1876 lines
41 KiB
C
1876 lines
41 KiB
C
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include <linux/stddef.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/init.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/freezer.h>
|
|
|
|
#include "xfs_sb.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trace.h"
|
|
|
|
static kmem_zone_t *xfs_buf_zone;
|
|
|
|
static struct workqueue_struct *xfslogd_workqueue;
|
|
|
|
#ifdef XFS_BUF_LOCK_TRACKING
|
|
# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
|
|
# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
|
|
# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
|
|
#else
|
|
# define XB_SET_OWNER(bp) do { } while (0)
|
|
# define XB_CLEAR_OWNER(bp) do { } while (0)
|
|
# define XB_GET_OWNER(bp) do { } while (0)
|
|
#endif
|
|
|
|
#define xb_to_gfp(flags) \
|
|
((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
|
|
|
|
|
|
static inline int
|
|
xfs_buf_is_vmapped(
|
|
struct xfs_buf *bp)
|
|
{
|
|
/*
|
|
* Return true if the buffer is vmapped.
|
|
*
|
|
* b_addr is null if the buffer is not mapped, but the code is clever
|
|
* enough to know it doesn't have to map a single page, so the check has
|
|
* to be both for b_addr and bp->b_page_count > 1.
|
|
*/
|
|
return bp->b_addr && bp->b_page_count > 1;
|
|
}
|
|
|
|
static inline int
|
|
xfs_buf_vmap_len(
|
|
struct xfs_buf *bp)
|
|
{
|
|
return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
|
|
}
|
|
|
|
/*
|
|
* xfs_buf_lru_add - add a buffer to the LRU.
|
|
*
|
|
* The LRU takes a new reference to the buffer so that it will only be freed
|
|
* once the shrinker takes the buffer off the LRU.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_lru_add(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
if (list_empty(&bp->b_lru)) {
|
|
atomic_inc(&bp->b_hold);
|
|
list_add_tail(&bp->b_lru, &btp->bt_lru);
|
|
btp->bt_lru_nr++;
|
|
bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
|
|
/*
|
|
* xfs_buf_lru_del - remove a buffer from the LRU
|
|
*
|
|
* The unlocked check is safe here because it only occurs when there are not
|
|
* b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
|
|
* to optimise the shrinker removing the buffer from the LRU and calling
|
|
* xfs_buf_free(). i.e. it removes an unnecessary round trip on the
|
|
* bt_lru_lock.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_lru_del(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
if (list_empty(&bp->b_lru))
|
|
return;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
if (!list_empty(&bp->b_lru)) {
|
|
list_del_init(&bp->b_lru);
|
|
btp->bt_lru_nr--;
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
|
|
/*
|
|
* When we mark a buffer stale, we remove the buffer from the LRU and clear the
|
|
* b_lru_ref count so that the buffer is freed immediately when the buffer
|
|
* reference count falls to zero. If the buffer is already on the LRU, we need
|
|
* to remove the reference that LRU holds on the buffer.
|
|
*
|
|
* This prevents build-up of stale buffers on the LRU.
|
|
*/
|
|
void
|
|
xfs_buf_stale(
|
|
struct xfs_buf *bp)
|
|
{
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
bp->b_flags |= XBF_STALE;
|
|
|
|
/*
|
|
* Clear the delwri status so that a delwri queue walker will not
|
|
* flush this buffer to disk now that it is stale. The delwri queue has
|
|
* a reference to the buffer, so this is safe to do.
|
|
*/
|
|
bp->b_flags &= ~_XBF_DELWRI_Q;
|
|
|
|
atomic_set(&(bp)->b_lru_ref, 0);
|
|
if (!list_empty(&bp->b_lru)) {
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
if (!list_empty(&bp->b_lru) &&
|
|
!(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
|
|
list_del_init(&bp->b_lru);
|
|
btp->bt_lru_nr--;
|
|
atomic_dec(&bp->b_hold);
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
ASSERT(atomic_read(&bp->b_hold) >= 1);
|
|
}
|
|
|
|
static int
|
|
xfs_buf_get_maps(
|
|
struct xfs_buf *bp,
|
|
int map_count)
|
|
{
|
|
ASSERT(bp->b_maps == NULL);
|
|
bp->b_map_count = map_count;
|
|
|
|
if (map_count == 1) {
|
|
bp->b_maps = &bp->__b_map;
|
|
return 0;
|
|
}
|
|
|
|
bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
|
|
KM_NOFS);
|
|
if (!bp->b_maps)
|
|
return ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Frees b_pages if it was allocated.
|
|
*/
|
|
static void
|
|
xfs_buf_free_maps(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (bp->b_maps != &bp->__b_map) {
|
|
kmem_free(bp->b_maps);
|
|
bp->b_maps = NULL;
|
|
}
|
|
}
|
|
|
|
struct xfs_buf *
|
|
_xfs_buf_alloc(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
int i;
|
|
|
|
bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
|
|
if (unlikely(!bp))
|
|
return NULL;
|
|
|
|
/*
|
|
* We don't want certain flags to appear in b_flags unless they are
|
|
* specifically set by later operations on the buffer.
|
|
*/
|
|
flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
|
|
|
|
atomic_set(&bp->b_hold, 1);
|
|
atomic_set(&bp->b_lru_ref, 1);
|
|
init_completion(&bp->b_iowait);
|
|
INIT_LIST_HEAD(&bp->b_lru);
|
|
INIT_LIST_HEAD(&bp->b_list);
|
|
RB_CLEAR_NODE(&bp->b_rbnode);
|
|
sema_init(&bp->b_sema, 0); /* held, no waiters */
|
|
XB_SET_OWNER(bp);
|
|
bp->b_target = target;
|
|
bp->b_flags = flags;
|
|
|
|
/*
|
|
* Set length and io_length to the same value initially.
|
|
* I/O routines should use io_length, which will be the same in
|
|
* most cases but may be reset (e.g. XFS recovery).
|
|
*/
|
|
error = xfs_buf_get_maps(bp, nmaps);
|
|
if (error) {
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
return NULL;
|
|
}
|
|
|
|
bp->b_bn = map[0].bm_bn;
|
|
bp->b_length = 0;
|
|
for (i = 0; i < nmaps; i++) {
|
|
bp->b_maps[i].bm_bn = map[i].bm_bn;
|
|
bp->b_maps[i].bm_len = map[i].bm_len;
|
|
bp->b_length += map[i].bm_len;
|
|
}
|
|
bp->b_io_length = bp->b_length;
|
|
|
|
atomic_set(&bp->b_pin_count, 0);
|
|
init_waitqueue_head(&bp->b_waiters);
|
|
|
|
XFS_STATS_INC(xb_create);
|
|
trace_xfs_buf_init(bp, _RET_IP_);
|
|
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Allocate a page array capable of holding a specified number
|
|
* of pages, and point the page buf at it.
|
|
*/
|
|
STATIC int
|
|
_xfs_buf_get_pages(
|
|
xfs_buf_t *bp,
|
|
int page_count,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
/* Make sure that we have a page list */
|
|
if (bp->b_pages == NULL) {
|
|
bp->b_page_count = page_count;
|
|
if (page_count <= XB_PAGES) {
|
|
bp->b_pages = bp->b_page_array;
|
|
} else {
|
|
bp->b_pages = kmem_alloc(sizeof(struct page *) *
|
|
page_count, KM_NOFS);
|
|
if (bp->b_pages == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Frees b_pages if it was allocated.
|
|
*/
|
|
STATIC void
|
|
_xfs_buf_free_pages(
|
|
xfs_buf_t *bp)
|
|
{
|
|
if (bp->b_pages != bp->b_page_array) {
|
|
kmem_free(bp->b_pages);
|
|
bp->b_pages = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Releases the specified buffer.
|
|
*
|
|
* The modification state of any associated pages is left unchanged.
|
|
* The buffer most not be on any hash - use xfs_buf_rele instead for
|
|
* hashed and refcounted buffers
|
|
*/
|
|
void
|
|
xfs_buf_free(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_free(bp, _RET_IP_);
|
|
|
|
ASSERT(list_empty(&bp->b_lru));
|
|
|
|
if (bp->b_flags & _XBF_PAGES) {
|
|
uint i;
|
|
|
|
if (xfs_buf_is_vmapped(bp))
|
|
vm_unmap_ram(bp->b_addr - bp->b_offset,
|
|
bp->b_page_count);
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
struct page *page = bp->b_pages[i];
|
|
|
|
__free_page(page);
|
|
}
|
|
} else if (bp->b_flags & _XBF_KMEM)
|
|
kmem_free(bp->b_addr);
|
|
_xfs_buf_free_pages(bp);
|
|
xfs_buf_free_maps(bp);
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
}
|
|
|
|
/*
|
|
* Allocates all the pages for buffer in question and builds it's page list.
|
|
*/
|
|
STATIC int
|
|
xfs_buf_allocate_memory(
|
|
xfs_buf_t *bp,
|
|
uint flags)
|
|
{
|
|
size_t size;
|
|
size_t nbytes, offset;
|
|
gfp_t gfp_mask = xb_to_gfp(flags);
|
|
unsigned short page_count, i;
|
|
xfs_off_t start, end;
|
|
int error;
|
|
|
|
/*
|
|
* for buffers that are contained within a single page, just allocate
|
|
* the memory from the heap - there's no need for the complexity of
|
|
* page arrays to keep allocation down to order 0.
|
|
*/
|
|
size = BBTOB(bp->b_length);
|
|
if (size < PAGE_SIZE) {
|
|
bp->b_addr = kmem_alloc(size, KM_NOFS);
|
|
if (!bp->b_addr) {
|
|
/* low memory - use alloc_page loop instead */
|
|
goto use_alloc_page;
|
|
}
|
|
|
|
if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
|
|
((unsigned long)bp->b_addr & PAGE_MASK)) {
|
|
/* b_addr spans two pages - use alloc_page instead */
|
|
kmem_free(bp->b_addr);
|
|
bp->b_addr = NULL;
|
|
goto use_alloc_page;
|
|
}
|
|
bp->b_offset = offset_in_page(bp->b_addr);
|
|
bp->b_pages = bp->b_page_array;
|
|
bp->b_pages[0] = virt_to_page(bp->b_addr);
|
|
bp->b_page_count = 1;
|
|
bp->b_flags |= _XBF_KMEM;
|
|
return 0;
|
|
}
|
|
|
|
use_alloc_page:
|
|
start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
|
|
end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
|
|
>> PAGE_SHIFT;
|
|
page_count = end - start;
|
|
error = _xfs_buf_get_pages(bp, page_count, flags);
|
|
if (unlikely(error))
|
|
return error;
|
|
|
|
offset = bp->b_offset;
|
|
bp->b_flags |= _XBF_PAGES;
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
struct page *page;
|
|
uint retries = 0;
|
|
retry:
|
|
page = alloc_page(gfp_mask);
|
|
if (unlikely(page == NULL)) {
|
|
if (flags & XBF_READ_AHEAD) {
|
|
bp->b_page_count = i;
|
|
error = ENOMEM;
|
|
goto out_free_pages;
|
|
}
|
|
|
|
/*
|
|
* This could deadlock.
|
|
*
|
|
* But until all the XFS lowlevel code is revamped to
|
|
* handle buffer allocation failures we can't do much.
|
|
*/
|
|
if (!(++retries % 100))
|
|
xfs_err(NULL,
|
|
"possible memory allocation deadlock in %s (mode:0x%x)",
|
|
__func__, gfp_mask);
|
|
|
|
XFS_STATS_INC(xb_page_retries);
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
goto retry;
|
|
}
|
|
|
|
XFS_STATS_INC(xb_page_found);
|
|
|
|
nbytes = min_t(size_t, size, PAGE_SIZE - offset);
|
|
size -= nbytes;
|
|
bp->b_pages[i] = page;
|
|
offset = 0;
|
|
}
|
|
return 0;
|
|
|
|
out_free_pages:
|
|
for (i = 0; i < bp->b_page_count; i++)
|
|
__free_page(bp->b_pages[i]);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Map buffer into kernel address-space if necessary.
|
|
*/
|
|
STATIC int
|
|
_xfs_buf_map_pages(
|
|
xfs_buf_t *bp,
|
|
uint flags)
|
|
{
|
|
ASSERT(bp->b_flags & _XBF_PAGES);
|
|
if (bp->b_page_count == 1) {
|
|
/* A single page buffer is always mappable */
|
|
bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
|
|
} else if (flags & XBF_UNMAPPED) {
|
|
bp->b_addr = NULL;
|
|
} else {
|
|
int retried = 0;
|
|
|
|
do {
|
|
bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
|
|
-1, PAGE_KERNEL);
|
|
if (bp->b_addr)
|
|
break;
|
|
vm_unmap_aliases();
|
|
} while (retried++ <= 1);
|
|
|
|
if (!bp->b_addr)
|
|
return -ENOMEM;
|
|
bp->b_addr += bp->b_offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finding and Reading Buffers
|
|
*/
|
|
|
|
/*
|
|
* Look up, and creates if absent, a lockable buffer for
|
|
* a given range of an inode. The buffer is returned
|
|
* locked. No I/O is implied by this call.
|
|
*/
|
|
xfs_buf_t *
|
|
_xfs_buf_find(
|
|
struct xfs_buftarg *btp,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags,
|
|
xfs_buf_t *new_bp)
|
|
{
|
|
size_t numbytes;
|
|
struct xfs_perag *pag;
|
|
struct rb_node **rbp;
|
|
struct rb_node *parent;
|
|
xfs_buf_t *bp;
|
|
xfs_daddr_t blkno = map[0].bm_bn;
|
|
xfs_daddr_t eofs;
|
|
int numblks = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < nmaps; i++)
|
|
numblks += map[i].bm_len;
|
|
numbytes = BBTOB(numblks);
|
|
|
|
/* Check for IOs smaller than the sector size / not sector aligned */
|
|
ASSERT(!(numbytes < (1 << btp->bt_sshift)));
|
|
ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
|
|
|
|
/*
|
|
* Corrupted block numbers can get through to here, unfortunately, so we
|
|
* have to check that the buffer falls within the filesystem bounds.
|
|
*/
|
|
eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
|
|
if (blkno >= eofs) {
|
|
/*
|
|
* XXX (dgc): we should really be returning EFSCORRUPTED here,
|
|
* but none of the higher level infrastructure supports
|
|
* returning a specific error on buffer lookup failures.
|
|
*/
|
|
xfs_alert(btp->bt_mount,
|
|
"%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
|
|
__func__, blkno, eofs);
|
|
return NULL;
|
|
}
|
|
|
|
/* get tree root */
|
|
pag = xfs_perag_get(btp->bt_mount,
|
|
xfs_daddr_to_agno(btp->bt_mount, blkno));
|
|
|
|
/* walk tree */
|
|
spin_lock(&pag->pag_buf_lock);
|
|
rbp = &pag->pag_buf_tree.rb_node;
|
|
parent = NULL;
|
|
bp = NULL;
|
|
while (*rbp) {
|
|
parent = *rbp;
|
|
bp = rb_entry(parent, struct xfs_buf, b_rbnode);
|
|
|
|
if (blkno < bp->b_bn)
|
|
rbp = &(*rbp)->rb_left;
|
|
else if (blkno > bp->b_bn)
|
|
rbp = &(*rbp)->rb_right;
|
|
else {
|
|
/*
|
|
* found a block number match. If the range doesn't
|
|
* match, the only way this is allowed is if the buffer
|
|
* in the cache is stale and the transaction that made
|
|
* it stale has not yet committed. i.e. we are
|
|
* reallocating a busy extent. Skip this buffer and
|
|
* continue searching to the right for an exact match.
|
|
*/
|
|
if (bp->b_length != numblks) {
|
|
ASSERT(bp->b_flags & XBF_STALE);
|
|
rbp = &(*rbp)->rb_right;
|
|
continue;
|
|
}
|
|
atomic_inc(&bp->b_hold);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* No match found */
|
|
if (new_bp) {
|
|
rb_link_node(&new_bp->b_rbnode, parent, rbp);
|
|
rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
|
|
/* the buffer keeps the perag reference until it is freed */
|
|
new_bp->b_pag = pag;
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
} else {
|
|
XFS_STATS_INC(xb_miss_locked);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
return new_bp;
|
|
|
|
found:
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
|
|
if (!xfs_buf_trylock(bp)) {
|
|
if (flags & XBF_TRYLOCK) {
|
|
xfs_buf_rele(bp);
|
|
XFS_STATS_INC(xb_busy_locked);
|
|
return NULL;
|
|
}
|
|
xfs_buf_lock(bp);
|
|
XFS_STATS_INC(xb_get_locked_waited);
|
|
}
|
|
|
|
/*
|
|
* if the buffer is stale, clear all the external state associated with
|
|
* it. We need to keep flags such as how we allocated the buffer memory
|
|
* intact here.
|
|
*/
|
|
if (bp->b_flags & XBF_STALE) {
|
|
ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
|
|
ASSERT(bp->b_iodone == NULL);
|
|
bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
|
|
bp->b_ops = NULL;
|
|
}
|
|
|
|
trace_xfs_buf_find(bp, flags, _RET_IP_);
|
|
XFS_STATS_INC(xb_get_locked);
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Assembles a buffer covering the specified range. The code is optimised for
|
|
* cache hits, as metadata intensive workloads will see 3 orders of magnitude
|
|
* more hits than misses.
|
|
*/
|
|
struct xfs_buf *
|
|
xfs_buf_get_map(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
struct xfs_buf *bp;
|
|
struct xfs_buf *new_bp;
|
|
int error = 0;
|
|
|
|
bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
|
|
if (likely(bp))
|
|
goto found;
|
|
|
|
new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
|
|
if (unlikely(!new_bp))
|
|
return NULL;
|
|
|
|
error = xfs_buf_allocate_memory(new_bp, flags);
|
|
if (error) {
|
|
xfs_buf_free(new_bp);
|
|
return NULL;
|
|
}
|
|
|
|
bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
|
|
if (!bp) {
|
|
xfs_buf_free(new_bp);
|
|
return NULL;
|
|
}
|
|
|
|
if (bp != new_bp)
|
|
xfs_buf_free(new_bp);
|
|
|
|
found:
|
|
if (!bp->b_addr) {
|
|
error = _xfs_buf_map_pages(bp, flags);
|
|
if (unlikely(error)) {
|
|
xfs_warn(target->bt_mount,
|
|
"%s: failed to map pages\n", __func__);
|
|
xfs_buf_relse(bp);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
XFS_STATS_INC(xb_get);
|
|
trace_xfs_buf_get(bp, flags, _RET_IP_);
|
|
return bp;
|
|
}
|
|
|
|
STATIC int
|
|
_xfs_buf_read(
|
|
xfs_buf_t *bp,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
ASSERT(!(flags & XBF_WRITE));
|
|
ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
|
|
|
|
bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
|
|
bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
|
|
|
|
xfs_buf_iorequest(bp);
|
|
if (flags & XBF_ASYNC)
|
|
return 0;
|
|
return xfs_buf_iowait(bp);
|
|
}
|
|
|
|
xfs_buf_t *
|
|
xfs_buf_read_map(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags,
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
flags |= XBF_READ;
|
|
|
|
bp = xfs_buf_get_map(target, map, nmaps, flags);
|
|
if (bp) {
|
|
trace_xfs_buf_read(bp, flags, _RET_IP_);
|
|
|
|
if (!XFS_BUF_ISDONE(bp)) {
|
|
XFS_STATS_INC(xb_get_read);
|
|
bp->b_ops = ops;
|
|
_xfs_buf_read(bp, flags);
|
|
} else if (flags & XBF_ASYNC) {
|
|
/*
|
|
* Read ahead call which is already satisfied,
|
|
* drop the buffer
|
|
*/
|
|
xfs_buf_relse(bp);
|
|
return NULL;
|
|
} else {
|
|
/* We do not want read in the flags */
|
|
bp->b_flags &= ~XBF_READ;
|
|
}
|
|
}
|
|
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* If we are not low on memory then do the readahead in a deadlock
|
|
* safe manner.
|
|
*/
|
|
void
|
|
xfs_buf_readahead_map(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
if (bdi_read_congested(target->bt_bdi))
|
|
return;
|
|
|
|
xfs_buf_read_map(target, map, nmaps,
|
|
XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
|
|
}
|
|
|
|
/*
|
|
* Read an uncached buffer from disk. Allocates and returns a locked
|
|
* buffer containing the disk contents or nothing.
|
|
*/
|
|
struct xfs_buf *
|
|
xfs_buf_read_uncached(
|
|
struct xfs_buftarg *target,
|
|
xfs_daddr_t daddr,
|
|
size_t numblks,
|
|
int flags,
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
bp = xfs_buf_get_uncached(target, numblks, flags);
|
|
if (!bp)
|
|
return NULL;
|
|
|
|
/* set up the buffer for a read IO */
|
|
ASSERT(bp->b_map_count == 1);
|
|
bp->b_bn = daddr;
|
|
bp->b_maps[0].bm_bn = daddr;
|
|
bp->b_flags |= XBF_READ;
|
|
bp->b_ops = ops;
|
|
|
|
xfsbdstrat(target->bt_mount, bp);
|
|
xfs_buf_iowait(bp);
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Return a buffer allocated as an empty buffer and associated to external
|
|
* memory via xfs_buf_associate_memory() back to it's empty state.
|
|
*/
|
|
void
|
|
xfs_buf_set_empty(
|
|
struct xfs_buf *bp,
|
|
size_t numblks)
|
|
{
|
|
if (bp->b_pages)
|
|
_xfs_buf_free_pages(bp);
|
|
|
|
bp->b_pages = NULL;
|
|
bp->b_page_count = 0;
|
|
bp->b_addr = NULL;
|
|
bp->b_length = numblks;
|
|
bp->b_io_length = numblks;
|
|
|
|
ASSERT(bp->b_map_count == 1);
|
|
bp->b_bn = XFS_BUF_DADDR_NULL;
|
|
bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
|
|
bp->b_maps[0].bm_len = bp->b_length;
|
|
}
|
|
|
|
static inline struct page *
|
|
mem_to_page(
|
|
void *addr)
|
|
{
|
|
if ((!is_vmalloc_addr(addr))) {
|
|
return virt_to_page(addr);
|
|
} else {
|
|
return vmalloc_to_page(addr);
|
|
}
|
|
}
|
|
|
|
int
|
|
xfs_buf_associate_memory(
|
|
xfs_buf_t *bp,
|
|
void *mem,
|
|
size_t len)
|
|
{
|
|
int rval;
|
|
int i = 0;
|
|
unsigned long pageaddr;
|
|
unsigned long offset;
|
|
size_t buflen;
|
|
int page_count;
|
|
|
|
pageaddr = (unsigned long)mem & PAGE_MASK;
|
|
offset = (unsigned long)mem - pageaddr;
|
|
buflen = PAGE_ALIGN(len + offset);
|
|
page_count = buflen >> PAGE_SHIFT;
|
|
|
|
/* Free any previous set of page pointers */
|
|
if (bp->b_pages)
|
|
_xfs_buf_free_pages(bp);
|
|
|
|
bp->b_pages = NULL;
|
|
bp->b_addr = mem;
|
|
|
|
rval = _xfs_buf_get_pages(bp, page_count, 0);
|
|
if (rval)
|
|
return rval;
|
|
|
|
bp->b_offset = offset;
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
bp->b_pages[i] = mem_to_page((void *)pageaddr);
|
|
pageaddr += PAGE_SIZE;
|
|
}
|
|
|
|
bp->b_io_length = BTOBB(len);
|
|
bp->b_length = BTOBB(buflen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
xfs_buf_t *
|
|
xfs_buf_get_uncached(
|
|
struct xfs_buftarg *target,
|
|
size_t numblks,
|
|
int flags)
|
|
{
|
|
unsigned long page_count;
|
|
int error, i;
|
|
struct xfs_buf *bp;
|
|
DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
|
|
|
|
bp = _xfs_buf_alloc(target, &map, 1, 0);
|
|
if (unlikely(bp == NULL))
|
|
goto fail;
|
|
|
|
page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
|
|
error = _xfs_buf_get_pages(bp, page_count, 0);
|
|
if (error)
|
|
goto fail_free_buf;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
|
|
if (!bp->b_pages[i])
|
|
goto fail_free_mem;
|
|
}
|
|
bp->b_flags |= _XBF_PAGES;
|
|
|
|
error = _xfs_buf_map_pages(bp, 0);
|
|
if (unlikely(error)) {
|
|
xfs_warn(target->bt_mount,
|
|
"%s: failed to map pages\n", __func__);
|
|
goto fail_free_mem;
|
|
}
|
|
|
|
trace_xfs_buf_get_uncached(bp, _RET_IP_);
|
|
return bp;
|
|
|
|
fail_free_mem:
|
|
while (--i >= 0)
|
|
__free_page(bp->b_pages[i]);
|
|
_xfs_buf_free_pages(bp);
|
|
fail_free_buf:
|
|
xfs_buf_free_maps(bp);
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
fail:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Increment reference count on buffer, to hold the buffer concurrently
|
|
* with another thread which may release (free) the buffer asynchronously.
|
|
* Must hold the buffer already to call this function.
|
|
*/
|
|
void
|
|
xfs_buf_hold(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_hold(bp, _RET_IP_);
|
|
atomic_inc(&bp->b_hold);
|
|
}
|
|
|
|
/*
|
|
* Releases a hold on the specified buffer. If the
|
|
* the hold count is 1, calls xfs_buf_free.
|
|
*/
|
|
void
|
|
xfs_buf_rele(
|
|
xfs_buf_t *bp)
|
|
{
|
|
struct xfs_perag *pag = bp->b_pag;
|
|
|
|
trace_xfs_buf_rele(bp, _RET_IP_);
|
|
|
|
if (!pag) {
|
|
ASSERT(list_empty(&bp->b_lru));
|
|
ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
|
|
if (atomic_dec_and_test(&bp->b_hold))
|
|
xfs_buf_free(bp);
|
|
return;
|
|
}
|
|
|
|
ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
|
|
|
|
ASSERT(atomic_read(&bp->b_hold) > 0);
|
|
if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
|
|
if (!(bp->b_flags & XBF_STALE) &&
|
|
atomic_read(&bp->b_lru_ref)) {
|
|
xfs_buf_lru_add(bp);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
} else {
|
|
xfs_buf_lru_del(bp);
|
|
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
|
|
rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
xfs_buf_free(bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Lock a buffer object, if it is not already locked.
|
|
*
|
|
* If we come across a stale, pinned, locked buffer, we know that we are
|
|
* being asked to lock a buffer that has been reallocated. Because it is
|
|
* pinned, we know that the log has not been pushed to disk and hence it
|
|
* will still be locked. Rather than continuing to have trylock attempts
|
|
* fail until someone else pushes the log, push it ourselves before
|
|
* returning. This means that the xfsaild will not get stuck trying
|
|
* to push on stale inode buffers.
|
|
*/
|
|
int
|
|
xfs_buf_trylock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int locked;
|
|
|
|
locked = down_trylock(&bp->b_sema) == 0;
|
|
if (locked)
|
|
XB_SET_OWNER(bp);
|
|
|
|
trace_xfs_buf_trylock(bp, _RET_IP_);
|
|
return locked;
|
|
}
|
|
|
|
/*
|
|
* Lock a buffer object.
|
|
*
|
|
* If we come across a stale, pinned, locked buffer, we know that we
|
|
* are being asked to lock a buffer that has been reallocated. Because
|
|
* it is pinned, we know that the log has not been pushed to disk and
|
|
* hence it will still be locked. Rather than sleeping until someone
|
|
* else pushes the log, push it ourselves before trying to get the lock.
|
|
*/
|
|
void
|
|
xfs_buf_lock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
trace_xfs_buf_lock(bp, _RET_IP_);
|
|
|
|
if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
|
|
xfs_log_force(bp->b_target->bt_mount, 0);
|
|
down(&bp->b_sema);
|
|
XB_SET_OWNER(bp);
|
|
|
|
trace_xfs_buf_lock_done(bp, _RET_IP_);
|
|
}
|
|
|
|
void
|
|
xfs_buf_unlock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
XB_CLEAR_OWNER(bp);
|
|
up(&bp->b_sema);
|
|
|
|
trace_xfs_buf_unlock(bp, _RET_IP_);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_wait_unpin(
|
|
xfs_buf_t *bp)
|
|
{
|
|
DECLARE_WAITQUEUE (wait, current);
|
|
|
|
if (atomic_read(&bp->b_pin_count) == 0)
|
|
return;
|
|
|
|
add_wait_queue(&bp->b_waiters, &wait);
|
|
for (;;) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
if (atomic_read(&bp->b_pin_count) == 0)
|
|
break;
|
|
io_schedule();
|
|
}
|
|
remove_wait_queue(&bp->b_waiters, &wait);
|
|
set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
/*
|
|
* Buffer Utility Routines
|
|
*/
|
|
|
|
STATIC void
|
|
xfs_buf_iodone_work(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_buf *bp =
|
|
container_of(work, xfs_buf_t, b_iodone_work);
|
|
bool read = !!(bp->b_flags & XBF_READ);
|
|
|
|
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
|
|
if (read && bp->b_ops)
|
|
bp->b_ops->verify_read(bp);
|
|
|
|
if (bp->b_iodone)
|
|
(*(bp->b_iodone))(bp);
|
|
else if (bp->b_flags & XBF_ASYNC)
|
|
xfs_buf_relse(bp);
|
|
else {
|
|
ASSERT(read && bp->b_ops);
|
|
complete(&bp->b_iowait);
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioend(
|
|
struct xfs_buf *bp,
|
|
int schedule)
|
|
{
|
|
bool read = !!(bp->b_flags & XBF_READ);
|
|
|
|
trace_xfs_buf_iodone(bp, _RET_IP_);
|
|
|
|
if (bp->b_error == 0)
|
|
bp->b_flags |= XBF_DONE;
|
|
|
|
if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
|
|
if (schedule) {
|
|
INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
|
|
queue_work(xfslogd_workqueue, &bp->b_iodone_work);
|
|
} else {
|
|
xfs_buf_iodone_work(&bp->b_iodone_work);
|
|
}
|
|
} else {
|
|
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
|
|
complete(&bp->b_iowait);
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioerror(
|
|
xfs_buf_t *bp,
|
|
int error)
|
|
{
|
|
ASSERT(error >= 0 && error <= 0xffff);
|
|
bp->b_error = (unsigned short)error;
|
|
trace_xfs_buf_ioerror(bp, error, _RET_IP_);
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioerror_alert(
|
|
struct xfs_buf *bp,
|
|
const char *func)
|
|
{
|
|
xfs_alert(bp->b_target->bt_mount,
|
|
"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
|
|
(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
|
|
}
|
|
|
|
/*
|
|
* Called when we want to stop a buffer from getting written or read.
|
|
* We attach the EIO error, muck with its flags, and call xfs_buf_ioend
|
|
* so that the proper iodone callbacks get called.
|
|
*/
|
|
STATIC int
|
|
xfs_bioerror(
|
|
xfs_buf_t *bp)
|
|
{
|
|
#ifdef XFSERRORDEBUG
|
|
ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
|
|
#endif
|
|
|
|
/*
|
|
* No need to wait until the buffer is unpinned, we aren't flushing it.
|
|
*/
|
|
xfs_buf_ioerror(bp, EIO);
|
|
|
|
/*
|
|
* We're calling xfs_buf_ioend, so delete XBF_DONE flag.
|
|
*/
|
|
XFS_BUF_UNREAD(bp);
|
|
XFS_BUF_UNDONE(bp);
|
|
xfs_buf_stale(bp);
|
|
|
|
xfs_buf_ioend(bp, 0);
|
|
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* Same as xfs_bioerror, except that we are releasing the buffer
|
|
* here ourselves, and avoiding the xfs_buf_ioend call.
|
|
* This is meant for userdata errors; metadata bufs come with
|
|
* iodone functions attached, so that we can track down errors.
|
|
*/
|
|
STATIC int
|
|
xfs_bioerror_relse(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int64_t fl = bp->b_flags;
|
|
/*
|
|
* No need to wait until the buffer is unpinned.
|
|
* We aren't flushing it.
|
|
*
|
|
* chunkhold expects B_DONE to be set, whether
|
|
* we actually finish the I/O or not. We don't want to
|
|
* change that interface.
|
|
*/
|
|
XFS_BUF_UNREAD(bp);
|
|
XFS_BUF_DONE(bp);
|
|
xfs_buf_stale(bp);
|
|
bp->b_iodone = NULL;
|
|
if (!(fl & XBF_ASYNC)) {
|
|
/*
|
|
* Mark b_error and B_ERROR _both_.
|
|
* Lot's of chunkcache code assumes that.
|
|
* There's no reason to mark error for
|
|
* ASYNC buffers.
|
|
*/
|
|
xfs_buf_ioerror(bp, EIO);
|
|
complete(&bp->b_iowait);
|
|
} else {
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
return EIO;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_bdstrat_cb(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
|
|
trace_xfs_bdstrat_shut(bp, _RET_IP_);
|
|
/*
|
|
* Metadata write that didn't get logged but
|
|
* written delayed anyway. These aren't associated
|
|
* with a transaction, and can be ignored.
|
|
*/
|
|
if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
|
|
return xfs_bioerror_relse(bp);
|
|
else
|
|
return xfs_bioerror(bp);
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
xfs_bwrite(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
bp->b_flags |= XBF_WRITE;
|
|
bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
|
|
|
|
xfs_bdstrat_cb(bp);
|
|
|
|
error = xfs_buf_iowait(bp);
|
|
if (error) {
|
|
xfs_force_shutdown(bp->b_target->bt_mount,
|
|
SHUTDOWN_META_IO_ERROR);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Wrapper around bdstrat so that we can stop data from going to disk in case
|
|
* we are shutting down the filesystem. Typically user data goes thru this
|
|
* path; one of the exceptions is the superblock.
|
|
*/
|
|
void
|
|
xfsbdstrat(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
trace_xfs_bdstrat_shut(bp, _RET_IP_);
|
|
xfs_bioerror_relse(bp);
|
|
return;
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
}
|
|
|
|
STATIC void
|
|
_xfs_buf_ioend(
|
|
xfs_buf_t *bp,
|
|
int schedule)
|
|
{
|
|
if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
|
|
xfs_buf_ioend(bp, schedule);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_bio_end_io(
|
|
struct bio *bio,
|
|
int error)
|
|
{
|
|
xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
|
|
|
|
/*
|
|
* don't overwrite existing errors - otherwise we can lose errors on
|
|
* buffers that require multiple bios to complete.
|
|
*/
|
|
if (!bp->b_error)
|
|
xfs_buf_ioerror(bp, -error);
|
|
|
|
if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
|
|
invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
|
|
|
|
_xfs_buf_ioend(bp, 1);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void
|
|
xfs_buf_ioapply_map(
|
|
struct xfs_buf *bp,
|
|
int map,
|
|
int *buf_offset,
|
|
int *count,
|
|
int rw)
|
|
{
|
|
int page_index;
|
|
int total_nr_pages = bp->b_page_count;
|
|
int nr_pages;
|
|
struct bio *bio;
|
|
sector_t sector = bp->b_maps[map].bm_bn;
|
|
int size;
|
|
int offset;
|
|
|
|
total_nr_pages = bp->b_page_count;
|
|
|
|
/* skip the pages in the buffer before the start offset */
|
|
page_index = 0;
|
|
offset = *buf_offset;
|
|
while (offset >= PAGE_SIZE) {
|
|
page_index++;
|
|
offset -= PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Limit the IO size to the length of the current vector, and update the
|
|
* remaining IO count for the next time around.
|
|
*/
|
|
size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
|
|
*count -= size;
|
|
*buf_offset += size;
|
|
|
|
next_chunk:
|
|
atomic_inc(&bp->b_io_remaining);
|
|
nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
|
|
if (nr_pages > total_nr_pages)
|
|
nr_pages = total_nr_pages;
|
|
|
|
bio = bio_alloc(GFP_NOIO, nr_pages);
|
|
bio->bi_bdev = bp->b_target->bt_bdev;
|
|
bio->bi_sector = sector;
|
|
bio->bi_end_io = xfs_buf_bio_end_io;
|
|
bio->bi_private = bp;
|
|
|
|
|
|
for (; size && nr_pages; nr_pages--, page_index++) {
|
|
int rbytes, nbytes = PAGE_SIZE - offset;
|
|
|
|
if (nbytes > size)
|
|
nbytes = size;
|
|
|
|
rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
|
|
offset);
|
|
if (rbytes < nbytes)
|
|
break;
|
|
|
|
offset = 0;
|
|
sector += BTOBB(nbytes);
|
|
size -= nbytes;
|
|
total_nr_pages--;
|
|
}
|
|
|
|
if (likely(bio->bi_size)) {
|
|
if (xfs_buf_is_vmapped(bp)) {
|
|
flush_kernel_vmap_range(bp->b_addr,
|
|
xfs_buf_vmap_len(bp));
|
|
}
|
|
submit_bio(rw, bio);
|
|
if (size)
|
|
goto next_chunk;
|
|
} else {
|
|
/*
|
|
* This is guaranteed not to be the last io reference count
|
|
* because the caller (xfs_buf_iorequest) holds a count itself.
|
|
*/
|
|
atomic_dec(&bp->b_io_remaining);
|
|
xfs_buf_ioerror(bp, EIO);
|
|
bio_put(bio);
|
|
}
|
|
|
|
}
|
|
|
|
STATIC void
|
|
_xfs_buf_ioapply(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct blk_plug plug;
|
|
int rw;
|
|
int offset;
|
|
int size;
|
|
int i;
|
|
|
|
/*
|
|
* Make sure we capture only current IO errors rather than stale errors
|
|
* left over from previous use of the buffer (e.g. failed readahead).
|
|
*/
|
|
bp->b_error = 0;
|
|
|
|
if (bp->b_flags & XBF_WRITE) {
|
|
if (bp->b_flags & XBF_SYNCIO)
|
|
rw = WRITE_SYNC;
|
|
else
|
|
rw = WRITE;
|
|
if (bp->b_flags & XBF_FUA)
|
|
rw |= REQ_FUA;
|
|
if (bp->b_flags & XBF_FLUSH)
|
|
rw |= REQ_FLUSH;
|
|
|
|
/*
|
|
* Run the write verifier callback function if it exists. If
|
|
* this function fails it will mark the buffer with an error and
|
|
* the IO should not be dispatched.
|
|
*/
|
|
if (bp->b_ops) {
|
|
bp->b_ops->verify_write(bp);
|
|
if (bp->b_error) {
|
|
xfs_force_shutdown(bp->b_target->bt_mount,
|
|
SHUTDOWN_CORRUPT_INCORE);
|
|
return;
|
|
}
|
|
}
|
|
} else if (bp->b_flags & XBF_READ_AHEAD) {
|
|
rw = READA;
|
|
} else {
|
|
rw = READ;
|
|
}
|
|
|
|
/* we only use the buffer cache for meta-data */
|
|
rw |= REQ_META;
|
|
|
|
/*
|
|
* Walk all the vectors issuing IO on them. Set up the initial offset
|
|
* into the buffer and the desired IO size before we start -
|
|
* _xfs_buf_ioapply_vec() will modify them appropriately for each
|
|
* subsequent call.
|
|
*/
|
|
offset = bp->b_offset;
|
|
size = BBTOB(bp->b_io_length);
|
|
blk_start_plug(&plug);
|
|
for (i = 0; i < bp->b_map_count; i++) {
|
|
xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
|
|
if (bp->b_error)
|
|
break;
|
|
if (size <= 0)
|
|
break; /* all done */
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
void
|
|
xfs_buf_iorequest(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_iorequest(bp, _RET_IP_);
|
|
|
|
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
|
|
|
|
if (bp->b_flags & XBF_WRITE)
|
|
xfs_buf_wait_unpin(bp);
|
|
xfs_buf_hold(bp);
|
|
|
|
/* Set the count to 1 initially, this will stop an I/O
|
|
* completion callout which happens before we have started
|
|
* all the I/O from calling xfs_buf_ioend too early.
|
|
*/
|
|
atomic_set(&bp->b_io_remaining, 1);
|
|
_xfs_buf_ioapply(bp);
|
|
_xfs_buf_ioend(bp, 1);
|
|
|
|
xfs_buf_rele(bp);
|
|
}
|
|
|
|
/*
|
|
* Waits for I/O to complete on the buffer supplied. It returns immediately if
|
|
* no I/O is pending or there is already a pending error on the buffer. It
|
|
* returns the I/O error code, if any, or 0 if there was no error.
|
|
*/
|
|
int
|
|
xfs_buf_iowait(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_iowait(bp, _RET_IP_);
|
|
|
|
if (!bp->b_error)
|
|
wait_for_completion(&bp->b_iowait);
|
|
|
|
trace_xfs_buf_iowait_done(bp, _RET_IP_);
|
|
return bp->b_error;
|
|
}
|
|
|
|
xfs_caddr_t
|
|
xfs_buf_offset(
|
|
xfs_buf_t *bp,
|
|
size_t offset)
|
|
{
|
|
struct page *page;
|
|
|
|
if (bp->b_addr)
|
|
return bp->b_addr + offset;
|
|
|
|
offset += bp->b_offset;
|
|
page = bp->b_pages[offset >> PAGE_SHIFT];
|
|
return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
|
|
}
|
|
|
|
/*
|
|
* Move data into or out of a buffer.
|
|
*/
|
|
void
|
|
xfs_buf_iomove(
|
|
xfs_buf_t *bp, /* buffer to process */
|
|
size_t boff, /* starting buffer offset */
|
|
size_t bsize, /* length to copy */
|
|
void *data, /* data address */
|
|
xfs_buf_rw_t mode) /* read/write/zero flag */
|
|
{
|
|
size_t bend;
|
|
|
|
bend = boff + bsize;
|
|
while (boff < bend) {
|
|
struct page *page;
|
|
int page_index, page_offset, csize;
|
|
|
|
page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
|
|
page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
|
|
page = bp->b_pages[page_index];
|
|
csize = min_t(size_t, PAGE_SIZE - page_offset,
|
|
BBTOB(bp->b_io_length) - boff);
|
|
|
|
ASSERT((csize + page_offset) <= PAGE_SIZE);
|
|
|
|
switch (mode) {
|
|
case XBRW_ZERO:
|
|
memset(page_address(page) + page_offset, 0, csize);
|
|
break;
|
|
case XBRW_READ:
|
|
memcpy(data, page_address(page) + page_offset, csize);
|
|
break;
|
|
case XBRW_WRITE:
|
|
memcpy(page_address(page) + page_offset, data, csize);
|
|
}
|
|
|
|
boff += csize;
|
|
data += csize;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handling of buffer targets (buftargs).
|
|
*/
|
|
|
|
/*
|
|
* Wait for any bufs with callbacks that have been submitted but have not yet
|
|
* returned. These buffers will have an elevated hold count, so wait on those
|
|
* while freeing all the buffers only held by the LRU.
|
|
*/
|
|
void
|
|
xfs_wait_buftarg(
|
|
struct xfs_buftarg *btp)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
restart:
|
|
spin_lock(&btp->bt_lru_lock);
|
|
while (!list_empty(&btp->bt_lru)) {
|
|
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
|
|
if (atomic_read(&bp->b_hold) > 1) {
|
|
trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
|
|
list_move_tail(&bp->b_lru, &btp->bt_lru);
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
delay(100);
|
|
goto restart;
|
|
}
|
|
/*
|
|
* clear the LRU reference count so the buffer doesn't get
|
|
* ignored in xfs_buf_rele().
|
|
*/
|
|
atomic_set(&bp->b_lru_ref, 0);
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
xfs_buf_rele(bp);
|
|
spin_lock(&btp->bt_lru_lock);
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
|
|
int
|
|
xfs_buftarg_shrink(
|
|
struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct xfs_buftarg *btp = container_of(shrink,
|
|
struct xfs_buftarg, bt_shrinker);
|
|
struct xfs_buf *bp;
|
|
int nr_to_scan = sc->nr_to_scan;
|
|
LIST_HEAD(dispose);
|
|
|
|
if (!nr_to_scan)
|
|
return btp->bt_lru_nr;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
while (!list_empty(&btp->bt_lru)) {
|
|
if (nr_to_scan-- <= 0)
|
|
break;
|
|
|
|
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
|
|
|
|
/*
|
|
* Decrement the b_lru_ref count unless the value is already
|
|
* zero. If the value is already zero, we need to reclaim the
|
|
* buffer, otherwise it gets another trip through the LRU.
|
|
*/
|
|
if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
|
|
list_move_tail(&bp->b_lru, &btp->bt_lru);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* remove the buffer from the LRU now to avoid needing another
|
|
* lock round trip inside xfs_buf_rele().
|
|
*/
|
|
list_move(&bp->b_lru, &dispose);
|
|
btp->bt_lru_nr--;
|
|
bp->b_lru_flags |= _XBF_LRU_DISPOSE;
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
|
|
while (!list_empty(&dispose)) {
|
|
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
|
|
list_del_init(&bp->b_lru);
|
|
xfs_buf_rele(bp);
|
|
}
|
|
|
|
return btp->bt_lru_nr;
|
|
}
|
|
|
|
void
|
|
xfs_free_buftarg(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buftarg *btp)
|
|
{
|
|
unregister_shrinker(&btp->bt_shrinker);
|
|
|
|
if (mp->m_flags & XFS_MOUNT_BARRIER)
|
|
xfs_blkdev_issue_flush(btp);
|
|
|
|
kmem_free(btp);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_setsize_buftarg_flags(
|
|
xfs_buftarg_t *btp,
|
|
unsigned int blocksize,
|
|
unsigned int sectorsize,
|
|
int verbose)
|
|
{
|
|
btp->bt_bsize = blocksize;
|
|
btp->bt_sshift = ffs(sectorsize) - 1;
|
|
btp->bt_smask = sectorsize - 1;
|
|
|
|
if (set_blocksize(btp->bt_bdev, sectorsize)) {
|
|
char name[BDEVNAME_SIZE];
|
|
|
|
bdevname(btp->bt_bdev, name);
|
|
|
|
xfs_warn(btp->bt_mount,
|
|
"Cannot set_blocksize to %u on device %s\n",
|
|
sectorsize, name);
|
|
return EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When allocating the initial buffer target we have not yet
|
|
* read in the superblock, so don't know what sized sectors
|
|
* are being used is at this early stage. Play safe.
|
|
*/
|
|
STATIC int
|
|
xfs_setsize_buftarg_early(
|
|
xfs_buftarg_t *btp,
|
|
struct block_device *bdev)
|
|
{
|
|
return xfs_setsize_buftarg_flags(btp,
|
|
PAGE_SIZE, bdev_logical_block_size(bdev), 0);
|
|
}
|
|
|
|
int
|
|
xfs_setsize_buftarg(
|
|
xfs_buftarg_t *btp,
|
|
unsigned int blocksize,
|
|
unsigned int sectorsize)
|
|
{
|
|
return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
|
|
}
|
|
|
|
xfs_buftarg_t *
|
|
xfs_alloc_buftarg(
|
|
struct xfs_mount *mp,
|
|
struct block_device *bdev,
|
|
int external,
|
|
const char *fsname)
|
|
{
|
|
xfs_buftarg_t *btp;
|
|
|
|
btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
|
|
|
|
btp->bt_mount = mp;
|
|
btp->bt_dev = bdev->bd_dev;
|
|
btp->bt_bdev = bdev;
|
|
btp->bt_bdi = blk_get_backing_dev_info(bdev);
|
|
if (!btp->bt_bdi)
|
|
goto error;
|
|
|
|
INIT_LIST_HEAD(&btp->bt_lru);
|
|
spin_lock_init(&btp->bt_lru_lock);
|
|
if (xfs_setsize_buftarg_early(btp, bdev))
|
|
goto error;
|
|
btp->bt_shrinker.shrink = xfs_buftarg_shrink;
|
|
btp->bt_shrinker.seeks = DEFAULT_SEEKS;
|
|
register_shrinker(&btp->bt_shrinker);
|
|
return btp;
|
|
|
|
error:
|
|
kmem_free(btp);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Add a buffer to the delayed write list.
|
|
*
|
|
* This queues a buffer for writeout if it hasn't already been. Note that
|
|
* neither this routine nor the buffer list submission functions perform
|
|
* any internal synchronization. It is expected that the lists are thread-local
|
|
* to the callers.
|
|
*
|
|
* Returns true if we queued up the buffer, or false if it already had
|
|
* been on the buffer list.
|
|
*/
|
|
bool
|
|
xfs_buf_delwri_queue(
|
|
struct xfs_buf *bp,
|
|
struct list_head *list)
|
|
{
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
ASSERT(!(bp->b_flags & XBF_READ));
|
|
|
|
/*
|
|
* If the buffer is already marked delwri it already is queued up
|
|
* by someone else for imediate writeout. Just ignore it in that
|
|
* case.
|
|
*/
|
|
if (bp->b_flags & _XBF_DELWRI_Q) {
|
|
trace_xfs_buf_delwri_queued(bp, _RET_IP_);
|
|
return false;
|
|
}
|
|
|
|
trace_xfs_buf_delwri_queue(bp, _RET_IP_);
|
|
|
|
/*
|
|
* If a buffer gets written out synchronously or marked stale while it
|
|
* is on a delwri list we lazily remove it. To do this, the other party
|
|
* clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
|
|
* It remains referenced and on the list. In a rare corner case it
|
|
* might get readded to a delwri list after the synchronous writeout, in
|
|
* which case we need just need to re-add the flag here.
|
|
*/
|
|
bp->b_flags |= _XBF_DELWRI_Q;
|
|
if (list_empty(&bp->b_list)) {
|
|
atomic_inc(&bp->b_hold);
|
|
list_add_tail(&bp->b_list, list);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Compare function is more complex than it needs to be because
|
|
* the return value is only 32 bits and we are doing comparisons
|
|
* on 64 bit values
|
|
*/
|
|
static int
|
|
xfs_buf_cmp(
|
|
void *priv,
|
|
struct list_head *a,
|
|
struct list_head *b)
|
|
{
|
|
struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
|
|
struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
|
|
xfs_daddr_t diff;
|
|
|
|
diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
|
|
if (diff < 0)
|
|
return -1;
|
|
if (diff > 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
__xfs_buf_delwri_submit(
|
|
struct list_head *buffer_list,
|
|
struct list_head *io_list,
|
|
bool wait)
|
|
{
|
|
struct blk_plug plug;
|
|
struct xfs_buf *bp, *n;
|
|
int pinned = 0;
|
|
|
|
list_for_each_entry_safe(bp, n, buffer_list, b_list) {
|
|
if (!wait) {
|
|
if (xfs_buf_ispinned(bp)) {
|
|
pinned++;
|
|
continue;
|
|
}
|
|
if (!xfs_buf_trylock(bp))
|
|
continue;
|
|
} else {
|
|
xfs_buf_lock(bp);
|
|
}
|
|
|
|
/*
|
|
* Someone else might have written the buffer synchronously or
|
|
* marked it stale in the meantime. In that case only the
|
|
* _XBF_DELWRI_Q flag got cleared, and we have to drop the
|
|
* reference and remove it from the list here.
|
|
*/
|
|
if (!(bp->b_flags & _XBF_DELWRI_Q)) {
|
|
list_del_init(&bp->b_list);
|
|
xfs_buf_relse(bp);
|
|
continue;
|
|
}
|
|
|
|
list_move_tail(&bp->b_list, io_list);
|
|
trace_xfs_buf_delwri_split(bp, _RET_IP_);
|
|
}
|
|
|
|
list_sort(NULL, io_list, xfs_buf_cmp);
|
|
|
|
blk_start_plug(&plug);
|
|
list_for_each_entry_safe(bp, n, io_list, b_list) {
|
|
bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
|
|
bp->b_flags |= XBF_WRITE;
|
|
|
|
if (!wait) {
|
|
bp->b_flags |= XBF_ASYNC;
|
|
list_del_init(&bp->b_list);
|
|
}
|
|
xfs_bdstrat_cb(bp);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
|
|
return pinned;
|
|
}
|
|
|
|
/*
|
|
* Write out a buffer list asynchronously.
|
|
*
|
|
* This will take the @buffer_list, write all non-locked and non-pinned buffers
|
|
* out and not wait for I/O completion on any of the buffers. This interface
|
|
* is only safely useable for callers that can track I/O completion by higher
|
|
* level means, e.g. AIL pushing as the @buffer_list is consumed in this
|
|
* function.
|
|
*/
|
|
int
|
|
xfs_buf_delwri_submit_nowait(
|
|
struct list_head *buffer_list)
|
|
{
|
|
LIST_HEAD (io_list);
|
|
return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
|
|
}
|
|
|
|
/*
|
|
* Write out a buffer list synchronously.
|
|
*
|
|
* This will take the @buffer_list, write all buffers out and wait for I/O
|
|
* completion on all of the buffers. @buffer_list is consumed by the function,
|
|
* so callers must have some other way of tracking buffers if they require such
|
|
* functionality.
|
|
*/
|
|
int
|
|
xfs_buf_delwri_submit(
|
|
struct list_head *buffer_list)
|
|
{
|
|
LIST_HEAD (io_list);
|
|
int error = 0, error2;
|
|
struct xfs_buf *bp;
|
|
|
|
__xfs_buf_delwri_submit(buffer_list, &io_list, true);
|
|
|
|
/* Wait for IO to complete. */
|
|
while (!list_empty(&io_list)) {
|
|
bp = list_first_entry(&io_list, struct xfs_buf, b_list);
|
|
|
|
list_del_init(&bp->b_list);
|
|
error2 = xfs_buf_iowait(bp);
|
|
xfs_buf_relse(bp);
|
|
if (!error)
|
|
error = error2;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int __init
|
|
xfs_buf_init(void)
|
|
{
|
|
xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
|
|
KM_ZONE_HWALIGN, NULL);
|
|
if (!xfs_buf_zone)
|
|
goto out;
|
|
|
|
xfslogd_workqueue = alloc_workqueue("xfslogd",
|
|
WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
|
|
if (!xfslogd_workqueue)
|
|
goto out_free_buf_zone;
|
|
|
|
return 0;
|
|
|
|
out_free_buf_zone:
|
|
kmem_zone_destroy(xfs_buf_zone);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void
|
|
xfs_buf_terminate(void)
|
|
{
|
|
destroy_workqueue(xfslogd_workqueue);
|
|
kmem_zone_destroy(xfs_buf_zone);
|
|
}
|