1626 lines
46 KiB
C
1626 lines
46 KiB
C
/*
|
|
* Copyright(c) 2015, 2016 Intel Corporation.
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* - Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/types.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/list.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/io.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "hfi.h"
|
|
#include "sdma.h"
|
|
#include "user_sdma.h"
|
|
#include "verbs.h" /* for the headers */
|
|
#include "common.h" /* for struct hfi1_tid_info */
|
|
#include "trace.h"
|
|
#include "mmu_rb.h"
|
|
|
|
static uint hfi1_sdma_comp_ring_size = 128;
|
|
module_param_named(sdma_comp_size, hfi1_sdma_comp_ring_size, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(sdma_comp_size, "Size of User SDMA completion ring. Default: 128");
|
|
|
|
/* The maximum number of Data io vectors per message/request */
|
|
#define MAX_VECTORS_PER_REQ 8
|
|
/*
|
|
* Maximum number of packet to send from each message/request
|
|
* before moving to the next one.
|
|
*/
|
|
#define MAX_PKTS_PER_QUEUE 16
|
|
|
|
#define num_pages(x) (1 + ((((x) - 1) & PAGE_MASK) >> PAGE_SHIFT))
|
|
|
|
#define req_opcode(x) \
|
|
(((x) >> HFI1_SDMA_REQ_OPCODE_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
|
|
#define req_version(x) \
|
|
(((x) >> HFI1_SDMA_REQ_VERSION_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
|
|
#define req_iovcnt(x) \
|
|
(((x) >> HFI1_SDMA_REQ_IOVCNT_SHIFT) & HFI1_SDMA_REQ_IOVCNT_MASK)
|
|
|
|
/* Number of BTH.PSN bits used for sequence number in expected rcvs */
|
|
#define BTH_SEQ_MASK 0x7ffull
|
|
|
|
/*
|
|
* Define fields in the KDETH header so we can update the header
|
|
* template.
|
|
*/
|
|
#define KDETH_OFFSET_SHIFT 0
|
|
#define KDETH_OFFSET_MASK 0x7fff
|
|
#define KDETH_OM_SHIFT 15
|
|
#define KDETH_OM_MASK 0x1
|
|
#define KDETH_TID_SHIFT 16
|
|
#define KDETH_TID_MASK 0x3ff
|
|
#define KDETH_TIDCTRL_SHIFT 26
|
|
#define KDETH_TIDCTRL_MASK 0x3
|
|
#define KDETH_INTR_SHIFT 28
|
|
#define KDETH_INTR_MASK 0x1
|
|
#define KDETH_SH_SHIFT 29
|
|
#define KDETH_SH_MASK 0x1
|
|
#define KDETH_HCRC_UPPER_SHIFT 16
|
|
#define KDETH_HCRC_UPPER_MASK 0xff
|
|
#define KDETH_HCRC_LOWER_SHIFT 24
|
|
#define KDETH_HCRC_LOWER_MASK 0xff
|
|
|
|
#define PBC2LRH(x) ((((x) & 0xfff) << 2) - 4)
|
|
#define LRH2PBC(x) ((((x) >> 2) + 1) & 0xfff)
|
|
|
|
#define KDETH_GET(val, field) \
|
|
(((le32_to_cpu((val))) >> KDETH_##field##_SHIFT) & KDETH_##field##_MASK)
|
|
#define KDETH_SET(dw, field, val) do { \
|
|
u32 dwval = le32_to_cpu(dw); \
|
|
dwval &= ~(KDETH_##field##_MASK << KDETH_##field##_SHIFT); \
|
|
dwval |= (((val) & KDETH_##field##_MASK) << \
|
|
KDETH_##field##_SHIFT); \
|
|
dw = cpu_to_le32(dwval); \
|
|
} while (0)
|
|
|
|
#define AHG_HEADER_SET(arr, idx, dw, bit, width, value) \
|
|
do { \
|
|
if ((idx) < ARRAY_SIZE((arr))) \
|
|
(arr)[(idx++)] = sdma_build_ahg_descriptor( \
|
|
(__force u16)(value), (dw), (bit), \
|
|
(width)); \
|
|
else \
|
|
return -ERANGE; \
|
|
} while (0)
|
|
|
|
/* KDETH OM multipliers and switch over point */
|
|
#define KDETH_OM_SMALL 4
|
|
#define KDETH_OM_LARGE 64
|
|
#define KDETH_OM_MAX_SIZE (1 << ((KDETH_OM_LARGE / KDETH_OM_SMALL) + 1))
|
|
|
|
/* Last packet in the request */
|
|
#define TXREQ_FLAGS_REQ_LAST_PKT BIT(0)
|
|
|
|
#define SDMA_REQ_IN_USE 0
|
|
#define SDMA_REQ_FOR_THREAD 1
|
|
#define SDMA_REQ_SEND_DONE 2
|
|
#define SDMA_REQ_HAVE_AHG 3
|
|
#define SDMA_REQ_HAS_ERROR 4
|
|
#define SDMA_REQ_DONE_ERROR 5
|
|
|
|
#define SDMA_PKT_Q_INACTIVE BIT(0)
|
|
#define SDMA_PKT_Q_ACTIVE BIT(1)
|
|
#define SDMA_PKT_Q_DEFERRED BIT(2)
|
|
|
|
/*
|
|
* Maximum retry attempts to submit a TX request
|
|
* before putting the process to sleep.
|
|
*/
|
|
#define MAX_DEFER_RETRY_COUNT 1
|
|
|
|
static unsigned initial_pkt_count = 8;
|
|
|
|
#define SDMA_IOWAIT_TIMEOUT 1000 /* in milliseconds */
|
|
|
|
struct sdma_mmu_node;
|
|
|
|
struct user_sdma_iovec {
|
|
struct list_head list;
|
|
struct iovec iov;
|
|
/* number of pages in this vector */
|
|
unsigned npages;
|
|
/* array of pinned pages for this vector */
|
|
struct page **pages;
|
|
/*
|
|
* offset into the virtual address space of the vector at
|
|
* which we last left off.
|
|
*/
|
|
u64 offset;
|
|
struct sdma_mmu_node *node;
|
|
};
|
|
|
|
#define SDMA_CACHE_NODE_EVICT BIT(0)
|
|
|
|
struct sdma_mmu_node {
|
|
struct mmu_rb_node rb;
|
|
struct list_head list;
|
|
struct hfi1_user_sdma_pkt_q *pq;
|
|
atomic_t refcount;
|
|
struct page **pages;
|
|
unsigned npages;
|
|
unsigned long flags;
|
|
};
|
|
|
|
struct user_sdma_request {
|
|
struct sdma_req_info info;
|
|
struct hfi1_user_sdma_pkt_q *pq;
|
|
struct hfi1_user_sdma_comp_q *cq;
|
|
/* This is the original header from user space */
|
|
struct hfi1_pkt_header hdr;
|
|
/*
|
|
* Pointer to the SDMA engine for this request.
|
|
* Since different request could be on different VLs,
|
|
* each request will need it's own engine pointer.
|
|
*/
|
|
struct sdma_engine *sde;
|
|
u8 ahg_idx;
|
|
u32 ahg[9];
|
|
/*
|
|
* KDETH.Offset (Eager) field
|
|
* We need to remember the initial value so the headers
|
|
* can be updated properly.
|
|
*/
|
|
u32 koffset;
|
|
/*
|
|
* KDETH.OFFSET (TID) field
|
|
* The offset can cover multiple packets, depending on the
|
|
* size of the TID entry.
|
|
*/
|
|
u32 tidoffset;
|
|
/*
|
|
* KDETH.OM
|
|
* Remember this because the header template always sets it
|
|
* to 0.
|
|
*/
|
|
u8 omfactor;
|
|
/*
|
|
* We copy the iovs for this request (based on
|
|
* info.iovcnt). These are only the data vectors
|
|
*/
|
|
unsigned data_iovs;
|
|
/* total length of the data in the request */
|
|
u32 data_len;
|
|
/* progress index moving along the iovs array */
|
|
unsigned iov_idx;
|
|
struct user_sdma_iovec iovs[MAX_VECTORS_PER_REQ];
|
|
/* number of elements copied to the tids array */
|
|
u16 n_tids;
|
|
/* TID array values copied from the tid_iov vector */
|
|
u32 *tids;
|
|
u16 tididx;
|
|
u32 sent;
|
|
u64 seqnum;
|
|
u64 seqcomp;
|
|
u64 seqsubmitted;
|
|
struct list_head txps;
|
|
unsigned long flags;
|
|
/* status of the last txreq completed */
|
|
int status;
|
|
};
|
|
|
|
/*
|
|
* A single txreq could span up to 3 physical pages when the MTU
|
|
* is sufficiently large (> 4K). Each of the IOV pointers also
|
|
* needs it's own set of flags so the vector has been handled
|
|
* independently of each other.
|
|
*/
|
|
struct user_sdma_txreq {
|
|
/* Packet header for the txreq */
|
|
struct hfi1_pkt_header hdr;
|
|
struct sdma_txreq txreq;
|
|
struct list_head list;
|
|
struct user_sdma_request *req;
|
|
u16 flags;
|
|
unsigned busycount;
|
|
u64 seqnum;
|
|
};
|
|
|
|
#define SDMA_DBG(req, fmt, ...) \
|
|
hfi1_cdbg(SDMA, "[%u:%u:%u:%u] " fmt, (req)->pq->dd->unit, \
|
|
(req)->pq->ctxt, (req)->pq->subctxt, (req)->info.comp_idx, \
|
|
##__VA_ARGS__)
|
|
#define SDMA_Q_DBG(pq, fmt, ...) \
|
|
hfi1_cdbg(SDMA, "[%u:%u:%u] " fmt, (pq)->dd->unit, (pq)->ctxt, \
|
|
(pq)->subctxt, ##__VA_ARGS__)
|
|
|
|
static int user_sdma_send_pkts(struct user_sdma_request *, unsigned);
|
|
static int num_user_pages(const struct iovec *);
|
|
static void user_sdma_txreq_cb(struct sdma_txreq *, int);
|
|
static inline void pq_update(struct hfi1_user_sdma_pkt_q *);
|
|
static void user_sdma_free_request(struct user_sdma_request *, bool);
|
|
static int pin_vector_pages(struct user_sdma_request *,
|
|
struct user_sdma_iovec *);
|
|
static void unpin_vector_pages(struct mm_struct *, struct page **, unsigned,
|
|
unsigned);
|
|
static int check_header_template(struct user_sdma_request *,
|
|
struct hfi1_pkt_header *, u32, u32);
|
|
static int set_txreq_header(struct user_sdma_request *,
|
|
struct user_sdma_txreq *, u32);
|
|
static int set_txreq_header_ahg(struct user_sdma_request *,
|
|
struct user_sdma_txreq *, u32);
|
|
static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *,
|
|
struct hfi1_user_sdma_comp_q *,
|
|
u16, enum hfi1_sdma_comp_state, int);
|
|
static inline u32 set_pkt_bth_psn(__be32, u8, u32);
|
|
static inline u32 get_lrh_len(struct hfi1_pkt_header, u32 len);
|
|
|
|
static int defer_packet_queue(
|
|
struct sdma_engine *,
|
|
struct iowait *,
|
|
struct sdma_txreq *,
|
|
unsigned seq);
|
|
static void activate_packet_queue(struct iowait *, int);
|
|
static bool sdma_rb_filter(struct mmu_rb_node *, unsigned long, unsigned long);
|
|
static int sdma_rb_insert(struct rb_root *, struct mmu_rb_node *);
|
|
static void sdma_rb_remove(struct rb_root *, struct mmu_rb_node *,
|
|
struct mm_struct *);
|
|
static int sdma_rb_invalidate(struct rb_root *, struct mmu_rb_node *);
|
|
|
|
static struct mmu_rb_ops sdma_rb_ops = {
|
|
.filter = sdma_rb_filter,
|
|
.insert = sdma_rb_insert,
|
|
.remove = sdma_rb_remove,
|
|
.invalidate = sdma_rb_invalidate
|
|
};
|
|
|
|
static int defer_packet_queue(
|
|
struct sdma_engine *sde,
|
|
struct iowait *wait,
|
|
struct sdma_txreq *txreq,
|
|
unsigned seq)
|
|
{
|
|
struct hfi1_user_sdma_pkt_q *pq =
|
|
container_of(wait, struct hfi1_user_sdma_pkt_q, busy);
|
|
struct hfi1_ibdev *dev = &pq->dd->verbs_dev;
|
|
struct user_sdma_txreq *tx =
|
|
container_of(txreq, struct user_sdma_txreq, txreq);
|
|
|
|
if (sdma_progress(sde, seq, txreq)) {
|
|
if (tx->busycount++ < MAX_DEFER_RETRY_COUNT)
|
|
goto eagain;
|
|
}
|
|
/*
|
|
* We are assuming that if the list is enqueued somewhere, it
|
|
* is to the dmawait list since that is the only place where
|
|
* it is supposed to be enqueued.
|
|
*/
|
|
xchg(&pq->state, SDMA_PKT_Q_DEFERRED);
|
|
write_seqlock(&dev->iowait_lock);
|
|
if (list_empty(&pq->busy.list))
|
|
list_add_tail(&pq->busy.list, &sde->dmawait);
|
|
write_sequnlock(&dev->iowait_lock);
|
|
return -EBUSY;
|
|
eagain:
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static void activate_packet_queue(struct iowait *wait, int reason)
|
|
{
|
|
struct hfi1_user_sdma_pkt_q *pq =
|
|
container_of(wait, struct hfi1_user_sdma_pkt_q, busy);
|
|
xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
|
|
wake_up(&wait->wait_dma);
|
|
};
|
|
|
|
static void sdma_kmem_cache_ctor(void *obj)
|
|
{
|
|
struct user_sdma_txreq *tx = obj;
|
|
|
|
memset(tx, 0, sizeof(*tx));
|
|
}
|
|
|
|
int hfi1_user_sdma_alloc_queues(struct hfi1_ctxtdata *uctxt, struct file *fp)
|
|
{
|
|
struct hfi1_filedata *fd;
|
|
int ret = 0;
|
|
unsigned memsize;
|
|
char buf[64];
|
|
struct hfi1_devdata *dd;
|
|
struct hfi1_user_sdma_comp_q *cq;
|
|
struct hfi1_user_sdma_pkt_q *pq;
|
|
unsigned long flags;
|
|
|
|
if (!uctxt || !fp) {
|
|
ret = -EBADF;
|
|
goto done;
|
|
}
|
|
|
|
fd = fp->private_data;
|
|
|
|
if (!hfi1_sdma_comp_ring_size) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
dd = uctxt->dd;
|
|
|
|
pq = kzalloc(sizeof(*pq), GFP_KERNEL);
|
|
if (!pq)
|
|
goto pq_nomem;
|
|
|
|
memsize = sizeof(*pq->reqs) * hfi1_sdma_comp_ring_size;
|
|
pq->reqs = kzalloc(memsize, GFP_KERNEL);
|
|
if (!pq->reqs)
|
|
goto pq_reqs_nomem;
|
|
|
|
INIT_LIST_HEAD(&pq->list);
|
|
pq->dd = dd;
|
|
pq->ctxt = uctxt->ctxt;
|
|
pq->subctxt = fd->subctxt;
|
|
pq->n_max_reqs = hfi1_sdma_comp_ring_size;
|
|
pq->state = SDMA_PKT_Q_INACTIVE;
|
|
atomic_set(&pq->n_reqs, 0);
|
|
init_waitqueue_head(&pq->wait);
|
|
pq->sdma_rb_root = RB_ROOT;
|
|
INIT_LIST_HEAD(&pq->evict);
|
|
spin_lock_init(&pq->evict_lock);
|
|
|
|
iowait_init(&pq->busy, 0, NULL, defer_packet_queue,
|
|
activate_packet_queue, NULL);
|
|
pq->reqidx = 0;
|
|
snprintf(buf, 64, "txreq-kmem-cache-%u-%u-%u", dd->unit, uctxt->ctxt,
|
|
fd->subctxt);
|
|
pq->txreq_cache = kmem_cache_create(buf,
|
|
sizeof(struct user_sdma_txreq),
|
|
L1_CACHE_BYTES,
|
|
SLAB_HWCACHE_ALIGN,
|
|
sdma_kmem_cache_ctor);
|
|
if (!pq->txreq_cache) {
|
|
dd_dev_err(dd, "[%u] Failed to allocate TxReq cache\n",
|
|
uctxt->ctxt);
|
|
goto pq_txreq_nomem;
|
|
}
|
|
fd->pq = pq;
|
|
cq = kzalloc(sizeof(*cq), GFP_KERNEL);
|
|
if (!cq)
|
|
goto cq_nomem;
|
|
|
|
memsize = PAGE_ALIGN(sizeof(*cq->comps) * hfi1_sdma_comp_ring_size);
|
|
cq->comps = vmalloc_user(memsize);
|
|
if (!cq->comps)
|
|
goto cq_comps_nomem;
|
|
|
|
cq->nentries = hfi1_sdma_comp_ring_size;
|
|
fd->cq = cq;
|
|
|
|
ret = hfi1_mmu_rb_register(&pq->sdma_rb_root, &sdma_rb_ops);
|
|
if (ret) {
|
|
dd_dev_err(dd, "Failed to register with MMU %d", ret);
|
|
goto done;
|
|
}
|
|
|
|
spin_lock_irqsave(&uctxt->sdma_qlock, flags);
|
|
list_add(&pq->list, &uctxt->sdma_queues);
|
|
spin_unlock_irqrestore(&uctxt->sdma_qlock, flags);
|
|
goto done;
|
|
|
|
cq_comps_nomem:
|
|
kfree(cq);
|
|
cq_nomem:
|
|
kmem_cache_destroy(pq->txreq_cache);
|
|
pq_txreq_nomem:
|
|
kfree(pq->reqs);
|
|
pq_reqs_nomem:
|
|
kfree(pq);
|
|
fd->pq = NULL;
|
|
pq_nomem:
|
|
ret = -ENOMEM;
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
int hfi1_user_sdma_free_queues(struct hfi1_filedata *fd)
|
|
{
|
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
|
struct hfi1_user_sdma_pkt_q *pq;
|
|
unsigned long flags;
|
|
|
|
hfi1_cdbg(SDMA, "[%u:%u:%u] Freeing user SDMA queues", uctxt->dd->unit,
|
|
uctxt->ctxt, fd->subctxt);
|
|
pq = fd->pq;
|
|
hfi1_mmu_rb_unregister(&pq->sdma_rb_root);
|
|
if (pq) {
|
|
spin_lock_irqsave(&uctxt->sdma_qlock, flags);
|
|
if (!list_empty(&pq->list))
|
|
list_del_init(&pq->list);
|
|
spin_unlock_irqrestore(&uctxt->sdma_qlock, flags);
|
|
iowait_sdma_drain(&pq->busy);
|
|
/* Wait until all requests have been freed. */
|
|
wait_event_interruptible(
|
|
pq->wait,
|
|
(ACCESS_ONCE(pq->state) == SDMA_PKT_Q_INACTIVE));
|
|
kfree(pq->reqs);
|
|
kmem_cache_destroy(pq->txreq_cache);
|
|
kfree(pq);
|
|
fd->pq = NULL;
|
|
}
|
|
if (fd->cq) {
|
|
vfree(fd->cq->comps);
|
|
kfree(fd->cq);
|
|
fd->cq = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int hfi1_user_sdma_process_request(struct file *fp, struct iovec *iovec,
|
|
unsigned long dim, unsigned long *count)
|
|
{
|
|
int ret = 0, i = 0;
|
|
struct hfi1_filedata *fd = fp->private_data;
|
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
|
struct hfi1_user_sdma_pkt_q *pq = fd->pq;
|
|
struct hfi1_user_sdma_comp_q *cq = fd->cq;
|
|
struct hfi1_devdata *dd = pq->dd;
|
|
unsigned long idx = 0;
|
|
u8 pcount = initial_pkt_count;
|
|
struct sdma_req_info info;
|
|
struct user_sdma_request *req;
|
|
u8 opcode, sc, vl;
|
|
int req_queued = 0;
|
|
|
|
if (iovec[idx].iov_len < sizeof(info) + sizeof(req->hdr)) {
|
|
hfi1_cdbg(
|
|
SDMA,
|
|
"[%u:%u:%u] First vector not big enough for header %lu/%lu",
|
|
dd->unit, uctxt->ctxt, fd->subctxt,
|
|
iovec[idx].iov_len, sizeof(info) + sizeof(req->hdr));
|
|
return -EINVAL;
|
|
}
|
|
ret = copy_from_user(&info, iovec[idx].iov_base, sizeof(info));
|
|
if (ret) {
|
|
hfi1_cdbg(SDMA, "[%u:%u:%u] Failed to copy info QW (%d)",
|
|
dd->unit, uctxt->ctxt, fd->subctxt, ret);
|
|
return -EFAULT;
|
|
}
|
|
|
|
trace_hfi1_sdma_user_reqinfo(dd, uctxt->ctxt, fd->subctxt,
|
|
(u16 *)&info);
|
|
if (cq->comps[info.comp_idx].status == QUEUED ||
|
|
test_bit(SDMA_REQ_IN_USE, &pq->reqs[info.comp_idx].flags)) {
|
|
hfi1_cdbg(SDMA, "[%u:%u:%u] Entry %u is in QUEUED state",
|
|
dd->unit, uctxt->ctxt, fd->subctxt,
|
|
info.comp_idx);
|
|
return -EBADSLT;
|
|
}
|
|
if (!info.fragsize) {
|
|
hfi1_cdbg(SDMA,
|
|
"[%u:%u:%u:%u] Request does not specify fragsize",
|
|
dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* We've done all the safety checks that we can up to this point,
|
|
* "allocate" the request entry.
|
|
*/
|
|
hfi1_cdbg(SDMA, "[%u:%u:%u] Using req/comp entry %u\n", dd->unit,
|
|
uctxt->ctxt, fd->subctxt, info.comp_idx);
|
|
req = pq->reqs + info.comp_idx;
|
|
memset(req, 0, sizeof(*req));
|
|
/* Mark the request as IN_USE before we start filling it in. */
|
|
set_bit(SDMA_REQ_IN_USE, &req->flags);
|
|
req->data_iovs = req_iovcnt(info.ctrl) - 1;
|
|
req->pq = pq;
|
|
req->cq = cq;
|
|
req->status = -1;
|
|
INIT_LIST_HEAD(&req->txps);
|
|
|
|
memcpy(&req->info, &info, sizeof(info));
|
|
|
|
if (req_opcode(info.ctrl) == EXPECTED)
|
|
req->data_iovs--;
|
|
|
|
if (!info.npkts || req->data_iovs > MAX_VECTORS_PER_REQ) {
|
|
SDMA_DBG(req, "Too many vectors (%u/%u)", req->data_iovs,
|
|
MAX_VECTORS_PER_REQ);
|
|
return -EINVAL;
|
|
}
|
|
/* Copy the header from the user buffer */
|
|
ret = copy_from_user(&req->hdr, iovec[idx].iov_base + sizeof(info),
|
|
sizeof(req->hdr));
|
|
if (ret) {
|
|
SDMA_DBG(req, "Failed to copy header template (%d)", ret);
|
|
ret = -EFAULT;
|
|
goto free_req;
|
|
}
|
|
|
|
/* If Static rate control is not enabled, sanitize the header. */
|
|
if (!HFI1_CAP_IS_USET(STATIC_RATE_CTRL))
|
|
req->hdr.pbc[2] = 0;
|
|
|
|
/* Validate the opcode. Do not trust packets from user space blindly. */
|
|
opcode = (be32_to_cpu(req->hdr.bth[0]) >> 24) & 0xff;
|
|
if ((opcode & USER_OPCODE_CHECK_MASK) !=
|
|
USER_OPCODE_CHECK_VAL) {
|
|
SDMA_DBG(req, "Invalid opcode (%d)", opcode);
|
|
ret = -EINVAL;
|
|
goto free_req;
|
|
}
|
|
/*
|
|
* Validate the vl. Do not trust packets from user space blindly.
|
|
* VL comes from PBC, SC comes from LRH, and the VL needs to
|
|
* match the SC look up.
|
|
*/
|
|
vl = (le16_to_cpu(req->hdr.pbc[0]) >> 12) & 0xF;
|
|
sc = (((be16_to_cpu(req->hdr.lrh[0]) >> 12) & 0xF) |
|
|
(((le16_to_cpu(req->hdr.pbc[1]) >> 14) & 0x1) << 4));
|
|
if (vl >= dd->pport->vls_operational ||
|
|
vl != sc_to_vlt(dd, sc)) {
|
|
SDMA_DBG(req, "Invalid SC(%u)/VL(%u)", sc, vl);
|
|
ret = -EINVAL;
|
|
goto free_req;
|
|
}
|
|
|
|
/* Checking P_KEY for requests from user-space */
|
|
if (egress_pkey_check(dd->pport, req->hdr.lrh, req->hdr.bth, sc,
|
|
PKEY_CHECK_INVALID)) {
|
|
ret = -EINVAL;
|
|
goto free_req;
|
|
}
|
|
|
|
/*
|
|
* Also should check the BTH.lnh. If it says the next header is GRH then
|
|
* the RXE parsing will be off and will land in the middle of the KDETH
|
|
* or miss it entirely.
|
|
*/
|
|
if ((be16_to_cpu(req->hdr.lrh[0]) & 0x3) == HFI1_LRH_GRH) {
|
|
SDMA_DBG(req, "User tried to pass in a GRH");
|
|
ret = -EINVAL;
|
|
goto free_req;
|
|
}
|
|
|
|
req->koffset = le32_to_cpu(req->hdr.kdeth.swdata[6]);
|
|
/*
|
|
* Calculate the initial TID offset based on the values of
|
|
* KDETH.OFFSET and KDETH.OM that are passed in.
|
|
*/
|
|
req->tidoffset = KDETH_GET(req->hdr.kdeth.ver_tid_offset, OFFSET) *
|
|
(KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
|
|
KDETH_OM_LARGE : KDETH_OM_SMALL);
|
|
SDMA_DBG(req, "Initial TID offset %u", req->tidoffset);
|
|
idx++;
|
|
|
|
/* Save all the IO vector structures */
|
|
while (i < req->data_iovs) {
|
|
INIT_LIST_HEAD(&req->iovs[i].list);
|
|
memcpy(&req->iovs[i].iov, iovec + idx++, sizeof(struct iovec));
|
|
ret = pin_vector_pages(req, &req->iovs[i]);
|
|
if (ret) {
|
|
req->status = ret;
|
|
goto free_req;
|
|
}
|
|
req->data_len += req->iovs[i++].iov.iov_len;
|
|
}
|
|
SDMA_DBG(req, "total data length %u", req->data_len);
|
|
|
|
if (pcount > req->info.npkts)
|
|
pcount = req->info.npkts;
|
|
/*
|
|
* Copy any TID info
|
|
* User space will provide the TID info only when the
|
|
* request type is EXPECTED. This is true even if there is
|
|
* only one packet in the request and the header is already
|
|
* setup. The reason for the singular TID case is that the
|
|
* driver needs to perform safety checks.
|
|
*/
|
|
if (req_opcode(req->info.ctrl) == EXPECTED) {
|
|
u16 ntids = iovec[idx].iov_len / sizeof(*req->tids);
|
|
|
|
if (!ntids || ntids > MAX_TID_PAIR_ENTRIES) {
|
|
ret = -EINVAL;
|
|
goto free_req;
|
|
}
|
|
req->tids = kcalloc(ntids, sizeof(*req->tids), GFP_KERNEL);
|
|
if (!req->tids) {
|
|
ret = -ENOMEM;
|
|
goto free_req;
|
|
}
|
|
/*
|
|
* We have to copy all of the tids because they may vary
|
|
* in size and, therefore, the TID count might not be
|
|
* equal to the pkt count. However, there is no way to
|
|
* tell at this point.
|
|
*/
|
|
ret = copy_from_user(req->tids, iovec[idx].iov_base,
|
|
ntids * sizeof(*req->tids));
|
|
if (ret) {
|
|
SDMA_DBG(req, "Failed to copy %d TIDs (%d)",
|
|
ntids, ret);
|
|
ret = -EFAULT;
|
|
goto free_req;
|
|
}
|
|
req->n_tids = ntids;
|
|
idx++;
|
|
}
|
|
|
|
/* Have to select the engine */
|
|
req->sde = sdma_select_engine_vl(dd,
|
|
(u32)(uctxt->ctxt + fd->subctxt),
|
|
vl);
|
|
if (!req->sde || !sdma_running(req->sde)) {
|
|
ret = -ECOMM;
|
|
goto free_req;
|
|
}
|
|
|
|
/* We don't need an AHG entry if the request contains only one packet */
|
|
if (req->info.npkts > 1 && HFI1_CAP_IS_USET(SDMA_AHG)) {
|
|
int ahg = sdma_ahg_alloc(req->sde);
|
|
|
|
if (likely(ahg >= 0)) {
|
|
req->ahg_idx = (u8)ahg;
|
|
set_bit(SDMA_REQ_HAVE_AHG, &req->flags);
|
|
}
|
|
}
|
|
|
|
set_comp_state(pq, cq, info.comp_idx, QUEUED, 0);
|
|
atomic_inc(&pq->n_reqs);
|
|
req_queued = 1;
|
|
/* Send the first N packets in the request to buy us some time */
|
|
ret = user_sdma_send_pkts(req, pcount);
|
|
if (unlikely(ret < 0 && ret != -EBUSY)) {
|
|
req->status = ret;
|
|
goto free_req;
|
|
}
|
|
|
|
/*
|
|
* It is possible that the SDMA engine would have processed all the
|
|
* submitted packets by the time we get here. Therefore, only set
|
|
* packet queue state to ACTIVE if there are still uncompleted
|
|
* requests.
|
|
*/
|
|
if (atomic_read(&pq->n_reqs))
|
|
xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
|
|
|
|
/*
|
|
* This is a somewhat blocking send implementation.
|
|
* The driver will block the caller until all packets of the
|
|
* request have been submitted to the SDMA engine. However, it
|
|
* will not wait for send completions.
|
|
*/
|
|
while (!test_bit(SDMA_REQ_SEND_DONE, &req->flags)) {
|
|
ret = user_sdma_send_pkts(req, pcount);
|
|
if (ret < 0) {
|
|
if (ret != -EBUSY) {
|
|
req->status = ret;
|
|
set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
|
|
if (ACCESS_ONCE(req->seqcomp) ==
|
|
req->seqsubmitted - 1)
|
|
goto free_req;
|
|
return ret;
|
|
}
|
|
wait_event_interruptible_timeout(
|
|
pq->busy.wait_dma,
|
|
(pq->state == SDMA_PKT_Q_ACTIVE),
|
|
msecs_to_jiffies(
|
|
SDMA_IOWAIT_TIMEOUT));
|
|
}
|
|
}
|
|
*count += idx;
|
|
return 0;
|
|
free_req:
|
|
user_sdma_free_request(req, true);
|
|
if (req_queued)
|
|
pq_update(pq);
|
|
set_comp_state(pq, cq, info.comp_idx, ERROR, req->status);
|
|
return ret;
|
|
}
|
|
|
|
static inline u32 compute_data_length(struct user_sdma_request *req,
|
|
struct user_sdma_txreq *tx)
|
|
{
|
|
/*
|
|
* Determine the proper size of the packet data.
|
|
* The size of the data of the first packet is in the header
|
|
* template. However, it includes the header and ICRC, which need
|
|
* to be subtracted.
|
|
* The size of the remaining packets is the minimum of the frag
|
|
* size (MTU) or remaining data in the request.
|
|
*/
|
|
u32 len;
|
|
|
|
if (!req->seqnum) {
|
|
len = ((be16_to_cpu(req->hdr.lrh[2]) << 2) -
|
|
(sizeof(tx->hdr) - 4));
|
|
} else if (req_opcode(req->info.ctrl) == EXPECTED) {
|
|
u32 tidlen = EXP_TID_GET(req->tids[req->tididx], LEN) *
|
|
PAGE_SIZE;
|
|
/*
|
|
* Get the data length based on the remaining space in the
|
|
* TID pair.
|
|
*/
|
|
len = min(tidlen - req->tidoffset, (u32)req->info.fragsize);
|
|
/* If we've filled up the TID pair, move to the next one. */
|
|
if (unlikely(!len) && ++req->tididx < req->n_tids &&
|
|
req->tids[req->tididx]) {
|
|
tidlen = EXP_TID_GET(req->tids[req->tididx],
|
|
LEN) * PAGE_SIZE;
|
|
req->tidoffset = 0;
|
|
len = min_t(u32, tidlen, req->info.fragsize);
|
|
}
|
|
/*
|
|
* Since the TID pairs map entire pages, make sure that we
|
|
* are not going to try to send more data that we have
|
|
* remaining.
|
|
*/
|
|
len = min(len, req->data_len - req->sent);
|
|
} else {
|
|
len = min(req->data_len - req->sent, (u32)req->info.fragsize);
|
|
}
|
|
SDMA_DBG(req, "Data Length = %u", len);
|
|
return len;
|
|
}
|
|
|
|
static inline u32 get_lrh_len(struct hfi1_pkt_header hdr, u32 len)
|
|
{
|
|
/* (Size of complete header - size of PBC) + 4B ICRC + data length */
|
|
return ((sizeof(hdr) - sizeof(hdr.pbc)) + 4 + len);
|
|
}
|
|
|
|
static int user_sdma_send_pkts(struct user_sdma_request *req, unsigned maxpkts)
|
|
{
|
|
int ret = 0;
|
|
unsigned npkts = 0;
|
|
struct user_sdma_txreq *tx = NULL;
|
|
struct hfi1_user_sdma_pkt_q *pq = NULL;
|
|
struct user_sdma_iovec *iovec = NULL;
|
|
|
|
if (!req->pq)
|
|
return -EINVAL;
|
|
|
|
pq = req->pq;
|
|
|
|
/* If tx completion has reported an error, we are done. */
|
|
if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) {
|
|
set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* Check if we might have sent the entire request already
|
|
*/
|
|
if (unlikely(req->seqnum == req->info.npkts)) {
|
|
if (!list_empty(&req->txps))
|
|
goto dosend;
|
|
return ret;
|
|
}
|
|
|
|
if (!maxpkts || maxpkts > req->info.npkts - req->seqnum)
|
|
maxpkts = req->info.npkts - req->seqnum;
|
|
|
|
while (npkts < maxpkts) {
|
|
u32 datalen = 0, queued = 0, data_sent = 0;
|
|
u64 iov_offset = 0;
|
|
|
|
/*
|
|
* Check whether any of the completions have come back
|
|
* with errors. If so, we are not going to process any
|
|
* more packets from this request.
|
|
*/
|
|
if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) {
|
|
set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
|
|
return -EFAULT;
|
|
}
|
|
|
|
tx = kmem_cache_alloc(pq->txreq_cache, GFP_KERNEL);
|
|
if (!tx)
|
|
return -ENOMEM;
|
|
|
|
tx->flags = 0;
|
|
tx->req = req;
|
|
tx->busycount = 0;
|
|
INIT_LIST_HEAD(&tx->list);
|
|
|
|
if (req->seqnum == req->info.npkts - 1)
|
|
tx->flags |= TXREQ_FLAGS_REQ_LAST_PKT;
|
|
|
|
/*
|
|
* Calculate the payload size - this is min of the fragment
|
|
* (MTU) size or the remaining bytes in the request but only
|
|
* if we have payload data.
|
|
*/
|
|
if (req->data_len) {
|
|
iovec = &req->iovs[req->iov_idx];
|
|
if (ACCESS_ONCE(iovec->offset) == iovec->iov.iov_len) {
|
|
if (++req->iov_idx == req->data_iovs) {
|
|
ret = -EFAULT;
|
|
goto free_txreq;
|
|
}
|
|
iovec = &req->iovs[req->iov_idx];
|
|
WARN_ON(iovec->offset);
|
|
}
|
|
|
|
datalen = compute_data_length(req, tx);
|
|
if (!datalen) {
|
|
SDMA_DBG(req,
|
|
"Request has data but pkt len is 0");
|
|
ret = -EFAULT;
|
|
goto free_tx;
|
|
}
|
|
}
|
|
|
|
if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags)) {
|
|
if (!req->seqnum) {
|
|
u16 pbclen = le16_to_cpu(req->hdr.pbc[0]);
|
|
u32 lrhlen = get_lrh_len(req->hdr, datalen);
|
|
/*
|
|
* Copy the request header into the tx header
|
|
* because the HW needs a cacheline-aligned
|
|
* address.
|
|
* This copy can be optimized out if the hdr
|
|
* member of user_sdma_request were also
|
|
* cacheline aligned.
|
|
*/
|
|
memcpy(&tx->hdr, &req->hdr, sizeof(tx->hdr));
|
|
if (PBC2LRH(pbclen) != lrhlen) {
|
|
pbclen = (pbclen & 0xf000) |
|
|
LRH2PBC(lrhlen);
|
|
tx->hdr.pbc[0] = cpu_to_le16(pbclen);
|
|
}
|
|
ret = sdma_txinit_ahg(&tx->txreq,
|
|
SDMA_TXREQ_F_AHG_COPY,
|
|
sizeof(tx->hdr) + datalen,
|
|
req->ahg_idx, 0, NULL, 0,
|
|
user_sdma_txreq_cb);
|
|
if (ret)
|
|
goto free_tx;
|
|
ret = sdma_txadd_kvaddr(pq->dd, &tx->txreq,
|
|
&tx->hdr,
|
|
sizeof(tx->hdr));
|
|
if (ret)
|
|
goto free_txreq;
|
|
} else {
|
|
int changes;
|
|
|
|
changes = set_txreq_header_ahg(req, tx,
|
|
datalen);
|
|
if (changes < 0)
|
|
goto free_tx;
|
|
sdma_txinit_ahg(&tx->txreq,
|
|
SDMA_TXREQ_F_USE_AHG,
|
|
datalen, req->ahg_idx, changes,
|
|
req->ahg, sizeof(req->hdr),
|
|
user_sdma_txreq_cb);
|
|
}
|
|
} else {
|
|
ret = sdma_txinit(&tx->txreq, 0, sizeof(req->hdr) +
|
|
datalen, user_sdma_txreq_cb);
|
|
if (ret)
|
|
goto free_tx;
|
|
/*
|
|
* Modify the header for this packet. This only needs
|
|
* to be done if we are not going to use AHG. Otherwise,
|
|
* the HW will do it based on the changes we gave it
|
|
* during sdma_txinit_ahg().
|
|
*/
|
|
ret = set_txreq_header(req, tx, datalen);
|
|
if (ret)
|
|
goto free_txreq;
|
|
}
|
|
|
|
/*
|
|
* If the request contains any data vectors, add up to
|
|
* fragsize bytes to the descriptor.
|
|
*/
|
|
while (queued < datalen &&
|
|
(req->sent + data_sent) < req->data_len) {
|
|
unsigned long base, offset;
|
|
unsigned pageidx, len;
|
|
|
|
base = (unsigned long)iovec->iov.iov_base;
|
|
offset = offset_in_page(base + iovec->offset +
|
|
iov_offset);
|
|
pageidx = (((iovec->offset + iov_offset +
|
|
base) - (base & PAGE_MASK)) >> PAGE_SHIFT);
|
|
len = offset + req->info.fragsize > PAGE_SIZE ?
|
|
PAGE_SIZE - offset : req->info.fragsize;
|
|
len = min((datalen - queued), len);
|
|
ret = sdma_txadd_page(pq->dd, &tx->txreq,
|
|
iovec->pages[pageidx],
|
|
offset, len);
|
|
if (ret) {
|
|
SDMA_DBG(req, "SDMA txreq add page failed %d\n",
|
|
ret);
|
|
goto free_txreq;
|
|
}
|
|
iov_offset += len;
|
|
queued += len;
|
|
data_sent += len;
|
|
if (unlikely(queued < datalen &&
|
|
pageidx == iovec->npages &&
|
|
req->iov_idx < req->data_iovs - 1)) {
|
|
iovec->offset += iov_offset;
|
|
iovec = &req->iovs[++req->iov_idx];
|
|
iov_offset = 0;
|
|
}
|
|
}
|
|
/*
|
|
* The txreq was submitted successfully so we can update
|
|
* the counters.
|
|
*/
|
|
req->koffset += datalen;
|
|
if (req_opcode(req->info.ctrl) == EXPECTED)
|
|
req->tidoffset += datalen;
|
|
req->sent += data_sent;
|
|
if (req->data_len)
|
|
iovec->offset += iov_offset;
|
|
list_add_tail(&tx->txreq.list, &req->txps);
|
|
/*
|
|
* It is important to increment this here as it is used to
|
|
* generate the BTH.PSN and, therefore, can't be bulk-updated
|
|
* outside of the loop.
|
|
*/
|
|
tx->seqnum = req->seqnum++;
|
|
npkts++;
|
|
}
|
|
dosend:
|
|
ret = sdma_send_txlist(req->sde, &pq->busy, &req->txps);
|
|
if (list_empty(&req->txps)) {
|
|
req->seqsubmitted = req->seqnum;
|
|
if (req->seqnum == req->info.npkts) {
|
|
set_bit(SDMA_REQ_SEND_DONE, &req->flags);
|
|
/*
|
|
* The txreq has already been submitted to the HW queue
|
|
* so we can free the AHG entry now. Corruption will not
|
|
* happen due to the sequential manner in which
|
|
* descriptors are processed.
|
|
*/
|
|
if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags))
|
|
sdma_ahg_free(req->sde, req->ahg_idx);
|
|
}
|
|
} else if (ret > 0) {
|
|
req->seqsubmitted += ret;
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
|
|
free_txreq:
|
|
sdma_txclean(pq->dd, &tx->txreq);
|
|
free_tx:
|
|
kmem_cache_free(pq->txreq_cache, tx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* How many pages in this iovec element?
|
|
*/
|
|
static inline int num_user_pages(const struct iovec *iov)
|
|
{
|
|
const unsigned long addr = (unsigned long)iov->iov_base;
|
|
const unsigned long len = iov->iov_len;
|
|
const unsigned long spage = addr & PAGE_MASK;
|
|
const unsigned long epage = (addr + len - 1) & PAGE_MASK;
|
|
|
|
return 1 + ((epage - spage) >> PAGE_SHIFT);
|
|
}
|
|
|
|
static u32 sdma_cache_evict(struct hfi1_user_sdma_pkt_q *pq, u32 npages)
|
|
{
|
|
u32 cleared = 0;
|
|
struct sdma_mmu_node *node, *ptr;
|
|
struct list_head to_evict = LIST_HEAD_INIT(to_evict);
|
|
|
|
spin_lock(&pq->evict_lock);
|
|
list_for_each_entry_safe_reverse(node, ptr, &pq->evict, list) {
|
|
/* Make sure that no one is still using the node. */
|
|
if (!atomic_read(&node->refcount)) {
|
|
set_bit(SDMA_CACHE_NODE_EVICT, &node->flags);
|
|
list_del_init(&node->list);
|
|
list_add(&node->list, &to_evict);
|
|
cleared += node->npages;
|
|
if (cleared >= npages)
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&pq->evict_lock);
|
|
|
|
list_for_each_entry_safe(node, ptr, &to_evict, list)
|
|
hfi1_mmu_rb_remove(&pq->sdma_rb_root, &node->rb);
|
|
|
|
return cleared;
|
|
}
|
|
|
|
static int pin_vector_pages(struct user_sdma_request *req,
|
|
struct user_sdma_iovec *iovec) {
|
|
int ret = 0, pinned, npages, cleared;
|
|
struct page **pages;
|
|
struct hfi1_user_sdma_pkt_q *pq = req->pq;
|
|
struct sdma_mmu_node *node = NULL;
|
|
struct mmu_rb_node *rb_node;
|
|
|
|
rb_node = hfi1_mmu_rb_extract(&pq->sdma_rb_root,
|
|
(unsigned long)iovec->iov.iov_base,
|
|
iovec->iov.iov_len);
|
|
if (rb_node && !IS_ERR(rb_node))
|
|
node = container_of(rb_node, struct sdma_mmu_node, rb);
|
|
else
|
|
rb_node = NULL;
|
|
|
|
if (!node) {
|
|
node = kzalloc(sizeof(*node), GFP_KERNEL);
|
|
if (!node)
|
|
return -ENOMEM;
|
|
|
|
node->rb.addr = (unsigned long)iovec->iov.iov_base;
|
|
node->pq = pq;
|
|
atomic_set(&node->refcount, 0);
|
|
INIT_LIST_HEAD(&node->list);
|
|
}
|
|
|
|
npages = num_user_pages(&iovec->iov);
|
|
if (node->npages < npages) {
|
|
pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
|
|
if (!pages) {
|
|
SDMA_DBG(req, "Failed page array alloc");
|
|
ret = -ENOMEM;
|
|
goto bail;
|
|
}
|
|
memcpy(pages, node->pages, node->npages * sizeof(*pages));
|
|
|
|
npages -= node->npages;
|
|
|
|
/*
|
|
* If rb_node is NULL, it means that this is brand new node
|
|
* and, therefore not on the eviction list.
|
|
* If, however, the rb_node is non-NULL, it means that the
|
|
* node is already in RB tree and, therefore on the eviction
|
|
* list (nodes are unconditionally inserted in the eviction
|
|
* list). In that case, we have to remove the node prior to
|
|
* calling the eviction function in order to prevent it from
|
|
* freeing this node.
|
|
*/
|
|
if (rb_node) {
|
|
spin_lock(&pq->evict_lock);
|
|
list_del_init(&node->list);
|
|
spin_unlock(&pq->evict_lock);
|
|
}
|
|
retry:
|
|
if (!hfi1_can_pin_pages(pq->dd, pq->n_locked, npages)) {
|
|
cleared = sdma_cache_evict(pq, npages);
|
|
if (cleared >= npages)
|
|
goto retry;
|
|
}
|
|
pinned = hfi1_acquire_user_pages(
|
|
((unsigned long)iovec->iov.iov_base +
|
|
(node->npages * PAGE_SIZE)), npages, 0,
|
|
pages + node->npages);
|
|
if (pinned < 0) {
|
|
kfree(pages);
|
|
ret = pinned;
|
|
goto bail;
|
|
}
|
|
if (pinned != npages) {
|
|
unpin_vector_pages(current->mm, pages, node->npages,
|
|
pinned);
|
|
ret = -EFAULT;
|
|
goto bail;
|
|
}
|
|
kfree(node->pages);
|
|
node->rb.len = iovec->iov.iov_len;
|
|
node->pages = pages;
|
|
node->npages += pinned;
|
|
npages = node->npages;
|
|
spin_lock(&pq->evict_lock);
|
|
list_add(&node->list, &pq->evict);
|
|
pq->n_locked += pinned;
|
|
spin_unlock(&pq->evict_lock);
|
|
}
|
|
iovec->pages = node->pages;
|
|
iovec->npages = npages;
|
|
iovec->node = node;
|
|
|
|
ret = hfi1_mmu_rb_insert(&req->pq->sdma_rb_root, &node->rb);
|
|
if (ret) {
|
|
spin_lock(&pq->evict_lock);
|
|
if (!list_empty(&node->list))
|
|
list_del(&node->list);
|
|
pq->n_locked -= node->npages;
|
|
spin_unlock(&pq->evict_lock);
|
|
goto bail;
|
|
}
|
|
return 0;
|
|
bail:
|
|
if (rb_node)
|
|
unpin_vector_pages(current->mm, node->pages, 0, node->npages);
|
|
kfree(node);
|
|
return ret;
|
|
}
|
|
|
|
static void unpin_vector_pages(struct mm_struct *mm, struct page **pages,
|
|
unsigned start, unsigned npages)
|
|
{
|
|
hfi1_release_user_pages(mm, pages + start, npages, 0);
|
|
kfree(pages);
|
|
}
|
|
|
|
static int check_header_template(struct user_sdma_request *req,
|
|
struct hfi1_pkt_header *hdr, u32 lrhlen,
|
|
u32 datalen)
|
|
{
|
|
/*
|
|
* Perform safety checks for any type of packet:
|
|
* - transfer size is multiple of 64bytes
|
|
* - packet length is multiple of 4bytes
|
|
* - entire request length is multiple of 4bytes
|
|
* - packet length is not larger than MTU size
|
|
*
|
|
* These checks are only done for the first packet of the
|
|
* transfer since the header is "given" to us by user space.
|
|
* For the remainder of the packets we compute the values.
|
|
*/
|
|
if (req->info.fragsize % PIO_BLOCK_SIZE ||
|
|
lrhlen & 0x3 || req->data_len & 0x3 ||
|
|
lrhlen > get_lrh_len(*hdr, req->info.fragsize))
|
|
return -EINVAL;
|
|
|
|
if (req_opcode(req->info.ctrl) == EXPECTED) {
|
|
/*
|
|
* The header is checked only on the first packet. Furthermore,
|
|
* we ensure that at least one TID entry is copied when the
|
|
* request is submitted. Therefore, we don't have to verify that
|
|
* tididx points to something sane.
|
|
*/
|
|
u32 tidval = req->tids[req->tididx],
|
|
tidlen = EXP_TID_GET(tidval, LEN) * PAGE_SIZE,
|
|
tididx = EXP_TID_GET(tidval, IDX),
|
|
tidctrl = EXP_TID_GET(tidval, CTRL),
|
|
tidoff;
|
|
__le32 kval = hdr->kdeth.ver_tid_offset;
|
|
|
|
tidoff = KDETH_GET(kval, OFFSET) *
|
|
(KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
|
|
KDETH_OM_LARGE : KDETH_OM_SMALL);
|
|
/*
|
|
* Expected receive packets have the following
|
|
* additional checks:
|
|
* - offset is not larger than the TID size
|
|
* - TIDCtrl values match between header and TID array
|
|
* - TID indexes match between header and TID array
|
|
*/
|
|
if ((tidoff + datalen > tidlen) ||
|
|
KDETH_GET(kval, TIDCTRL) != tidctrl ||
|
|
KDETH_GET(kval, TID) != tididx)
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Correctly set the BTH.PSN field based on type of
|
|
* transfer - eager packets can just increment the PSN but
|
|
* expected packets encode generation and sequence in the
|
|
* BTH.PSN field so just incrementing will result in errors.
|
|
*/
|
|
static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags)
|
|
{
|
|
u32 val = be32_to_cpu(bthpsn),
|
|
mask = (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffffull :
|
|
0xffffffull),
|
|
psn = val & mask;
|
|
if (expct)
|
|
psn = (psn & ~BTH_SEQ_MASK) | ((psn + frags) & BTH_SEQ_MASK);
|
|
else
|
|
psn = psn + frags;
|
|
return psn & mask;
|
|
}
|
|
|
|
static int set_txreq_header(struct user_sdma_request *req,
|
|
struct user_sdma_txreq *tx, u32 datalen)
|
|
{
|
|
struct hfi1_user_sdma_pkt_q *pq = req->pq;
|
|
struct hfi1_pkt_header *hdr = &tx->hdr;
|
|
u16 pbclen;
|
|
int ret;
|
|
u32 tidval = 0, lrhlen = get_lrh_len(*hdr, datalen);
|
|
|
|
/* Copy the header template to the request before modification */
|
|
memcpy(hdr, &req->hdr, sizeof(*hdr));
|
|
|
|
/*
|
|
* Check if the PBC and LRH length are mismatched. If so
|
|
* adjust both in the header.
|
|
*/
|
|
pbclen = le16_to_cpu(hdr->pbc[0]);
|
|
if (PBC2LRH(pbclen) != lrhlen) {
|
|
pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen);
|
|
hdr->pbc[0] = cpu_to_le16(pbclen);
|
|
hdr->lrh[2] = cpu_to_be16(lrhlen >> 2);
|
|
/*
|
|
* Third packet
|
|
* This is the first packet in the sequence that has
|
|
* a "static" size that can be used for the rest of
|
|
* the packets (besides the last one).
|
|
*/
|
|
if (unlikely(req->seqnum == 2)) {
|
|
/*
|
|
* From this point on the lengths in both the
|
|
* PBC and LRH are the same until the last
|
|
* packet.
|
|
* Adjust the template so we don't have to update
|
|
* every packet
|
|
*/
|
|
req->hdr.pbc[0] = hdr->pbc[0];
|
|
req->hdr.lrh[2] = hdr->lrh[2];
|
|
}
|
|
}
|
|
/*
|
|
* We only have to modify the header if this is not the
|
|
* first packet in the request. Otherwise, we use the
|
|
* header given to us.
|
|
*/
|
|
if (unlikely(!req->seqnum)) {
|
|
ret = check_header_template(req, hdr, lrhlen, datalen);
|
|
if (ret)
|
|
return ret;
|
|
goto done;
|
|
}
|
|
|
|
hdr->bth[2] = cpu_to_be32(
|
|
set_pkt_bth_psn(hdr->bth[2],
|
|
(req_opcode(req->info.ctrl) == EXPECTED),
|
|
req->seqnum));
|
|
|
|
/* Set ACK request on last packet */
|
|
if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT))
|
|
hdr->bth[2] |= cpu_to_be32(1UL << 31);
|
|
|
|
/* Set the new offset */
|
|
hdr->kdeth.swdata[6] = cpu_to_le32(req->koffset);
|
|
/* Expected packets have to fill in the new TID information */
|
|
if (req_opcode(req->info.ctrl) == EXPECTED) {
|
|
tidval = req->tids[req->tididx];
|
|
/*
|
|
* If the offset puts us at the end of the current TID,
|
|
* advance everything.
|
|
*/
|
|
if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
|
|
PAGE_SIZE)) {
|
|
req->tidoffset = 0;
|
|
/*
|
|
* Since we don't copy all the TIDs, all at once,
|
|
* we have to check again.
|
|
*/
|
|
if (++req->tididx > req->n_tids - 1 ||
|
|
!req->tids[req->tididx]) {
|
|
return -EINVAL;
|
|
}
|
|
tidval = req->tids[req->tididx];
|
|
}
|
|
req->omfactor = EXP_TID_GET(tidval, LEN) * PAGE_SIZE >=
|
|
KDETH_OM_MAX_SIZE ? KDETH_OM_LARGE : KDETH_OM_SMALL;
|
|
/* Set KDETH.TIDCtrl based on value for this TID. */
|
|
KDETH_SET(hdr->kdeth.ver_tid_offset, TIDCTRL,
|
|
EXP_TID_GET(tidval, CTRL));
|
|
/* Set KDETH.TID based on value for this TID */
|
|
KDETH_SET(hdr->kdeth.ver_tid_offset, TID,
|
|
EXP_TID_GET(tidval, IDX));
|
|
/* Clear KDETH.SH only on the last packet */
|
|
if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT))
|
|
KDETH_SET(hdr->kdeth.ver_tid_offset, SH, 0);
|
|
/*
|
|
* Set the KDETH.OFFSET and KDETH.OM based on size of
|
|
* transfer.
|
|
*/
|
|
SDMA_DBG(req, "TID offset %ubytes %uunits om%u",
|
|
req->tidoffset, req->tidoffset / req->omfactor,
|
|
!!(req->omfactor - KDETH_OM_SMALL));
|
|
KDETH_SET(hdr->kdeth.ver_tid_offset, OFFSET,
|
|
req->tidoffset / req->omfactor);
|
|
KDETH_SET(hdr->kdeth.ver_tid_offset, OM,
|
|
!!(req->omfactor - KDETH_OM_SMALL));
|
|
}
|
|
done:
|
|
trace_hfi1_sdma_user_header(pq->dd, pq->ctxt, pq->subctxt,
|
|
req->info.comp_idx, hdr, tidval);
|
|
return sdma_txadd_kvaddr(pq->dd, &tx->txreq, hdr, sizeof(*hdr));
|
|
}
|
|
|
|
static int set_txreq_header_ahg(struct user_sdma_request *req,
|
|
struct user_sdma_txreq *tx, u32 len)
|
|
{
|
|
int diff = 0;
|
|
struct hfi1_user_sdma_pkt_q *pq = req->pq;
|
|
struct hfi1_pkt_header *hdr = &req->hdr;
|
|
u16 pbclen = le16_to_cpu(hdr->pbc[0]);
|
|
u32 val32, tidval = 0, lrhlen = get_lrh_len(*hdr, len);
|
|
|
|
if (PBC2LRH(pbclen) != lrhlen) {
|
|
/* PBC.PbcLengthDWs */
|
|
AHG_HEADER_SET(req->ahg, diff, 0, 0, 12,
|
|
cpu_to_le16(LRH2PBC(lrhlen)));
|
|
/* LRH.PktLen (we need the full 16 bits due to byte swap) */
|
|
AHG_HEADER_SET(req->ahg, diff, 3, 0, 16,
|
|
cpu_to_be16(lrhlen >> 2));
|
|
}
|
|
|
|
/*
|
|
* Do the common updates
|
|
*/
|
|
/* BTH.PSN and BTH.A */
|
|
val32 = (be32_to_cpu(hdr->bth[2]) + req->seqnum) &
|
|
(HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffff : 0xffffff);
|
|
if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT))
|
|
val32 |= 1UL << 31;
|
|
AHG_HEADER_SET(req->ahg, diff, 6, 0, 16, cpu_to_be16(val32 >> 16));
|
|
AHG_HEADER_SET(req->ahg, diff, 6, 16, 16, cpu_to_be16(val32 & 0xffff));
|
|
/* KDETH.Offset */
|
|
AHG_HEADER_SET(req->ahg, diff, 15, 0, 16,
|
|
cpu_to_le16(req->koffset & 0xffff));
|
|
AHG_HEADER_SET(req->ahg, diff, 15, 16, 16,
|
|
cpu_to_le16(req->koffset >> 16));
|
|
if (req_opcode(req->info.ctrl) == EXPECTED) {
|
|
__le16 val;
|
|
|
|
tidval = req->tids[req->tididx];
|
|
|
|
/*
|
|
* If the offset puts us at the end of the current TID,
|
|
* advance everything.
|
|
*/
|
|
if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
|
|
PAGE_SIZE)) {
|
|
req->tidoffset = 0;
|
|
/*
|
|
* Since we don't copy all the TIDs, all at once,
|
|
* we have to check again.
|
|
*/
|
|
if (++req->tididx > req->n_tids - 1 ||
|
|
!req->tids[req->tididx]) {
|
|
return -EINVAL;
|
|
}
|
|
tidval = req->tids[req->tididx];
|
|
}
|
|
req->omfactor = ((EXP_TID_GET(tidval, LEN) *
|
|
PAGE_SIZE) >=
|
|
KDETH_OM_MAX_SIZE) ? KDETH_OM_LARGE :
|
|
KDETH_OM_SMALL;
|
|
/* KDETH.OM and KDETH.OFFSET (TID) */
|
|
AHG_HEADER_SET(req->ahg, diff, 7, 0, 16,
|
|
((!!(req->omfactor - KDETH_OM_SMALL)) << 15 |
|
|
((req->tidoffset / req->omfactor) & 0x7fff)));
|
|
/* KDETH.TIDCtrl, KDETH.TID */
|
|
val = cpu_to_le16(((EXP_TID_GET(tidval, CTRL) & 0x3) << 10) |
|
|
(EXP_TID_GET(tidval, IDX) & 0x3ff));
|
|
/* Clear KDETH.SH on last packet */
|
|
if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT)) {
|
|
val |= cpu_to_le16(KDETH_GET(hdr->kdeth.ver_tid_offset,
|
|
INTR) >> 16);
|
|
val &= cpu_to_le16(~(1U << 13));
|
|
AHG_HEADER_SET(req->ahg, diff, 7, 16, 14, val);
|
|
} else {
|
|
AHG_HEADER_SET(req->ahg, diff, 7, 16, 12, val);
|
|
}
|
|
}
|
|
|
|
trace_hfi1_sdma_user_header_ahg(pq->dd, pq->ctxt, pq->subctxt,
|
|
req->info.comp_idx, req->sde->this_idx,
|
|
req->ahg_idx, req->ahg, diff, tidval);
|
|
return diff;
|
|
}
|
|
|
|
/*
|
|
* SDMA tx request completion callback. Called when the SDMA progress
|
|
* state machine gets notification that the SDMA descriptors for this
|
|
* tx request have been processed by the DMA engine. Called in
|
|
* interrupt context.
|
|
*/
|
|
static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status)
|
|
{
|
|
struct user_sdma_txreq *tx =
|
|
container_of(txreq, struct user_sdma_txreq, txreq);
|
|
struct user_sdma_request *req;
|
|
struct hfi1_user_sdma_pkt_q *pq;
|
|
struct hfi1_user_sdma_comp_q *cq;
|
|
u16 idx;
|
|
|
|
if (!tx->req)
|
|
return;
|
|
|
|
req = tx->req;
|
|
pq = req->pq;
|
|
cq = req->cq;
|
|
|
|
if (status != SDMA_TXREQ_S_OK) {
|
|
SDMA_DBG(req, "SDMA completion with error %d",
|
|
status);
|
|
set_bit(SDMA_REQ_HAS_ERROR, &req->flags);
|
|
}
|
|
|
|
req->seqcomp = tx->seqnum;
|
|
kmem_cache_free(pq->txreq_cache, tx);
|
|
tx = NULL;
|
|
|
|
idx = req->info.comp_idx;
|
|
if (req->status == -1 && status == SDMA_TXREQ_S_OK) {
|
|
if (req->seqcomp == req->info.npkts - 1) {
|
|
req->status = 0;
|
|
user_sdma_free_request(req, false);
|
|
pq_update(pq);
|
|
set_comp_state(pq, cq, idx, COMPLETE, 0);
|
|
}
|
|
} else {
|
|
if (status != SDMA_TXREQ_S_OK)
|
|
req->status = status;
|
|
if (req->seqcomp == (ACCESS_ONCE(req->seqsubmitted) - 1) &&
|
|
(test_bit(SDMA_REQ_SEND_DONE, &req->flags) ||
|
|
test_bit(SDMA_REQ_DONE_ERROR, &req->flags))) {
|
|
user_sdma_free_request(req, false);
|
|
pq_update(pq);
|
|
set_comp_state(pq, cq, idx, ERROR, req->status);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq)
|
|
{
|
|
if (atomic_dec_and_test(&pq->n_reqs)) {
|
|
xchg(&pq->state, SDMA_PKT_Q_INACTIVE);
|
|
wake_up(&pq->wait);
|
|
}
|
|
}
|
|
|
|
static void user_sdma_free_request(struct user_sdma_request *req, bool unpin)
|
|
{
|
|
if (!list_empty(&req->txps)) {
|
|
struct sdma_txreq *t, *p;
|
|
|
|
list_for_each_entry_safe(t, p, &req->txps, list) {
|
|
struct user_sdma_txreq *tx =
|
|
container_of(t, struct user_sdma_txreq, txreq);
|
|
list_del_init(&t->list);
|
|
sdma_txclean(req->pq->dd, t);
|
|
kmem_cache_free(req->pq->txreq_cache, tx);
|
|
}
|
|
}
|
|
if (req->data_iovs) {
|
|
struct sdma_mmu_node *node;
|
|
int i;
|
|
|
|
for (i = 0; i < req->data_iovs; i++) {
|
|
node = req->iovs[i].node;
|
|
if (!node)
|
|
continue;
|
|
|
|
if (unpin)
|
|
hfi1_mmu_rb_remove(&req->pq->sdma_rb_root,
|
|
&node->rb);
|
|
else
|
|
atomic_dec(&node->refcount);
|
|
}
|
|
}
|
|
kfree(req->tids);
|
|
clear_bit(SDMA_REQ_IN_USE, &req->flags);
|
|
}
|
|
|
|
static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq,
|
|
struct hfi1_user_sdma_comp_q *cq,
|
|
u16 idx, enum hfi1_sdma_comp_state state,
|
|
int ret)
|
|
{
|
|
hfi1_cdbg(SDMA, "[%u:%u:%u:%u] Setting completion status %u %d",
|
|
pq->dd->unit, pq->ctxt, pq->subctxt, idx, state, ret);
|
|
cq->comps[idx].status = state;
|
|
if (state == ERROR)
|
|
cq->comps[idx].errcode = -ret;
|
|
trace_hfi1_sdma_user_completion(pq->dd, pq->ctxt, pq->subctxt,
|
|
idx, state, ret);
|
|
}
|
|
|
|
static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr,
|
|
unsigned long len)
|
|
{
|
|
return (bool)(node->addr == addr);
|
|
}
|
|
|
|
static int sdma_rb_insert(struct rb_root *root, struct mmu_rb_node *mnode)
|
|
{
|
|
struct sdma_mmu_node *node =
|
|
container_of(mnode, struct sdma_mmu_node, rb);
|
|
|
|
atomic_inc(&node->refcount);
|
|
return 0;
|
|
}
|
|
|
|
static void sdma_rb_remove(struct rb_root *root, struct mmu_rb_node *mnode,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct sdma_mmu_node *node =
|
|
container_of(mnode, struct sdma_mmu_node, rb);
|
|
|
|
spin_lock(&node->pq->evict_lock);
|
|
/*
|
|
* We've been called by the MMU notifier but this node has been
|
|
* scheduled for eviction. The eviction function will take care
|
|
* of freeing this node.
|
|
* We have to take the above lock first because we are racing
|
|
* against the setting of the bit in the eviction function.
|
|
*/
|
|
if (mm && test_bit(SDMA_CACHE_NODE_EVICT, &node->flags)) {
|
|
spin_unlock(&node->pq->evict_lock);
|
|
return;
|
|
}
|
|
|
|
if (!list_empty(&node->list))
|
|
list_del(&node->list);
|
|
node->pq->n_locked -= node->npages;
|
|
spin_unlock(&node->pq->evict_lock);
|
|
|
|
/*
|
|
* If mm is set, we are being called by the MMU notifier and we
|
|
* should not pass a mm_struct to unpin_vector_page(). This is to
|
|
* prevent a deadlock when hfi1_release_user_pages() attempts to
|
|
* take the mmap_sem, which the MMU notifier has already taken.
|
|
*/
|
|
unpin_vector_pages(mm ? NULL : current->mm, node->pages, 0,
|
|
node->npages);
|
|
/*
|
|
* If called by the MMU notifier, we have to adjust the pinned
|
|
* page count ourselves.
|
|
*/
|
|
if (mm)
|
|
mm->pinned_vm -= node->npages;
|
|
kfree(node);
|
|
}
|
|
|
|
static int sdma_rb_invalidate(struct rb_root *root, struct mmu_rb_node *mnode)
|
|
{
|
|
struct sdma_mmu_node *node =
|
|
container_of(mnode, struct sdma_mmu_node, rb);
|
|
|
|
if (!atomic_read(&node->refcount))
|
|
return 1;
|
|
return 0;
|
|
}
|