
if (!irq->active)
|
|
vgic_irq_set_phys_active(irq, false);
|
|
}
|
|
|
|
void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
bool is_uaccess = !vgic_get_mmio_requester_vcpu();
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
for_each_set_bit(i, &val, len * 8) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
|
|
if (irq->hw)
|
|
vgic_hw_irq_cpending(vcpu, irq, is_uaccess);
|
|
else
|
|
irq->pending_latch = false;
|
|
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
u32 value = 0;
|
|
int i;
|
|
|
|
/* Loop over all IRQs affected by this read */
|
|
for (i = 0; i < len * 8; i++) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
if (irq->active)
|
|
value |= (1U << i);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* Must be called with irq->irq_lock held */
|
|
static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
|
|
bool active, bool is_uaccess)
|
|
{
|
|
if (is_uaccess)
|
|
return;
|
|
|
|
irq->active = active;
|
|
vgic_irq_set_phys_active(irq, active);
|
|
}
|
|
|
|
static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
|
|
bool active)
|
|
{
|
|
unsigned long flags;
|
|
struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu();
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
|
|
/*
|
|
* If this virtual IRQ was written into a list register, we
|
|
* have to make sure the CPU that runs the VCPU thread has
|
|
* synced back the LR state to the struct vgic_irq.
|
|
*
|
|
* As long as the conditions below are true, we know the VCPU thread
|
|
* may be on its way back from the guest (we kicked the VCPU thread in
|
|
* vgic_change_active_prepare) and still has to sync back this IRQ,
|
|
* so we release and re-acquire the spin_lock to let the other thread
|
|
* sync back the IRQ.
|
|
*
|
|
* When accessing VGIC state from user space, requester_vcpu is
|
|
* NULL, which is fine, because we guarantee that no VCPUs are running
|
|
* when accessing VGIC state from user space so irq->vcpu->cpu is
|
|
* always -1.
|
|
*/
|
|
while (irq->vcpu && /* IRQ may have state in an LR somewhere */
|
|
irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */
|
|
irq->vcpu->cpu != -1) /* VCPU thread is running */
|
|
cond_resched_lock(&irq->irq_lock);
|
|
|
|
if (irq->hw) {
|
|
vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
|
|
} else {
|
|
u32 model = vcpu->kvm->arch.vgic.vgic_model;
|
|
|
|
irq->active = active;
|
|
if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
|
|
active && vgic_irq_is_sgi(irq->intid))
|
|
irq->active_source = requester_vcpu->vcpu_id;
|
|
}
|
|
|
|
if (irq->active)
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
|
|
else
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* If we are fiddling with an IRQ's active state, we have to make sure the IRQ
|
|
* is not queued on some running VCPU's LRs, because then the change to the
|
|
* active state can be overwritten when the VCPU's state is synced coming back
|
|
* from the guest.
|
|
*
|
|
* For shared interrupts, we have to stop all the VCPUs because interrupts can
|
|
* be migrated while we don't hold the IRQ locks and we don't want to be
|
|
* chasing moving targets.
|
|
*
|
|
* For private interrupts we don't have to do anything because userspace
|
|
* accesses to the VGIC state already require all VCPUs to be stopped, and
|
|
* only the VCPU itself can modify its private interrupts active state, which
|
|
* guarantees that the VCPU is not running.
|
|
*/
|
|
static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
|
|
{
|
|
if (intid > VGIC_NR_PRIVATE_IRQS)
|
|
kvm_arm_halt_guest(vcpu->kvm);
|
|
}
|
|
|
|
/* See vgic_change_active_prepare */
|
|
static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
|
|
{
|
|
if (intid > VGIC_NR_PRIVATE_IRQS)
|
|
kvm_arm_resume_guest(vcpu->kvm);
|
|
}
|
|
|
|
static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
int i;
|
|
|
|
for_each_set_bit(i, &val, len * 8) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
vgic_mmio_change_active(vcpu, irq, false);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
vgic_change_active_prepare(vcpu, intid);
|
|
|
|
__vgic_mmio_write_cactive(vcpu, addr, len, val);
|
|
|
|
vgic_change_active_finish(vcpu, intid);
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
}
|
|
|
|
void vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
__vgic_mmio_write_cactive(vcpu, addr, len, val);
|
|
}
|
|
|
|
static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
int i;
|
|
|
|
for_each_set_bit(i, &val, len * 8) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
vgic_mmio_change_active(vcpu, irq, true);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
vgic_change_active_prepare(vcpu, intid);
|
|
|
|
__vgic_mmio_write_sactive(vcpu, addr, len, val);
|
|
|
|
vgic_change_active_finish(vcpu, intid);
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
}
|
|
|
|
void vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
__vgic_mmio_write_sactive(vcpu, addr, len, val);
|
|
}
|
|
|
|
unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
|
|
int i;
|
|
u64 val = 0;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
val |= (u64)irq->priority << (i * 8);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* We currently don't handle changing the priority of an interrupt that
|
|
* is already pending on a VCPU. If there is a need for this, we would
|
|
* need to make this VCPU exit and re-evaluate the priorities, potentially
|
|
* leading to this interrupt getting presented now to the guest (if it has
|
|
* been masked by the priority mask before).
|
|
*/
|
|
void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
/* Narrow the priority range to what we actually support */
|
|
irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
|
|
u32 value = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < len * 4; i++) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
if (irq->config == VGIC_CONFIG_EDGE)
|
|
value |= (2U << (i * 2));
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
for (i = 0; i < len * 4; i++) {
|
|
struct vgic_irq *irq;
|
|
|
|
/*
|
|
* The configuration cannot be changed for SGIs in general,
|
|
* for PPIs this is IMPLEMENTATION DEFINED. The arch timer
|
|
* code relies on PPIs being level triggered, so we also
|
|
* make them read-only here.
|
|
*/
|
|
if (intid + i < VGIC_NR_PRIVATE_IRQS)
|
|
continue;
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
|
|
if (test_bit(i * 2 + 1, &val))
|
|
irq->config = VGIC_CONFIG_EDGE;
|
|
else
|
|
irq->config = VGIC_CONFIG_LEVEL;
|
|
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
|
|
{
|
|
int i;
|
|
u64 val = 0;
|
|
int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
struct vgic_irq *irq;
|
|
|
|
if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
|
|
continue;
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
|
|
val |= (1U << i);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
|
|
const u64 val)
|
|
{
|
|
int i;
|
|
int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
|
|
unsigned long flags;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
struct vgic_irq *irq;
|
|
bool new_level;
|
|
|
|
if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
|
|
continue;
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
/*
|
|
* Line level is set irrespective of irq type
|
|
* (level or edge) to avoid dependency that VM should
|
|
* restore irq config before line level.
|
|
*/
|
|
new_level = !!(val & (1U << i));
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
irq->line_level = new_level;
|
|
if (new_level)
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
|
|
else
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
static int match_region(const void *key, const void *elt)
|
|
{
|
|
const unsigned int offset = (unsigned long)key;
|
|
const struct vgic_register_region *region = elt;
|
|
|
|
if (offset < region->reg_offset)
|
|
return -1;
|
|
|
|
if (offset >= region->reg_offset + region->len)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct vgic_register_region *
|
|
vgic_find_mmio_region(const struct vgic_register_region *regions,
|
|
int nr_regions, unsigned int offset)
|
|
{
|
|
return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
|
|
sizeof(regions[0]), match_region);
|
|
}
|
|
|
|
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
|
|
{
|
|
if (kvm_vgic_global_state.type == VGIC_V2)
|
|
vgic_v2_set_vmcr(vcpu, vmcr);
|
|
else
|
|
vgic_v3_set_vmcr(vcpu, vmcr);
|
|
}
|
|
|
|
void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
|
|
{
|
|
if (kvm_vgic_global_state.type == VGIC_V2)
|
|
vgic_v2_get_vmcr(vcpu, vmcr);
|
|
else
|
|
vgic_v3_get_vmcr(vcpu, vmcr);
|
|
}
|
|
|
|
/*
|
|
* kvm_mmio_read_buf() returns a value in a format where it can be converted
|
|
* to a byte array and be directly observed as the guest wanted it to appear
|
|
* in memory if it had done the store itself, which is LE for the GIC, as the
|
|
* guest knows the GIC is always LE.
|
|
*
|
|
* We convert this value to the CPUs native format to deal with it as a data
|
|
* value.
|
|
*/
|
|
unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
|
|
{
|
|
unsigned long data = kvm_mmio_read_buf(val, len);
|
|
|
|
switch (len) {
|
|
case 1:
|
|
return data;
|
|
case 2:
|
|
return le16_to_cpu(data);
|
|
case 4:
|
|
return le32_to_cpu(data);
|
|
default:
|
|
return le64_to_cpu(data);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* kvm_mmio_write_buf() expects a value in a format such that if converted to
|
|
* a byte array it is observed as the guest would see it if it could perform
|
|
* the load directly. Since the GIC is LE, and the guest knows this, the
|
|
* guest expects a value in little endian format.
|
|
*
|
|
* We convert the data value from the CPUs native format to LE so that the
|
|
* value is returned in the proper format.
|
|
*/
|
|
void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
|
|
unsigned long data)
|
|
{
|
|
switch (len) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
data = cpu_to_le16(data);
|
|
break;
|
|
case 4:
|
|
data = cpu_to_le32(data);
|
|
break;
|
|
default:
|
|
data = cpu_to_le64(data);
|
|
}
|
|
|
|
kvm_mmio_write_buf(buf, len, data);
|
|
}
|
|
|
|
static
|
|
struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
|
|
{
|
|
return container_of(dev, struct vgic_io_device, dev);
|
|
}
|
|
|
|
static bool check_region(const struct kvm *kvm,
|
|
const struct vgic_register_region *region,
|
|
gpa_t addr, int len)
|
|
{
|
|
int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
|
|
|
|
switch (len) {
|
|
case sizeof(u8):
|
|
flags = VGIC_ACCESS_8bit;
|
|
break;
|
|
case sizeof(u32):
|
|
flags = VGIC_ACCESS_32bit;
|
|
break;
|
|
case sizeof(u64):
|
|
flags = VGIC_ACCESS_64bit;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
|
|
if (!region->bits_per_irq)
|
|
return true;
|
|
|
|
/* Do we access a non-allocated IRQ? */
|
|
return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const struct vgic_register_region *
|
|
vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
|
|
gpa_t addr, int len)
|
|
{
|
|
const struct vgic_register_region *region;
|
|
|
|
region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
|
|
addr - iodev->base_addr);
|
|
if (!region || !check_region(vcpu->kvm, region, addr, len))
|
|
return NULL;
|
|
|
|
return region;
|
|
}
|
|
|
|
static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
|
gpa_t addr, u32 *val)
|
|
{
|
|
struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
|
|
const struct vgic_register_region *region;
|
|
struct kvm_vcpu *r_vcpu;
|
|
|
|
region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
|
|
if (!region) {
|
|
*val = 0;
|
|
return 0;
|
|
}
|
|
|
|
r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
|
|
if (region->uaccess_read)
|
|
*val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
|
|
else
|
|
*val = region->read(r_vcpu, addr, sizeof(u32));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
|
gpa_t addr, const u32 *val)
|
|
{
|
|
struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
|
|
const struct vgic_register_region *region;
|
|
struct kvm_vcpu *r_vcpu;
|
|
|
|
region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
|
|
if (!region)
|
|
return 0;
|
|
|
|
r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
|
|
if (region->uaccess_write)
|
|
region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
|
|
else
|
|
region->write(r_vcpu, addr, sizeof(u32), *val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Userland access to VGIC registers.
|
|
*/
|
|
int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
|
|
bool is_write, int offset, u32 *val)
|
|
{
|
|
if (is_write)
|
|
return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
|
|
else
|
|
return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
|
|
}
|
|
|
|
static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
|
gpa_t addr, int len, void *val)
|
|
{
|
|
struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
|
|
const struct vgic_register_region *region;
|
|
unsigned long data = 0;
|
|
|
|
region = vgic_get_mmio_region(vcpu, iodev, addr, len);
|
|
if (!region) {
|
|
memset(val, 0, len);
|
|
return 0;
|
|
}
|
|
|
|
switch (iodev->iodev_type) {
|
|
case IODEV_CPUIF:
|
|
data = region->read(vcpu, addr, len);
|
|
break;
|
|
case IODEV_DIST:
|
|
data = region->read(vcpu, addr, len);
|
|
break;
|
|
case IODEV_REDIST:
|
|
data = region->read(iodev->redist_vcpu, addr, len);
|
|
break;
|
|
case IODEV_ITS:
|
|
data = region->its_read(vcpu->kvm, iodev->its, addr, len);
|
|
break;
|
|
}
|
|
|
|
vgic_data_host_to_mmio_bus(val, len, data);
|
|
return 0;
|
|
}
|
|
|
|
static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
|
gpa_t addr, int len, const void *val)
|
|
{
|
|
struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
|
|
const struct vgic_register_region *region;
|
|
unsigned long data = vgic_data_mmio_bus_to_host(val, len);
|
|
|
|
region = vgic_get_mmio_region(vcpu, iodev, addr, len);
|
|
if (!region)
|
|
return 0;
|
|
|
|
switch (iodev->iodev_type) {
|
|
case IODEV_CPUIF:
|
|
region->write(vcpu, addr, len, data);
|
|
break;
|
|
case IODEV_DIST:
|
|
region->write(vcpu, addr, len, data);
|
|
break;
|
|
case IODEV_REDIST:
|
|
region->write(iodev->redist_vcpu, addr, len, data);
|
|
break;
|
|
case IODEV_ITS:
|
|
region->its_write(vcpu->kvm, iodev->its, addr, len, data);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct kvm_io_device_ops kvm_io_gic_ops = {
|
|
.read = dispatch_mmio_read,
|
|
.write = dispatch_mmio_write,
|
|
};
|
|
|
|
int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
|
|
enum vgic_type type)
|
|
{
|
|
struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
|
|
int ret = 0;
|
|
unsigned int len;
|
|
|
|
switch (type) {
|
|
case VGIC_V2:
|
|
len = vgic_v2_init_dist_iodev(io_device);
|
|
break;
|
|
case VGIC_V3:
|
|
len = vgic_v3_init_dist_iodev(io_device);
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
}
|
|
|
|
io_device->base_addr = dist_base_address;
|
|
io_device->iodev_type = IODEV_DIST;
|
|
io_device->redist_vcpu = NULL;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
|
|
len, &io_device->dev);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
return ret;
|
|
}
|