1383 lines
43 KiB
C
1383 lines
43 KiB
C
/*
|
|
* xHCI host controller driver
|
|
*
|
|
* Copyright (C) 2008 Intel Corp.
|
|
*
|
|
* Author: Sarah Sharp
|
|
* Some code borrowed from the Linux EHCI driver.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/irq.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "xhci.h"
|
|
|
|
#define DRIVER_AUTHOR "Sarah Sharp"
|
|
#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
|
|
|
|
/* TODO: copied from ehci-hcd.c - can this be refactored? */
|
|
/*
|
|
* handshake - spin reading hc until handshake completes or fails
|
|
* @ptr: address of hc register to be read
|
|
* @mask: bits to look at in result of read
|
|
* @done: value of those bits when handshake succeeds
|
|
* @usec: timeout in microseconds
|
|
*
|
|
* Returns negative errno, or zero on success
|
|
*
|
|
* Success happens when the "mask" bits have the specified value (hardware
|
|
* handshake done). There are two failure modes: "usec" have passed (major
|
|
* hardware flakeout), or the register reads as all-ones (hardware removed).
|
|
*/
|
|
static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
|
|
u32 mask, u32 done, int usec)
|
|
{
|
|
u32 result;
|
|
|
|
do {
|
|
result = xhci_readl(xhci, ptr);
|
|
if (result == ~(u32)0) /* card removed */
|
|
return -ENODEV;
|
|
result &= mask;
|
|
if (result == done)
|
|
return 0;
|
|
udelay(1);
|
|
usec--;
|
|
} while (usec > 0);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/*
|
|
* Force HC into halt state.
|
|
*
|
|
* Disable any IRQs and clear the run/stop bit.
|
|
* HC will complete any current and actively pipelined transactions, and
|
|
* should halt within 16 microframes of the run/stop bit being cleared.
|
|
* Read HC Halted bit in the status register to see when the HC is finished.
|
|
* XXX: shouldn't we set HC_STATE_HALT here somewhere?
|
|
*/
|
|
int xhci_halt(struct xhci_hcd *xhci)
|
|
{
|
|
u32 halted;
|
|
u32 cmd;
|
|
u32 mask;
|
|
|
|
xhci_dbg(xhci, "// Halt the HC\n");
|
|
/* Disable all interrupts from the host controller */
|
|
mask = ~(XHCI_IRQS);
|
|
halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
|
|
if (!halted)
|
|
mask &= ~CMD_RUN;
|
|
|
|
cmd = xhci_readl(xhci, &xhci->op_regs->command);
|
|
cmd &= mask;
|
|
xhci_writel(xhci, cmd, &xhci->op_regs->command);
|
|
|
|
return handshake(xhci, &xhci->op_regs->status,
|
|
STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
|
|
}
|
|
|
|
/*
|
|
* Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
|
|
*
|
|
* This resets pipelines, timers, counters, state machines, etc.
|
|
* Transactions will be terminated immediately, and operational registers
|
|
* will be set to their defaults.
|
|
*/
|
|
int xhci_reset(struct xhci_hcd *xhci)
|
|
{
|
|
u32 command;
|
|
u32 state;
|
|
|
|
state = xhci_readl(xhci, &xhci->op_regs->status);
|
|
if ((state & STS_HALT) == 0) {
|
|
xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
|
|
return 0;
|
|
}
|
|
|
|
xhci_dbg(xhci, "// Reset the HC\n");
|
|
command = xhci_readl(xhci, &xhci->op_regs->command);
|
|
command |= CMD_RESET;
|
|
xhci_writel(xhci, command, &xhci->op_regs->command);
|
|
/* XXX: Why does EHCI set this here? Shouldn't other code do this? */
|
|
xhci_to_hcd(xhci)->state = HC_STATE_HALT;
|
|
|
|
return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000);
|
|
}
|
|
|
|
/*
|
|
* Stop the HC from processing the endpoint queues.
|
|
*/
|
|
static void xhci_quiesce(struct xhci_hcd *xhci)
|
|
{
|
|
/*
|
|
* Queues are per endpoint, so we need to disable an endpoint or slot.
|
|
*
|
|
* To disable a slot, we need to insert a disable slot command on the
|
|
* command ring and ring the doorbell. This will also free any internal
|
|
* resources associated with the slot (which might not be what we want).
|
|
*
|
|
* A Release Endpoint command sounds better - doesn't free internal HC
|
|
* memory, but removes the endpoints from the schedule and releases the
|
|
* bandwidth, disables the doorbells, and clears the endpoint enable
|
|
* flag. Usually used prior to a set interface command.
|
|
*
|
|
* TODO: Implement after command ring code is done.
|
|
*/
|
|
BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state));
|
|
xhci_dbg(xhci, "Finished quiescing -- code not written yet\n");
|
|
}
|
|
|
|
#if 0
|
|
/* Set up MSI-X table for entry 0 (may claim other entries later) */
|
|
static int xhci_setup_msix(struct xhci_hcd *xhci)
|
|
{
|
|
int ret;
|
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
|
|
|
xhci->msix_count = 0;
|
|
/* XXX: did I do this right? ixgbe does kcalloc for more than one */
|
|
xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
|
|
if (!xhci->msix_entries) {
|
|
xhci_err(xhci, "Failed to allocate MSI-X entries\n");
|
|
return -ENOMEM;
|
|
}
|
|
xhci->msix_entries[0].entry = 0;
|
|
|
|
ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
|
|
if (ret) {
|
|
xhci_err(xhci, "Failed to enable MSI-X\n");
|
|
goto free_entries;
|
|
}
|
|
|
|
/*
|
|
* Pass the xhci pointer value as the request_irq "cookie".
|
|
* If more irqs are added, this will need to be unique for each one.
|
|
*/
|
|
ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
|
|
"xHCI", xhci_to_hcd(xhci));
|
|
if (ret) {
|
|
xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
|
|
goto disable_msix;
|
|
}
|
|
xhci_dbg(xhci, "Finished setting up MSI-X\n");
|
|
return 0;
|
|
|
|
disable_msix:
|
|
pci_disable_msix(pdev);
|
|
free_entries:
|
|
kfree(xhci->msix_entries);
|
|
xhci->msix_entries = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/* XXX: code duplication; can xhci_setup_msix call this? */
|
|
/* Free any IRQs and disable MSI-X */
|
|
static void xhci_cleanup_msix(struct xhci_hcd *xhci)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
|
if (!xhci->msix_entries)
|
|
return;
|
|
|
|
free_irq(xhci->msix_entries[0].vector, xhci);
|
|
pci_disable_msix(pdev);
|
|
kfree(xhci->msix_entries);
|
|
xhci->msix_entries = NULL;
|
|
xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initialize memory for HCD and xHC (one-time init).
|
|
*
|
|
* Program the PAGESIZE register, initialize the device context array, create
|
|
* device contexts (?), set up a command ring segment (or two?), create event
|
|
* ring (one for now).
|
|
*/
|
|
int xhci_init(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
int retval = 0;
|
|
|
|
xhci_dbg(xhci, "xhci_init\n");
|
|
spin_lock_init(&xhci->lock);
|
|
retval = xhci_mem_init(xhci, GFP_KERNEL);
|
|
xhci_dbg(xhci, "Finished xhci_init\n");
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Called in interrupt context when there might be work
|
|
* queued on the event ring
|
|
*
|
|
* xhci->lock must be held by caller.
|
|
*/
|
|
static void xhci_work(struct xhci_hcd *xhci)
|
|
{
|
|
u32 temp;
|
|
u64 temp_64;
|
|
|
|
/*
|
|
* Clear the op reg interrupt status first,
|
|
* so we can receive interrupts from other MSI-X interrupters.
|
|
* Write 1 to clear the interrupt status.
|
|
*/
|
|
temp = xhci_readl(xhci, &xhci->op_regs->status);
|
|
temp |= STS_EINT;
|
|
xhci_writel(xhci, temp, &xhci->op_regs->status);
|
|
/* FIXME when MSI-X is supported and there are multiple vectors */
|
|
/* Clear the MSI-X event interrupt status */
|
|
|
|
/* Acknowledge the interrupt */
|
|
temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
|
|
temp |= 0x3;
|
|
xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
|
|
/* Flush posted writes */
|
|
xhci_readl(xhci, &xhci->ir_set->irq_pending);
|
|
|
|
/* FIXME this should be a delayed service routine that clears the EHB */
|
|
xhci_handle_event(xhci);
|
|
|
|
/* Clear the event handler busy flag (RW1C); the event ring should be empty. */
|
|
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
|
|
xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
|
|
/* Flush posted writes -- FIXME is this necessary? */
|
|
xhci_readl(xhci, &xhci->ir_set->irq_pending);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* xHCI spec says we can get an interrupt, and if the HC has an error condition,
|
|
* we might get bad data out of the event ring. Section 4.10.2.7 has a list of
|
|
* indicators of an event TRB error, but we check the status *first* to be safe.
|
|
*/
|
|
irqreturn_t xhci_irq(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
u32 temp, temp2;
|
|
union xhci_trb *trb;
|
|
|
|
spin_lock(&xhci->lock);
|
|
trb = xhci->event_ring->dequeue;
|
|
/* Check if the xHC generated the interrupt, or the irq is shared */
|
|
temp = xhci_readl(xhci, &xhci->op_regs->status);
|
|
temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
|
|
if (temp == 0xffffffff && temp2 == 0xffffffff)
|
|
goto hw_died;
|
|
|
|
if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
|
|
spin_unlock(&xhci->lock);
|
|
return IRQ_NONE;
|
|
}
|
|
xhci_dbg(xhci, "op reg status = %08x\n", temp);
|
|
xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2);
|
|
xhci_dbg(xhci, "Event ring dequeue ptr:\n");
|
|
xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
|
|
(unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
|
|
lower_32_bits(trb->link.segment_ptr),
|
|
upper_32_bits(trb->link.segment_ptr),
|
|
(unsigned int) trb->link.intr_target,
|
|
(unsigned int) trb->link.control);
|
|
|
|
if (temp & STS_FATAL) {
|
|
xhci_warn(xhci, "WARNING: Host System Error\n");
|
|
xhci_halt(xhci);
|
|
hw_died:
|
|
xhci_to_hcd(xhci)->state = HC_STATE_HALT;
|
|
spin_unlock(&xhci->lock);
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
xhci_work(xhci);
|
|
spin_unlock(&xhci->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
|
|
void xhci_event_ring_work(unsigned long arg)
|
|
{
|
|
unsigned long flags;
|
|
int temp;
|
|
u64 temp_64;
|
|
struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
|
|
int i, j;
|
|
|
|
xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
temp = xhci_readl(xhci, &xhci->op_regs->status);
|
|
xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
|
|
temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
|
|
xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
|
|
xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
|
|
xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
|
|
xhci->error_bitmask = 0;
|
|
xhci_dbg(xhci, "Event ring:\n");
|
|
xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
|
|
xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
|
|
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
|
|
temp_64 &= ~ERST_PTR_MASK;
|
|
xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
|
|
xhci_dbg(xhci, "Command ring:\n");
|
|
xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
|
|
xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
|
|
xhci_dbg_cmd_ptrs(xhci);
|
|
for (i = 0; i < MAX_HC_SLOTS; ++i) {
|
|
if (xhci->devs[i]) {
|
|
for (j = 0; j < 31; ++j) {
|
|
if (xhci->devs[i]->ep_rings[j]) {
|
|
xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
|
|
xhci_debug_segment(xhci, xhci->devs[i]->ep_rings[j]->deq_seg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (xhci->noops_submitted != NUM_TEST_NOOPS)
|
|
if (xhci_setup_one_noop(xhci))
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
if (!xhci->zombie)
|
|
mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
|
|
else
|
|
xhci_dbg(xhci, "Quit polling the event ring.\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Start the HC after it was halted.
|
|
*
|
|
* This function is called by the USB core when the HC driver is added.
|
|
* Its opposite is xhci_stop().
|
|
*
|
|
* xhci_init() must be called once before this function can be called.
|
|
* Reset the HC, enable device slot contexts, program DCBAAP, and
|
|
* set command ring pointer and event ring pointer.
|
|
*
|
|
* Setup MSI-X vectors and enable interrupts.
|
|
*/
|
|
int xhci_run(struct usb_hcd *hcd)
|
|
{
|
|
u32 temp;
|
|
u64 temp_64;
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
void (*doorbell)(struct xhci_hcd *) = NULL;
|
|
|
|
hcd->uses_new_polling = 1;
|
|
hcd->poll_rh = 0;
|
|
|
|
xhci_dbg(xhci, "xhci_run\n");
|
|
#if 0 /* FIXME: MSI not setup yet */
|
|
/* Do this at the very last minute */
|
|
ret = xhci_setup_msix(xhci);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
return -ENOSYS;
|
|
#endif
|
|
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
|
|
init_timer(&xhci->event_ring_timer);
|
|
xhci->event_ring_timer.data = (unsigned long) xhci;
|
|
xhci->event_ring_timer.function = xhci_event_ring_work;
|
|
/* Poll the event ring */
|
|
xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
|
|
xhci->zombie = 0;
|
|
xhci_dbg(xhci, "Setting event ring polling timer\n");
|
|
add_timer(&xhci->event_ring_timer);
|
|
#endif
|
|
|
|
xhci_dbg(xhci, "Command ring memory map follows:\n");
|
|
xhci_debug_ring(xhci, xhci->cmd_ring);
|
|
xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
|
|
xhci_dbg_cmd_ptrs(xhci);
|
|
|
|
xhci_dbg(xhci, "ERST memory map follows:\n");
|
|
xhci_dbg_erst(xhci, &xhci->erst);
|
|
xhci_dbg(xhci, "Event ring:\n");
|
|
xhci_debug_ring(xhci, xhci->event_ring);
|
|
xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
|
|
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
|
|
temp_64 &= ~ERST_PTR_MASK;
|
|
xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
|
|
|
|
xhci_dbg(xhci, "// Set the interrupt modulation register\n");
|
|
temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
|
|
temp &= ~ER_IRQ_INTERVAL_MASK;
|
|
temp |= (u32) 160;
|
|
xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
|
|
|
|
/* Set the HCD state before we enable the irqs */
|
|
hcd->state = HC_STATE_RUNNING;
|
|
temp = xhci_readl(xhci, &xhci->op_regs->command);
|
|
temp |= (CMD_EIE);
|
|
xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
|
|
temp);
|
|
xhci_writel(xhci, temp, &xhci->op_regs->command);
|
|
|
|
temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
|
|
xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
|
|
xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
|
|
xhci_writel(xhci, ER_IRQ_ENABLE(temp),
|
|
&xhci->ir_set->irq_pending);
|
|
xhci_print_ir_set(xhci, xhci->ir_set, 0);
|
|
|
|
if (NUM_TEST_NOOPS > 0)
|
|
doorbell = xhci_setup_one_noop(xhci);
|
|
|
|
temp = xhci_readl(xhci, &xhci->op_regs->command);
|
|
temp |= (CMD_RUN);
|
|
xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
|
|
temp);
|
|
xhci_writel(xhci, temp, &xhci->op_regs->command);
|
|
/* Flush PCI posted writes */
|
|
temp = xhci_readl(xhci, &xhci->op_regs->command);
|
|
xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
|
|
if (doorbell)
|
|
(*doorbell)(xhci);
|
|
|
|
xhci_dbg(xhci, "Finished xhci_run\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop xHCI driver.
|
|
*
|
|
* This function is called by the USB core when the HC driver is removed.
|
|
* Its opposite is xhci_run().
|
|
*
|
|
* Disable device contexts, disable IRQs, and quiesce the HC.
|
|
* Reset the HC, finish any completed transactions, and cleanup memory.
|
|
*/
|
|
void xhci_stop(struct usb_hcd *hcd)
|
|
{
|
|
u32 temp;
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
|
|
spin_lock_irq(&xhci->lock);
|
|
if (HC_IS_RUNNING(hcd->state))
|
|
xhci_quiesce(xhci);
|
|
xhci_halt(xhci);
|
|
xhci_reset(xhci);
|
|
spin_unlock_irq(&xhci->lock);
|
|
|
|
#if 0 /* No MSI yet */
|
|
xhci_cleanup_msix(xhci);
|
|
#endif
|
|
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
|
|
/* Tell the event ring poll function not to reschedule */
|
|
xhci->zombie = 1;
|
|
del_timer_sync(&xhci->event_ring_timer);
|
|
#endif
|
|
|
|
xhci_dbg(xhci, "// Disabling event ring interrupts\n");
|
|
temp = xhci_readl(xhci, &xhci->op_regs->status);
|
|
xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
|
|
temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
|
|
xhci_writel(xhci, ER_IRQ_DISABLE(temp),
|
|
&xhci->ir_set->irq_pending);
|
|
xhci_print_ir_set(xhci, xhci->ir_set, 0);
|
|
|
|
xhci_dbg(xhci, "cleaning up memory\n");
|
|
xhci_mem_cleanup(xhci);
|
|
xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
|
|
xhci_readl(xhci, &xhci->op_regs->status));
|
|
}
|
|
|
|
/*
|
|
* Shutdown HC (not bus-specific)
|
|
*
|
|
* This is called when the machine is rebooting or halting. We assume that the
|
|
* machine will be powered off, and the HC's internal state will be reset.
|
|
* Don't bother to free memory.
|
|
*/
|
|
void xhci_shutdown(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
|
|
spin_lock_irq(&xhci->lock);
|
|
xhci_halt(xhci);
|
|
spin_unlock_irq(&xhci->lock);
|
|
|
|
#if 0
|
|
xhci_cleanup_msix(xhci);
|
|
#endif
|
|
|
|
xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
|
|
xhci_readl(xhci, &xhci->op_regs->status));
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
|
|
* HCDs. Find the index for an endpoint given its descriptor. Use the return
|
|
* value to right shift 1 for the bitmask.
|
|
*
|
|
* Index = (epnum * 2) + direction - 1,
|
|
* where direction = 0 for OUT, 1 for IN.
|
|
* For control endpoints, the IN index is used (OUT index is unused), so
|
|
* index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
|
|
*/
|
|
unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
|
|
{
|
|
unsigned int index;
|
|
if (usb_endpoint_xfer_control(desc))
|
|
index = (unsigned int) (usb_endpoint_num(desc)*2);
|
|
else
|
|
index = (unsigned int) (usb_endpoint_num(desc)*2) +
|
|
(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
|
|
return index;
|
|
}
|
|
|
|
/* Find the flag for this endpoint (for use in the control context). Use the
|
|
* endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
|
|
* bit 1, etc.
|
|
*/
|
|
unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
|
|
{
|
|
return 1 << (xhci_get_endpoint_index(desc) + 1);
|
|
}
|
|
|
|
/* Compute the last valid endpoint context index. Basically, this is the
|
|
* endpoint index plus one. For slot contexts with more than valid endpoint,
|
|
* we find the most significant bit set in the added contexts flags.
|
|
* e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
|
|
* fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
|
|
*/
|
|
static inline unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
|
|
{
|
|
return fls(added_ctxs) - 1;
|
|
}
|
|
|
|
/* Returns 1 if the arguments are OK;
|
|
* returns 0 this is a root hub; returns -EINVAL for NULL pointers.
|
|
*/
|
|
int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
|
|
struct usb_host_endpoint *ep, int check_ep, const char *func) {
|
|
if (!hcd || (check_ep && !ep) || !udev) {
|
|
printk(KERN_DEBUG "xHCI %s called with invalid args\n",
|
|
func);
|
|
return -EINVAL;
|
|
}
|
|
if (!udev->parent) {
|
|
printk(KERN_DEBUG "xHCI %s called for root hub\n",
|
|
func);
|
|
return 0;
|
|
}
|
|
if (!udev->slot_id) {
|
|
printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
|
|
func);
|
|
return -EINVAL;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* non-error returns are a promise to giveback() the urb later
|
|
* we drop ownership so next owner (or urb unlink) can get it
|
|
*/
|
|
int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
unsigned int slot_id, ep_index;
|
|
|
|
if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
|
|
return -EINVAL;
|
|
|
|
slot_id = urb->dev->slot_id;
|
|
ep_index = xhci_get_endpoint_index(&urb->ep->desc);
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (!xhci->devs || !xhci->devs[slot_id]) {
|
|
if (!in_interrupt())
|
|
dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
|
|
ret = -EINVAL;
|
|
goto exit;
|
|
}
|
|
if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
|
|
if (!in_interrupt())
|
|
xhci_dbg(xhci, "urb submitted during PCI suspend\n");
|
|
ret = -ESHUTDOWN;
|
|
goto exit;
|
|
}
|
|
if (usb_endpoint_xfer_control(&urb->ep->desc))
|
|
/* We have a spinlock and interrupts disabled, so we must pass
|
|
* atomic context to this function, which may allocate memory.
|
|
*/
|
|
ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
|
|
slot_id, ep_index);
|
|
else if (usb_endpoint_xfer_bulk(&urb->ep->desc))
|
|
ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
|
|
slot_id, ep_index);
|
|
else
|
|
ret = -EINVAL;
|
|
exit:
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove the URB's TD from the endpoint ring. This may cause the HC to stop
|
|
* USB transfers, potentially stopping in the middle of a TRB buffer. The HC
|
|
* should pick up where it left off in the TD, unless a Set Transfer Ring
|
|
* Dequeue Pointer is issued.
|
|
*
|
|
* The TRBs that make up the buffers for the canceled URB will be "removed" from
|
|
* the ring. Since the ring is a contiguous structure, they can't be physically
|
|
* removed. Instead, there are two options:
|
|
*
|
|
* 1) If the HC is in the middle of processing the URB to be canceled, we
|
|
* simply move the ring's dequeue pointer past those TRBs using the Set
|
|
* Transfer Ring Dequeue Pointer command. This will be the common case,
|
|
* when drivers timeout on the last submitted URB and attempt to cancel.
|
|
*
|
|
* 2) If the HC is in the middle of a different TD, we turn the TRBs into a
|
|
* series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
|
|
* HC will need to invalidate the any TRBs it has cached after the stop
|
|
* endpoint command, as noted in the xHCI 0.95 errata.
|
|
*
|
|
* 3) The TD may have completed by the time the Stop Endpoint Command
|
|
* completes, so software needs to handle that case too.
|
|
*
|
|
* This function should protect against the TD enqueueing code ringing the
|
|
* doorbell while this code is waiting for a Stop Endpoint command to complete.
|
|
* It also needs to account for multiple cancellations on happening at the same
|
|
* time for the same endpoint.
|
|
*
|
|
* Note that this function can be called in any context, or so says
|
|
* usb_hcd_unlink_urb()
|
|
*/
|
|
int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_td *td;
|
|
unsigned int ep_index;
|
|
struct xhci_ring *ep_ring;
|
|
|
|
xhci = hcd_to_xhci(hcd);
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
/* Make sure the URB hasn't completed or been unlinked already */
|
|
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
|
|
if (ret || !urb->hcpriv)
|
|
goto done;
|
|
|
|
xhci_dbg(xhci, "Cancel URB %p\n", urb);
|
|
xhci_dbg(xhci, "Event ring:\n");
|
|
xhci_debug_ring(xhci, xhci->event_ring);
|
|
ep_index = xhci_get_endpoint_index(&urb->ep->desc);
|
|
ep_ring = xhci->devs[urb->dev->slot_id]->ep_rings[ep_index];
|
|
xhci_dbg(xhci, "Endpoint ring:\n");
|
|
xhci_debug_ring(xhci, ep_ring);
|
|
td = (struct xhci_td *) urb->hcpriv;
|
|
|
|
ep_ring->cancels_pending++;
|
|
list_add_tail(&td->cancelled_td_list, &ep_ring->cancelled_td_list);
|
|
/* Queue a stop endpoint command, but only if this is
|
|
* the first cancellation to be handled.
|
|
*/
|
|
if (ep_ring->cancels_pending == 1) {
|
|
xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
|
|
xhci_ring_cmd_db(xhci);
|
|
}
|
|
done:
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/* Drop an endpoint from a new bandwidth configuration for this device.
|
|
* Only one call to this function is allowed per endpoint before
|
|
* check_bandwidth() or reset_bandwidth() must be called.
|
|
* A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
|
|
* add the endpoint to the schedule with possibly new parameters denoted by a
|
|
* different endpoint descriptor in usb_host_endpoint.
|
|
* A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
|
|
* not allowed.
|
|
*
|
|
* The USB core will not allow URBs to be queued to an endpoint that is being
|
|
* disabled, so there's no need for mutual exclusion to protect
|
|
* the xhci->devs[slot_id] structure.
|
|
*/
|
|
int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_container_ctx *in_ctx, *out_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
unsigned int last_ctx;
|
|
unsigned int ep_index;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
u32 drop_flag;
|
|
u32 new_add_flags, new_drop_flags, new_slot_info;
|
|
int ret;
|
|
|
|
ret = xhci_check_args(hcd, udev, ep, 1, __func__);
|
|
if (ret <= 0)
|
|
return ret;
|
|
xhci = hcd_to_xhci(hcd);
|
|
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
|
|
|
|
drop_flag = xhci_get_endpoint_flag(&ep->desc);
|
|
if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
|
|
xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
|
|
__func__, drop_flag);
|
|
return 0;
|
|
}
|
|
|
|
if (!xhci->devs || !xhci->devs[udev->slot_id]) {
|
|
xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
in_ctx = xhci->devs[udev->slot_id]->in_ctx;
|
|
out_ctx = xhci->devs[udev->slot_id]->out_ctx;
|
|
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
|
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
|
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
|
|
/* If the HC already knows the endpoint is disabled,
|
|
* or the HCD has noted it is disabled, ignore this request
|
|
*/
|
|
if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
|
|
ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
|
|
xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
|
|
__func__, ep);
|
|
return 0;
|
|
}
|
|
|
|
ctrl_ctx->drop_flags |= drop_flag;
|
|
new_drop_flags = ctrl_ctx->drop_flags;
|
|
|
|
ctrl_ctx->add_flags = ~drop_flag;
|
|
new_add_flags = ctrl_ctx->add_flags;
|
|
|
|
last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
|
|
slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
|
|
/* Update the last valid endpoint context, if we deleted the last one */
|
|
if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
|
|
slot_ctx->dev_info &= ~LAST_CTX_MASK;
|
|
slot_ctx->dev_info |= LAST_CTX(last_ctx);
|
|
}
|
|
new_slot_info = slot_ctx->dev_info;
|
|
|
|
xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
|
|
|
|
xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
|
|
(unsigned int) ep->desc.bEndpointAddress,
|
|
udev->slot_id,
|
|
(unsigned int) new_drop_flags,
|
|
(unsigned int) new_add_flags,
|
|
(unsigned int) new_slot_info);
|
|
return 0;
|
|
}
|
|
|
|
/* Add an endpoint to a new possible bandwidth configuration for this device.
|
|
* Only one call to this function is allowed per endpoint before
|
|
* check_bandwidth() or reset_bandwidth() must be called.
|
|
* A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
|
|
* add the endpoint to the schedule with possibly new parameters denoted by a
|
|
* different endpoint descriptor in usb_host_endpoint.
|
|
* A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
|
|
* not allowed.
|
|
*
|
|
* The USB core will not allow URBs to be queued to an endpoint until the
|
|
* configuration or alt setting is installed in the device, so there's no need
|
|
* for mutual exclusion to protect the xhci->devs[slot_id] structure.
|
|
*/
|
|
int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_container_ctx *in_ctx, *out_ctx;
|
|
unsigned int ep_index;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
u32 added_ctxs;
|
|
unsigned int last_ctx;
|
|
u32 new_add_flags, new_drop_flags, new_slot_info;
|
|
int ret = 0;
|
|
|
|
ret = xhci_check_args(hcd, udev, ep, 1, __func__);
|
|
if (ret <= 0) {
|
|
/* So we won't queue a reset ep command for a root hub */
|
|
ep->hcpriv = NULL;
|
|
return ret;
|
|
}
|
|
xhci = hcd_to_xhci(hcd);
|
|
|
|
added_ctxs = xhci_get_endpoint_flag(&ep->desc);
|
|
last_ctx = xhci_last_valid_endpoint(added_ctxs);
|
|
if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
|
|
/* FIXME when we have to issue an evaluate endpoint command to
|
|
* deal with ep0 max packet size changing once we get the
|
|
* descriptors
|
|
*/
|
|
xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
|
|
__func__, added_ctxs);
|
|
return 0;
|
|
}
|
|
|
|
if (!xhci->devs || !xhci->devs[udev->slot_id]) {
|
|
xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
in_ctx = xhci->devs[udev->slot_id]->in_ctx;
|
|
out_ctx = xhci->devs[udev->slot_id]->out_ctx;
|
|
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
|
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
|
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
|
|
/* If the HCD has already noted the endpoint is enabled,
|
|
* ignore this request.
|
|
*/
|
|
if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
|
|
xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
|
|
__func__, ep);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Configuration and alternate setting changes must be done in
|
|
* process context, not interrupt context (or so documenation
|
|
* for usb_set_interface() and usb_set_configuration() claim).
|
|
*/
|
|
if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
|
|
udev, ep, GFP_KERNEL) < 0) {
|
|
dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
|
|
__func__, ep->desc.bEndpointAddress);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ctrl_ctx->add_flags |= added_ctxs;
|
|
new_add_flags = ctrl_ctx->add_flags;
|
|
|
|
/* If xhci_endpoint_disable() was called for this endpoint, but the
|
|
* xHC hasn't been notified yet through the check_bandwidth() call,
|
|
* this re-adds a new state for the endpoint from the new endpoint
|
|
* descriptors. We must drop and re-add this endpoint, so we leave the
|
|
* drop flags alone.
|
|
*/
|
|
new_drop_flags = ctrl_ctx->drop_flags;
|
|
|
|
slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
|
|
/* Update the last valid endpoint context, if we just added one past */
|
|
if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
|
|
slot_ctx->dev_info &= ~LAST_CTX_MASK;
|
|
slot_ctx->dev_info |= LAST_CTX(last_ctx);
|
|
}
|
|
new_slot_info = slot_ctx->dev_info;
|
|
|
|
/* Store the usb_device pointer for later use */
|
|
ep->hcpriv = udev;
|
|
|
|
xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
|
|
(unsigned int) ep->desc.bEndpointAddress,
|
|
udev->slot_id,
|
|
(unsigned int) new_drop_flags,
|
|
(unsigned int) new_add_flags,
|
|
(unsigned int) new_slot_info);
|
|
return 0;
|
|
}
|
|
|
|
static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
|
|
{
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
int i;
|
|
|
|
/* When a device's add flag and drop flag are zero, any subsequent
|
|
* configure endpoint command will leave that endpoint's state
|
|
* untouched. Make sure we don't leave any old state in the input
|
|
* endpoint contexts.
|
|
*/
|
|
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
|
|
ctrl_ctx->drop_flags = 0;
|
|
ctrl_ctx->add_flags = 0;
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
|
|
slot_ctx->dev_info &= ~LAST_CTX_MASK;
|
|
/* Endpoint 0 is always valid */
|
|
slot_ctx->dev_info |= LAST_CTX(1);
|
|
for (i = 1; i < 31; ++i) {
|
|
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
|
|
ep_ctx->ep_info = 0;
|
|
ep_ctx->ep_info2 = 0;
|
|
ep_ctx->deq = 0;
|
|
ep_ctx->tx_info = 0;
|
|
}
|
|
}
|
|
|
|
/* Called after one or more calls to xhci_add_endpoint() or
|
|
* xhci_drop_endpoint(). If this call fails, the USB core is expected
|
|
* to call xhci_reset_bandwidth().
|
|
*
|
|
* Since we are in the middle of changing either configuration or
|
|
* installing a new alt setting, the USB core won't allow URBs to be
|
|
* enqueued for any endpoint on the old config or interface. Nothing
|
|
* else should be touching the xhci->devs[slot_id] structure, so we
|
|
* don't need to take the xhci->lock for manipulating that.
|
|
*/
|
|
int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
int i;
|
|
int ret = 0;
|
|
int timeleft;
|
|
unsigned long flags;
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_virt_device *virt_dev;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
|
|
ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
|
|
if (ret <= 0)
|
|
return ret;
|
|
xhci = hcd_to_xhci(hcd);
|
|
|
|
if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
|
|
xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
|
|
/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
|
|
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
|
|
ctrl_ctx->add_flags |= SLOT_FLAG;
|
|
ctrl_ctx->add_flags &= ~EP0_FLAG;
|
|
ctrl_ctx->drop_flags &= ~SLOT_FLAG;
|
|
ctrl_ctx->drop_flags &= ~EP0_FLAG;
|
|
xhci_dbg(xhci, "New Input Control Context:\n");
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
|
|
xhci_dbg_ctx(xhci, virt_dev->in_ctx,
|
|
LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
ret = xhci_queue_configure_endpoint(xhci, virt_dev->in_ctx->dma,
|
|
udev->slot_id);
|
|
if (ret < 0) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
|
|
return -ENOMEM;
|
|
}
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* Wait for the configure endpoint command to complete */
|
|
timeleft = wait_for_completion_interruptible_timeout(
|
|
&virt_dev->cmd_completion,
|
|
USB_CTRL_SET_TIMEOUT);
|
|
if (timeleft <= 0) {
|
|
xhci_warn(xhci, "%s while waiting for configure endpoint command\n",
|
|
timeleft == 0 ? "Timeout" : "Signal");
|
|
/* FIXME cancel the configure endpoint command */
|
|
return -ETIME;
|
|
}
|
|
|
|
switch (virt_dev->cmd_status) {
|
|
case COMP_ENOMEM:
|
|
dev_warn(&udev->dev, "Not enough host controller resources "
|
|
"for new device state.\n");
|
|
ret = -ENOMEM;
|
|
/* FIXME: can we allocate more resources for the HC? */
|
|
break;
|
|
case COMP_BW_ERR:
|
|
dev_warn(&udev->dev, "Not enough bandwidth "
|
|
"for new device state.\n");
|
|
ret = -ENOSPC;
|
|
/* FIXME: can we go back to the old state? */
|
|
break;
|
|
case COMP_TRB_ERR:
|
|
/* the HCD set up something wrong */
|
|
dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, add flag = 1, "
|
|
"and endpoint is not disabled.\n");
|
|
ret = -EINVAL;
|
|
break;
|
|
case COMP_SUCCESS:
|
|
dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
|
|
break;
|
|
default:
|
|
xhci_err(xhci, "ERROR: unexpected command completion "
|
|
"code 0x%x.\n", virt_dev->cmd_status);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
if (ret) {
|
|
/* Callee should call reset_bandwidth() */
|
|
return ret;
|
|
}
|
|
|
|
xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
|
|
xhci_dbg_ctx(xhci, virt_dev->out_ctx,
|
|
LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
|
|
|
|
xhci_zero_in_ctx(xhci, virt_dev);
|
|
/* Free any old rings */
|
|
for (i = 1; i < 31; ++i) {
|
|
if (virt_dev->new_ep_rings[i]) {
|
|
xhci_ring_free(xhci, virt_dev->ep_rings[i]);
|
|
virt_dev->ep_rings[i] = virt_dev->new_ep_rings[i];
|
|
virt_dev->new_ep_rings[i] = NULL;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_virt_device *virt_dev;
|
|
int i, ret;
|
|
|
|
ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
|
|
if (ret <= 0)
|
|
return;
|
|
xhci = hcd_to_xhci(hcd);
|
|
|
|
if (!xhci->devs || !xhci->devs[udev->slot_id]) {
|
|
xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
/* Free any rings allocated for added endpoints */
|
|
for (i = 0; i < 31; ++i) {
|
|
if (virt_dev->new_ep_rings[i]) {
|
|
xhci_ring_free(xhci, virt_dev->new_ep_rings[i]);
|
|
virt_dev->new_ep_rings[i] = NULL;
|
|
}
|
|
}
|
|
xhci_zero_in_ctx(xhci, virt_dev);
|
|
}
|
|
|
|
/* Deal with stalled endpoints. The core should have sent the control message
|
|
* to clear the halt condition. However, we need to make the xHCI hardware
|
|
* reset its sequence number, since a device will expect a sequence number of
|
|
* zero after the halt condition is cleared.
|
|
* Context: in_interrupt
|
|
*/
|
|
void xhci_endpoint_reset(struct usb_hcd *hcd,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct usb_device *udev;
|
|
unsigned int ep_index;
|
|
unsigned long flags;
|
|
int ret;
|
|
struct xhci_dequeue_state deq_state;
|
|
struct xhci_ring *ep_ring;
|
|
|
|
xhci = hcd_to_xhci(hcd);
|
|
udev = (struct usb_device *) ep->hcpriv;
|
|
/* Called with a root hub endpoint (or an endpoint that wasn't added
|
|
* with xhci_add_endpoint()
|
|
*/
|
|
if (!ep->hcpriv)
|
|
return;
|
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
|
ep_ring = xhci->devs[udev->slot_id]->ep_rings[ep_index];
|
|
if (!ep_ring->stopped_td) {
|
|
xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
|
|
ep->desc.bEndpointAddress);
|
|
return;
|
|
}
|
|
|
|
xhci_dbg(xhci, "Queueing reset endpoint command\n");
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
|
|
/*
|
|
* Can't change the ring dequeue pointer until it's transitioned to the
|
|
* stopped state, which is only upon a successful reset endpoint
|
|
* command. Better hope that last command worked!
|
|
*/
|
|
if (!ret) {
|
|
xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
|
|
/* We need to move the HW's dequeue pointer past this TD,
|
|
* or it will attempt to resend it on the next doorbell ring.
|
|
*/
|
|
xhci_find_new_dequeue_state(xhci, udev->slot_id,
|
|
ep_index, ep_ring->stopped_td, &deq_state);
|
|
xhci_dbg(xhci, "Queueing new dequeue state\n");
|
|
xhci_queue_new_dequeue_state(xhci, ep_ring,
|
|
udev->slot_id,
|
|
ep_index, &deq_state);
|
|
kfree(ep_ring->stopped_td);
|
|
xhci_ring_cmd_db(xhci);
|
|
}
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
if (ret)
|
|
xhci_warn(xhci, "FIXME allocate a new ring segment\n");
|
|
}
|
|
|
|
/*
|
|
* At this point, the struct usb_device is about to go away, the device has
|
|
* disconnected, and all traffic has been stopped and the endpoints have been
|
|
* disabled. Free any HC data structures associated with that device.
|
|
*/
|
|
void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
unsigned long flags;
|
|
|
|
if (udev->slot_id == 0)
|
|
return;
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
|
|
return;
|
|
}
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
/*
|
|
* Event command completion handler will free any data structures
|
|
* associated with the slot. XXX Can free sleep?
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Returns 0 if the xHC ran out of device slots, the Enable Slot command
|
|
* timed out, or allocating memory failed. Returns 1 on success.
|
|
*/
|
|
int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
unsigned long flags;
|
|
int timeleft;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
|
|
if (ret) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
|
|
return 0;
|
|
}
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* XXX: how much time for xHC slot assignment? */
|
|
timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
|
|
USB_CTRL_SET_TIMEOUT);
|
|
if (timeleft <= 0) {
|
|
xhci_warn(xhci, "%s while waiting for a slot\n",
|
|
timeleft == 0 ? "Timeout" : "Signal");
|
|
/* FIXME cancel the enable slot request */
|
|
return 0;
|
|
}
|
|
|
|
if (!xhci->slot_id) {
|
|
xhci_err(xhci, "Error while assigning device slot ID\n");
|
|
return 0;
|
|
}
|
|
/* xhci_alloc_virt_device() does not touch rings; no need to lock */
|
|
if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
|
|
/* Disable slot, if we can do it without mem alloc */
|
|
xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return 0;
|
|
}
|
|
udev->slot_id = xhci->slot_id;
|
|
/* Is this a LS or FS device under a HS hub? */
|
|
/* Hub or peripherial? */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Issue an Address Device command (which will issue a SetAddress request to
|
|
* the device).
|
|
* We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
|
|
* we should only issue and wait on one address command at the same time.
|
|
*
|
|
* We add one to the device address issued by the hardware because the USB core
|
|
* uses address 1 for the root hubs (even though they're not really devices).
|
|
*/
|
|
int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
unsigned long flags;
|
|
int timeleft;
|
|
struct xhci_virt_device *virt_dev;
|
|
int ret = 0;
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
u64 temp_64;
|
|
|
|
if (!udev->slot_id) {
|
|
xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
|
|
/* If this is a Set Address to an unconfigured device, setup ep 0 */
|
|
if (!udev->config)
|
|
xhci_setup_addressable_virt_dev(xhci, udev);
|
|
/* Otherwise, assume the core has the device configured how it wants */
|
|
xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
|
|
udev->slot_id);
|
|
if (ret) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
|
|
return ret;
|
|
}
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
|
|
timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
|
|
USB_CTRL_SET_TIMEOUT);
|
|
/* FIXME: From section 4.3.4: "Software shall be responsible for timing
|
|
* the SetAddress() "recovery interval" required by USB and aborting the
|
|
* command on a timeout.
|
|
*/
|
|
if (timeleft <= 0) {
|
|
xhci_warn(xhci, "%s while waiting for a slot\n",
|
|
timeleft == 0 ? "Timeout" : "Signal");
|
|
/* FIXME cancel the address device command */
|
|
return -ETIME;
|
|
}
|
|
|
|
switch (virt_dev->cmd_status) {
|
|
case COMP_CTX_STATE:
|
|
case COMP_EBADSLT:
|
|
xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
|
|
udev->slot_id);
|
|
ret = -EINVAL;
|
|
break;
|
|
case COMP_TX_ERR:
|
|
dev_warn(&udev->dev, "Device not responding to set address.\n");
|
|
ret = -EPROTO;
|
|
break;
|
|
case COMP_SUCCESS:
|
|
xhci_dbg(xhci, "Successful Address Device command\n");
|
|
break;
|
|
default:
|
|
xhci_err(xhci, "ERROR: unexpected command completion "
|
|
"code 0x%x.\n", virt_dev->cmd_status);
|
|
xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
|
|
xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
|
|
xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
|
|
udev->slot_id,
|
|
&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
|
|
(unsigned long long)
|
|
xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
|
|
xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
|
|
(unsigned long long)virt_dev->out_ctx->dma);
|
|
xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
|
|
xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
|
|
/*
|
|
* USB core uses address 1 for the roothubs, so we add one to the
|
|
* address given back to us by the HC.
|
|
*/
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
|
|
udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
|
|
/* Zero the input context control for later use */
|
|
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
|
|
ctrl_ctx->add_flags = 0;
|
|
ctrl_ctx->drop_flags = 0;
|
|
|
|
xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
|
|
/* XXX Meh, not sure if anyone else but choose_address uses this. */
|
|
set_bit(udev->devnum, udev->bus->devmap.devicemap);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xhci_get_frame(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
/* EHCI mods by the periodic size. Why? */
|
|
return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
|
|
}
|
|
|
|
MODULE_DESCRIPTION(DRIVER_DESC);
|
|
MODULE_AUTHOR(DRIVER_AUTHOR);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int __init xhci_hcd_init(void)
|
|
{
|
|
#ifdef CONFIG_PCI
|
|
int retval = 0;
|
|
|
|
retval = xhci_register_pci();
|
|
|
|
if (retval < 0) {
|
|
printk(KERN_DEBUG "Problem registering PCI driver.");
|
|
return retval;
|
|
}
|
|
#endif
|
|
/*
|
|
* Check the compiler generated sizes of structures that must be laid
|
|
* out in specific ways for hardware access.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
|
|
/* xhci_device_control has eight fields, and also
|
|
* embeds one xhci_slot_ctx and 31 xhci_ep_ctx
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
|
|
BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
|
|
/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
|
|
BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
|
|
return 0;
|
|
}
|
|
module_init(xhci_hcd_init);
|
|
|
|
static void __exit xhci_hcd_cleanup(void)
|
|
{
|
|
#ifdef CONFIG_PCI
|
|
xhci_unregister_pci();
|
|
#endif
|
|
}
|
|
module_exit(xhci_hcd_cleanup);
|