14713 lines
430 KiB
C
14713 lines
430 KiB
C
/*
|
|
* Copyright(c) 2015, 2016 Intel Corporation.
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* - Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* This file contains all of the code that is specific to the HFI chip
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "hfi.h"
|
|
#include "trace.h"
|
|
#include "mad.h"
|
|
#include "pio.h"
|
|
#include "sdma.h"
|
|
#include "eprom.h"
|
|
#include "efivar.h"
|
|
#include "platform.h"
|
|
#include "aspm.h"
|
|
|
|
#define NUM_IB_PORTS 1
|
|
|
|
uint kdeth_qp;
|
|
module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
|
|
|
|
uint num_vls = HFI1_MAX_VLS_SUPPORTED;
|
|
module_param(num_vls, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
|
|
|
|
/*
|
|
* Default time to aggregate two 10K packets from the idle state
|
|
* (timer not running). The timer starts at the end of the first packet,
|
|
* so only the time for one 10K packet and header plus a bit extra is needed.
|
|
* 10 * 1024 + 64 header byte = 10304 byte
|
|
* 10304 byte / 12.5 GB/s = 824.32ns
|
|
*/
|
|
uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
|
|
module_param(rcv_intr_timeout, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
|
|
|
|
uint rcv_intr_count = 16; /* same as qib */
|
|
module_param(rcv_intr_count, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
|
|
|
|
ushort link_crc_mask = SUPPORTED_CRCS;
|
|
module_param(link_crc_mask, ushort, S_IRUGO);
|
|
MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
|
|
|
|
uint loopback;
|
|
module_param_named(loopback, loopback, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
|
|
|
|
/* Other driver tunables */
|
|
uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
|
|
static ushort crc_14b_sideband = 1;
|
|
static uint use_flr = 1;
|
|
uint quick_linkup; /* skip LNI */
|
|
|
|
struct flag_table {
|
|
u64 flag; /* the flag */
|
|
char *str; /* description string */
|
|
u16 extra; /* extra information */
|
|
u16 unused0;
|
|
u32 unused1;
|
|
};
|
|
|
|
/* str must be a string constant */
|
|
#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
|
|
#define FLAG_ENTRY0(str, flag) {flag, str, 0}
|
|
|
|
/* Send Error Consequences */
|
|
#define SEC_WRITE_DROPPED 0x1
|
|
#define SEC_PACKET_DROPPED 0x2
|
|
#define SEC_SC_HALTED 0x4 /* per-context only */
|
|
#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
|
|
|
|
#define MIN_KERNEL_KCTXTS 2
|
|
#define FIRST_KERNEL_KCTXT 1
|
|
/* sizes for both the QP and RSM map tables */
|
|
#define NUM_MAP_ENTRIES 256
|
|
#define NUM_MAP_REGS 32
|
|
|
|
/* Bit offset into the GUID which carries HFI id information */
|
|
#define GUID_HFI_INDEX_SHIFT 39
|
|
|
|
/* extract the emulation revision */
|
|
#define emulator_rev(dd) ((dd)->irev >> 8)
|
|
/* parallel and serial emulation versions are 3 and 4 respectively */
|
|
#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
|
|
#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
|
|
|
|
/* RSM fields */
|
|
|
|
/* packet type */
|
|
#define IB_PACKET_TYPE 2ull
|
|
#define QW_SHIFT 6ull
|
|
/* QPN[7..1] */
|
|
#define QPN_WIDTH 7ull
|
|
|
|
/* LRH.BTH: QW 0, OFFSET 48 - for match */
|
|
#define LRH_BTH_QW 0ull
|
|
#define LRH_BTH_BIT_OFFSET 48ull
|
|
#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
|
|
#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
|
|
#define LRH_BTH_SELECT
|
|
#define LRH_BTH_MASK 3ull
|
|
#define LRH_BTH_VALUE 2ull
|
|
|
|
/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
|
|
#define LRH_SC_QW 0ull
|
|
#define LRH_SC_BIT_OFFSET 56ull
|
|
#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
|
|
#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
|
|
#define LRH_SC_MASK 128ull
|
|
#define LRH_SC_VALUE 0ull
|
|
|
|
/* SC[n..0] QW 0, OFFSET 60 - for select */
|
|
#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
|
|
|
|
/* QPN[m+n:1] QW 1, OFFSET 1 */
|
|
#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
|
|
|
|
/* defines to build power on SC2VL table */
|
|
#define SC2VL_VAL( \
|
|
num, \
|
|
sc0, sc0val, \
|
|
sc1, sc1val, \
|
|
sc2, sc2val, \
|
|
sc3, sc3val, \
|
|
sc4, sc4val, \
|
|
sc5, sc5val, \
|
|
sc6, sc6val, \
|
|
sc7, sc7val) \
|
|
( \
|
|
((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
|
|
((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
|
|
((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
|
|
((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
|
|
((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
|
|
((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
|
|
((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
|
|
((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
|
|
)
|
|
|
|
#define DC_SC_VL_VAL( \
|
|
range, \
|
|
e0, e0val, \
|
|
e1, e1val, \
|
|
e2, e2val, \
|
|
e3, e3val, \
|
|
e4, e4val, \
|
|
e5, e5val, \
|
|
e6, e6val, \
|
|
e7, e7val, \
|
|
e8, e8val, \
|
|
e9, e9val, \
|
|
e10, e10val, \
|
|
e11, e11val, \
|
|
e12, e12val, \
|
|
e13, e13val, \
|
|
e14, e14val, \
|
|
e15, e15val) \
|
|
( \
|
|
((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
|
|
((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
|
|
((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
|
|
((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
|
|
((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
|
|
((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
|
|
((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
|
|
((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
|
|
((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
|
|
((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
|
|
((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
|
|
((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
|
|
((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
|
|
((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
|
|
((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
|
|
((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
|
|
)
|
|
|
|
/* all CceStatus sub-block freeze bits */
|
|
#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
|
|
| CCE_STATUS_RXE_FROZE_SMASK \
|
|
| CCE_STATUS_TXE_FROZE_SMASK \
|
|
| CCE_STATUS_TXE_PIO_FROZE_SMASK)
|
|
/* all CceStatus sub-block TXE pause bits */
|
|
#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
|
|
| CCE_STATUS_TXE_PAUSED_SMASK \
|
|
| CCE_STATUS_SDMA_PAUSED_SMASK)
|
|
/* all CceStatus sub-block RXE pause bits */
|
|
#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
|
|
|
|
/*
|
|
* CCE Error flags.
|
|
*/
|
|
static struct flag_table cce_err_status_flags[] = {
|
|
/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
|
|
CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
|
|
/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
|
|
CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
|
|
/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
|
|
CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
|
|
/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
|
|
CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
|
|
/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
|
|
CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
|
|
/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
|
|
CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
|
|
/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
|
|
CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
|
|
/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
|
|
CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
|
|
/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
|
|
CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
|
|
/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
|
|
CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
|
|
/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
|
|
CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
|
|
/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
|
|
CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
|
|
/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
|
|
CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
|
|
/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
|
|
CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
|
|
/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
|
|
CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
|
|
/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
|
|
CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
|
|
/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
|
|
CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
|
|
/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
|
|
CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
|
|
/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
|
|
CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
|
|
/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
|
|
CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
|
|
/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
|
|
CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
|
|
/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
|
|
CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
|
|
/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
|
|
CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
|
|
/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
|
|
CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
|
|
/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
|
|
CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
|
|
/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
|
|
CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
|
|
/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
|
|
CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
|
|
/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
|
|
CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
|
|
/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
|
|
CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
|
|
/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
|
|
CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
|
|
/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
|
|
CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
|
|
/*31*/ FLAG_ENTRY0("LATriggered",
|
|
CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
|
|
/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
|
|
CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
|
|
/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
|
|
CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
|
|
/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
|
|
CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
|
|
/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
|
|
CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
|
|
/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
|
|
CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
|
|
/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
|
|
CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
|
|
/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
|
|
CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
|
|
/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
|
|
CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
|
|
/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
|
|
CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
|
|
/*41-63 reserved*/
|
|
};
|
|
|
|
/*
|
|
* Misc Error flags
|
|
*/
|
|
#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
|
|
static struct flag_table misc_err_status_flags[] = {
|
|
/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
|
|
/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
|
|
/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
|
|
/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
|
|
/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
|
|
/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
|
|
/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
|
|
/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
|
|
/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
|
|
/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
|
|
/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
|
|
/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
|
|
/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
|
|
};
|
|
|
|
/*
|
|
* TXE PIO Error flags and consequences
|
|
*/
|
|
static struct flag_table pio_err_status_flags[] = {
|
|
/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
|
|
SEC_WRITE_DROPPED,
|
|
SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
|
|
/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
|
|
/* 2*/ FLAG_ENTRY("PioCsrParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
|
|
/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
|
|
/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
|
|
/* 5*/ FLAG_ENTRY("PioPccFifoParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
|
|
/* 6*/ FLAG_ENTRY("PioPecFifoParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
|
|
/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
|
|
/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
|
|
/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
|
|
/*10*/ FLAG_ENTRY("PioSmPktResetParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
|
|
/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
|
|
/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
|
|
/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
|
|
0,
|
|
SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
|
|
/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
|
|
0,
|
|
SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
|
|
/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
|
|
/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
|
|
/*17*/ FLAG_ENTRY("PioInitSmIn",
|
|
0,
|
|
SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
|
|
/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
|
|
/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
|
|
/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
|
|
0,
|
|
SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
|
|
/*21*/ FLAG_ENTRY("PioWriteDataParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
|
|
/*22*/ FLAG_ENTRY("PioStateMachine",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
|
|
/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
|
|
SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
|
|
/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
|
|
SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
|
|
/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
|
|
/*26*/ FLAG_ENTRY("PioVlfSopParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
|
|
/*27*/ FLAG_ENTRY("PioVlFifoParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
|
|
/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
|
|
/*29*/ FLAG_ENTRY("PioPpmcSopLen",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
|
|
/*30-31 reserved*/
|
|
/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
|
|
/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
|
|
/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
|
|
/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
|
|
SEC_SPC_FREEZE,
|
|
SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
|
|
/*36-63 reserved*/
|
|
};
|
|
|
|
/* TXE PIO errors that cause an SPC freeze */
|
|
#define ALL_PIO_FREEZE_ERR \
|
|
(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
|
|
| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
|
|
|
|
/*
|
|
* TXE SDMA Error flags
|
|
*/
|
|
static struct flag_table sdma_err_status_flags[] = {
|
|
/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
|
|
SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
|
|
/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
|
|
SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
|
|
/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
|
|
SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
|
|
/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
|
|
SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
|
|
/*04-63 reserved*/
|
|
};
|
|
|
|
/* TXE SDMA errors that cause an SPC freeze */
|
|
#define ALL_SDMA_FREEZE_ERR \
|
|
(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
|
|
| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
|
|
| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
|
|
|
|
/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
|
|
#define PORT_DISCARD_EGRESS_ERRS \
|
|
(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
|
|
| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
|
|
| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
|
|
|
|
/*
|
|
* TXE Egress Error flags
|
|
*/
|
|
#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
|
|
static struct flag_table egress_err_status_flags[] = {
|
|
/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
|
|
/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
|
|
/* 2 reserved */
|
|
/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
|
|
SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
|
|
/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
|
|
/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
|
|
/* 6 reserved */
|
|
/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
|
|
SEES(TX_PIO_LAUNCH_INTF_PARITY)),
|
|
/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
|
|
SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
|
|
/* 9-10 reserved */
|
|
/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
|
|
SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
|
|
/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
|
|
/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
|
|
/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
|
|
/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
|
|
/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
|
|
SEES(TX_SDMA0_DISALLOWED_PACKET)),
|
|
/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
|
|
SEES(TX_SDMA1_DISALLOWED_PACKET)),
|
|
/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
|
|
SEES(TX_SDMA2_DISALLOWED_PACKET)),
|
|
/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
|
|
SEES(TX_SDMA3_DISALLOWED_PACKET)),
|
|
/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
|
|
SEES(TX_SDMA4_DISALLOWED_PACKET)),
|
|
/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
|
|
SEES(TX_SDMA5_DISALLOWED_PACKET)),
|
|
/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
|
|
SEES(TX_SDMA6_DISALLOWED_PACKET)),
|
|
/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
|
|
SEES(TX_SDMA7_DISALLOWED_PACKET)),
|
|
/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
|
|
SEES(TX_SDMA8_DISALLOWED_PACKET)),
|
|
/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
|
|
SEES(TX_SDMA9_DISALLOWED_PACKET)),
|
|
/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
|
|
SEES(TX_SDMA10_DISALLOWED_PACKET)),
|
|
/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
|
|
SEES(TX_SDMA11_DISALLOWED_PACKET)),
|
|
/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
|
|
SEES(TX_SDMA12_DISALLOWED_PACKET)),
|
|
/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
|
|
SEES(TX_SDMA13_DISALLOWED_PACKET)),
|
|
/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
|
|
SEES(TX_SDMA14_DISALLOWED_PACKET)),
|
|
/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
|
|
SEES(TX_SDMA15_DISALLOWED_PACKET)),
|
|
/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
|
|
SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
|
|
/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
|
|
SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
|
|
/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
|
|
SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
|
|
/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
|
|
SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
|
|
/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
|
|
SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
|
|
/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
|
|
SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
|
|
/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
|
|
SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
|
|
/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
|
|
SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
|
|
/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
|
|
SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
|
|
/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
|
|
/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
|
|
/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
|
|
/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
|
|
/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
|
|
/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
|
|
/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
|
|
/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
|
|
/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
|
|
/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
|
|
/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
|
|
/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
|
|
/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
|
|
/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
|
|
/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
|
|
/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
|
|
/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
|
|
/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
|
|
/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
|
|
/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
|
|
/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
|
|
/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
|
|
SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
|
|
/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
|
|
SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
|
|
};
|
|
|
|
/*
|
|
* TXE Egress Error Info flags
|
|
*/
|
|
#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
|
|
static struct flag_table egress_err_info_flags[] = {
|
|
/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
|
|
/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
|
|
/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
|
|
/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
|
|
/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
|
|
/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
|
|
/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
|
|
/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
|
|
/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
|
|
/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
|
|
/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
|
|
/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
|
|
/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
|
|
/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
|
|
/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
|
|
/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
|
|
/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
|
|
/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
|
|
/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
|
|
/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
|
|
/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
|
|
/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
|
|
};
|
|
|
|
/* TXE Egress errors that cause an SPC freeze */
|
|
#define ALL_TXE_EGRESS_FREEZE_ERR \
|
|
(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
|
|
| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
|
|
| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
|
|
| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
|
|
| SEES(TX_LAUNCH_CSR_PARITY) \
|
|
| SEES(TX_SBRD_CTL_CSR_PARITY) \
|
|
| SEES(TX_CONFIG_PARITY) \
|
|
| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
|
|
| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
|
|
| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
|
|
| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
|
|
| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
|
|
| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
|
|
| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
|
|
| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
|
|
| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
|
|
| SEES(TX_CREDIT_RETURN_PARITY))
|
|
|
|
/*
|
|
* TXE Send error flags
|
|
*/
|
|
#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
|
|
static struct flag_table send_err_status_flags[] = {
|
|
/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
|
|
/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
|
|
/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
|
|
};
|
|
|
|
/*
|
|
* TXE Send Context Error flags and consequences
|
|
*/
|
|
static struct flag_table sc_err_status_flags[] = {
|
|
/* 0*/ FLAG_ENTRY("InconsistentSop",
|
|
SEC_PACKET_DROPPED | SEC_SC_HALTED,
|
|
SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
|
|
/* 1*/ FLAG_ENTRY("DisallowedPacket",
|
|
SEC_PACKET_DROPPED | SEC_SC_HALTED,
|
|
SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
|
|
/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
|
|
SEC_WRITE_DROPPED | SEC_SC_HALTED,
|
|
SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
|
|
/* 3*/ FLAG_ENTRY("WriteOverflow",
|
|
SEC_WRITE_DROPPED | SEC_SC_HALTED,
|
|
SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
|
|
/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
|
|
SEC_WRITE_DROPPED | SEC_SC_HALTED,
|
|
SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
|
|
/* 5-63 reserved*/
|
|
};
|
|
|
|
/*
|
|
* RXE Receive Error flags
|
|
*/
|
|
#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
|
|
static struct flag_table rxe_err_status_flags[] = {
|
|
/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
|
|
/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
|
|
/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
|
|
/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
|
|
/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
|
|
/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
|
|
/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
|
|
/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
|
|
/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
|
|
/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
|
|
/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
|
|
/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
|
|
/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
|
|
/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
|
|
/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
|
|
/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
|
|
/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
|
|
RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
|
|
/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
|
|
/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
|
|
/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
|
|
RXES(RBUF_BLOCK_LIST_READ_UNC)),
|
|
/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
|
|
RXES(RBUF_BLOCK_LIST_READ_COR)),
|
|
/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
|
|
RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
|
|
/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
|
|
RXES(RBUF_CSR_QENT_CNT_PARITY)),
|
|
/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
|
|
RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
|
|
/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
|
|
RXES(RBUF_CSR_QVLD_BIT_PARITY)),
|
|
/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
|
|
/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
|
|
/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
|
|
RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
|
|
/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
|
|
/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
|
|
/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
|
|
/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
|
|
/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
|
|
/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
|
|
/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
|
|
/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
|
|
RXES(RBUF_FL_INITDONE_PARITY)),
|
|
/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
|
|
RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
|
|
/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
|
|
/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
|
|
/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
|
|
/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
|
|
RXES(LOOKUP_DES_PART1_UNC_COR)),
|
|
/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
|
|
RXES(LOOKUP_DES_PART2_PARITY)),
|
|
/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
|
|
/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
|
|
/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
|
|
/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
|
|
/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
|
|
/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
|
|
/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
|
|
/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
|
|
/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
|
|
/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
|
|
/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
|
|
/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
|
|
/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
|
|
/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
|
|
/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
|
|
/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
|
|
/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
|
|
/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
|
|
/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
|
|
/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
|
|
/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
|
|
/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
|
|
};
|
|
|
|
/* RXE errors that will trigger an SPC freeze */
|
|
#define ALL_RXE_FREEZE_ERR \
|
|
(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
|
|
| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
|
|
|
|
#define RXE_FREEZE_ABORT_MASK \
|
|
(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
|
|
RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
|
|
RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
|
|
|
|
/*
|
|
* DCC Error Flags
|
|
*/
|
|
#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
|
|
static struct flag_table dcc_err_flags[] = {
|
|
FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
|
|
FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
|
|
FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
|
|
FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
|
|
FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
|
|
FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
|
|
FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
|
|
FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
|
|
FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
|
|
FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
|
|
FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
|
|
FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
|
|
FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
|
|
FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
|
|
FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
|
|
FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
|
|
FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
|
|
FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
|
|
FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
|
|
FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
|
|
FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
|
|
FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
|
|
FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
|
|
FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
|
|
FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
|
|
FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
|
|
FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
|
|
FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
|
|
FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
|
|
FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
|
|
FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
|
|
FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
|
|
FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
|
|
FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
|
|
FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
|
|
FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
|
|
FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
|
|
FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
|
|
FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
|
|
FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
|
|
FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
|
|
FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
|
|
FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
|
|
FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
|
|
FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
|
|
FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
|
|
};
|
|
|
|
/*
|
|
* LCB error flags
|
|
*/
|
|
#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
|
|
static struct flag_table lcb_err_flags[] = {
|
|
/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
|
|
/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
|
|
/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
|
|
/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
|
|
LCBE(ALL_LNS_FAILED_REINIT_TEST)),
|
|
/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
|
|
/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
|
|
/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
|
|
/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
|
|
/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
|
|
/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
|
|
/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
|
|
/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
|
|
/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
|
|
/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
|
|
LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
|
|
/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
|
|
/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
|
|
/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
|
|
/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
|
|
/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
|
|
/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
|
|
LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
|
|
/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
|
|
/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
|
|
/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
|
|
/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
|
|
/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
|
|
/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
|
|
/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
|
|
LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
|
|
/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
|
|
/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
|
|
LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
|
|
/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
|
|
LCBE(REDUNDANT_FLIT_PARITY_ERR))
|
|
};
|
|
|
|
/*
|
|
* DC8051 Error Flags
|
|
*/
|
|
#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
|
|
static struct flag_table dc8051_err_flags[] = {
|
|
FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
|
|
FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
|
|
FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
|
|
FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
|
|
FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
|
|
FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
|
|
FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
|
|
FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
|
|
FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
|
|
D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
|
|
FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
|
|
};
|
|
|
|
/*
|
|
* DC8051 Information Error flags
|
|
*
|
|
* Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
|
|
*/
|
|
static struct flag_table dc8051_info_err_flags[] = {
|
|
FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
|
|
FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
|
|
FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
|
|
FLAG_ENTRY0("Serdes internal loopback failure",
|
|
FAILED_SERDES_INTERNAL_LOOPBACK),
|
|
FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
|
|
FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
|
|
FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
|
|
FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
|
|
FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
|
|
FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
|
|
FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
|
|
FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
|
|
FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT)
|
|
};
|
|
|
|
/*
|
|
* DC8051 Information Host Information flags
|
|
*
|
|
* Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
|
|
*/
|
|
static struct flag_table dc8051_info_host_msg_flags[] = {
|
|
FLAG_ENTRY0("Host request done", 0x0001),
|
|
FLAG_ENTRY0("BC SMA message", 0x0002),
|
|
FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
|
|
FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
|
|
FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
|
|
FLAG_ENTRY0("External device config request", 0x0020),
|
|
FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
|
|
FLAG_ENTRY0("LinkUp achieved", 0x0080),
|
|
FLAG_ENTRY0("Link going down", 0x0100),
|
|
};
|
|
|
|
static u32 encoded_size(u32 size);
|
|
static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
|
|
static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
|
|
static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
|
|
u8 *continuous);
|
|
static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
|
|
u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
|
|
static void read_vc_remote_link_width(struct hfi1_devdata *dd,
|
|
u8 *remote_tx_rate, u16 *link_widths);
|
|
static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
|
|
u8 *flag_bits, u16 *link_widths);
|
|
static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
|
|
u8 *device_rev);
|
|
static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
|
|
static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
|
|
static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
|
|
u8 *tx_polarity_inversion,
|
|
u8 *rx_polarity_inversion, u8 *max_rate);
|
|
static void handle_sdma_eng_err(struct hfi1_devdata *dd,
|
|
unsigned int context, u64 err_status);
|
|
static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
|
|
static void handle_dcc_err(struct hfi1_devdata *dd,
|
|
unsigned int context, u64 err_status);
|
|
static void handle_lcb_err(struct hfi1_devdata *dd,
|
|
unsigned int context, u64 err_status);
|
|
static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
|
|
static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
|
|
static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
|
|
static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
|
|
static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
|
|
static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
|
|
static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
|
|
static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
|
|
static void set_partition_keys(struct hfi1_pportdata *);
|
|
static const char *link_state_name(u32 state);
|
|
static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
|
|
u32 state);
|
|
static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
|
|
u64 *out_data);
|
|
static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
|
|
static int thermal_init(struct hfi1_devdata *dd);
|
|
|
|
static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
|
|
int msecs);
|
|
static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
|
|
static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
|
|
static void handle_temp_err(struct hfi1_devdata *);
|
|
static void dc_shutdown(struct hfi1_devdata *);
|
|
static void dc_start(struct hfi1_devdata *);
|
|
static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
|
|
unsigned int *np);
|
|
static void remove_full_mgmt_pkey(struct hfi1_pportdata *ppd);
|
|
|
|
/*
|
|
* Error interrupt table entry. This is used as input to the interrupt
|
|
* "clear down" routine used for all second tier error interrupt register.
|
|
* Second tier interrupt registers have a single bit representing them
|
|
* in the top-level CceIntStatus.
|
|
*/
|
|
struct err_reg_info {
|
|
u32 status; /* status CSR offset */
|
|
u32 clear; /* clear CSR offset */
|
|
u32 mask; /* mask CSR offset */
|
|
void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
|
|
const char *desc;
|
|
};
|
|
|
|
#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
|
|
#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
|
|
#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
|
|
|
|
/*
|
|
* Helpers for building HFI and DC error interrupt table entries. Different
|
|
* helpers are needed because of inconsistent register names.
|
|
*/
|
|
#define EE(reg, handler, desc) \
|
|
{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
|
|
handler, desc }
|
|
#define DC_EE1(reg, handler, desc) \
|
|
{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
|
|
#define DC_EE2(reg, handler, desc) \
|
|
{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
|
|
|
|
/*
|
|
* Table of the "misc" grouping of error interrupts. Each entry refers to
|
|
* another register containing more information.
|
|
*/
|
|
static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
|
|
/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
|
|
/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
|
|
/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
|
|
/* 3*/ { 0, 0, 0, NULL }, /* reserved */
|
|
/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
|
|
/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
|
|
/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
|
|
/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
|
|
/* the rest are reserved */
|
|
};
|
|
|
|
/*
|
|
* Index into the Various section of the interrupt sources
|
|
* corresponding to the Critical Temperature interrupt.
|
|
*/
|
|
#define TCRIT_INT_SOURCE 4
|
|
|
|
/*
|
|
* SDMA error interrupt entry - refers to another register containing more
|
|
* information.
|
|
*/
|
|
static const struct err_reg_info sdma_eng_err =
|
|
EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
|
|
|
|
static const struct err_reg_info various_err[NUM_VARIOUS] = {
|
|
/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
|
|
/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
|
|
/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
|
|
/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
|
|
/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
|
|
/* rest are reserved */
|
|
};
|
|
|
|
/*
|
|
* The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
|
|
* register can not be derived from the MTU value because 10K is not
|
|
* a power of 2. Therefore, we need a constant. Everything else can
|
|
* be calculated.
|
|
*/
|
|
#define DCC_CFG_PORT_MTU_CAP_10240 7
|
|
|
|
/*
|
|
* Table of the DC grouping of error interrupts. Each entry refers to
|
|
* another register containing more information.
|
|
*/
|
|
static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
|
|
/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
|
|
/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
|
|
/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
|
|
/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
|
|
/* the rest are reserved */
|
|
};
|
|
|
|
struct cntr_entry {
|
|
/*
|
|
* counter name
|
|
*/
|
|
char *name;
|
|
|
|
/*
|
|
* csr to read for name (if applicable)
|
|
*/
|
|
u64 csr;
|
|
|
|
/*
|
|
* offset into dd or ppd to store the counter's value
|
|
*/
|
|
int offset;
|
|
|
|
/*
|
|
* flags
|
|
*/
|
|
u8 flags;
|
|
|
|
/*
|
|
* accessor for stat element, context either dd or ppd
|
|
*/
|
|
u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
|
|
int mode, u64 data);
|
|
};
|
|
|
|
#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
|
|
#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
|
|
|
|
#define CNTR_ELEM(name, csr, offset, flags, accessor) \
|
|
{ \
|
|
name, \
|
|
csr, \
|
|
offset, \
|
|
flags, \
|
|
accessor \
|
|
}
|
|
|
|
/* 32bit RXE */
|
|
#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
(counter * 8 + RCV_COUNTER_ARRAY32), \
|
|
0, flags | CNTR_32BIT, \
|
|
port_access_u32_csr)
|
|
|
|
#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
(counter * 8 + RCV_COUNTER_ARRAY32), \
|
|
0, flags | CNTR_32BIT, \
|
|
dev_access_u32_csr)
|
|
|
|
/* 64bit RXE */
|
|
#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
(counter * 8 + RCV_COUNTER_ARRAY64), \
|
|
0, flags, \
|
|
port_access_u64_csr)
|
|
|
|
#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
(counter * 8 + RCV_COUNTER_ARRAY64), \
|
|
0, flags, \
|
|
dev_access_u64_csr)
|
|
|
|
#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
|
|
#define OVR_ELM(ctx) \
|
|
CNTR_ELEM("RcvHdrOvr" #ctx, \
|
|
(RCV_HDR_OVFL_CNT + ctx * 0x100), \
|
|
0, CNTR_NORMAL, port_access_u64_csr)
|
|
|
|
/* 32bit TXE */
|
|
#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
(counter * 8 + SEND_COUNTER_ARRAY32), \
|
|
0, flags | CNTR_32BIT, \
|
|
port_access_u32_csr)
|
|
|
|
/* 64bit TXE */
|
|
#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
(counter * 8 + SEND_COUNTER_ARRAY64), \
|
|
0, flags, \
|
|
port_access_u64_csr)
|
|
|
|
# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
|
|
CNTR_ELEM(#name,\
|
|
counter * 8 + SEND_COUNTER_ARRAY64, \
|
|
0, \
|
|
flags, \
|
|
dev_access_u64_csr)
|
|
|
|
/* CCE */
|
|
#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
(counter * 8 + CCE_COUNTER_ARRAY32), \
|
|
0, flags | CNTR_32BIT, \
|
|
dev_access_u32_csr)
|
|
|
|
#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
(counter * 8 + CCE_INT_COUNTER_ARRAY32), \
|
|
0, flags | CNTR_32BIT, \
|
|
dev_access_u32_csr)
|
|
|
|
/* DC */
|
|
#define DC_PERF_CNTR(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
counter, \
|
|
0, \
|
|
flags, \
|
|
dev_access_u64_csr)
|
|
|
|
#define DC_PERF_CNTR_LCB(name, counter, flags) \
|
|
CNTR_ELEM(#name, \
|
|
counter, \
|
|
0, \
|
|
flags, \
|
|
dc_access_lcb_cntr)
|
|
|
|
/* ibp counters */
|
|
#define SW_IBP_CNTR(name, cntr) \
|
|
CNTR_ELEM(#name, \
|
|
0, \
|
|
0, \
|
|
CNTR_SYNTH, \
|
|
access_ibp_##cntr)
|
|
|
|
u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
|
|
{
|
|
if (dd->flags & HFI1_PRESENT) {
|
|
return readq((void __iomem *)dd->kregbase + offset);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
|
|
{
|
|
if (dd->flags & HFI1_PRESENT)
|
|
writeq(value, (void __iomem *)dd->kregbase + offset);
|
|
}
|
|
|
|
void __iomem *get_csr_addr(
|
|
struct hfi1_devdata *dd,
|
|
u32 offset)
|
|
{
|
|
return (void __iomem *)dd->kregbase + offset;
|
|
}
|
|
|
|
static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
|
|
int mode, u64 value)
|
|
{
|
|
u64 ret;
|
|
|
|
if (mode == CNTR_MODE_R) {
|
|
ret = read_csr(dd, csr);
|
|
} else if (mode == CNTR_MODE_W) {
|
|
write_csr(dd, csr, value);
|
|
ret = value;
|
|
} else {
|
|
dd_dev_err(dd, "Invalid cntr register access mode");
|
|
return 0;
|
|
}
|
|
|
|
hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
|
|
return ret;
|
|
}
|
|
|
|
/* Dev Access */
|
|
static u64 dev_access_u32_csr(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = context;
|
|
u64 csr = entry->csr;
|
|
|
|
if (entry->flags & CNTR_SDMA) {
|
|
if (vl == CNTR_INVALID_VL)
|
|
return 0;
|
|
csr += 0x100 * vl;
|
|
} else {
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
}
|
|
return read_write_csr(dd, csr, mode, data);
|
|
}
|
|
|
|
static u64 access_sde_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int idx, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
if (dd->per_sdma && idx < dd->num_sdma)
|
|
return dd->per_sdma[idx].err_cnt;
|
|
return 0;
|
|
}
|
|
|
|
static u64 access_sde_int_cnt(const struct cntr_entry *entry,
|
|
void *context, int idx, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
if (dd->per_sdma && idx < dd->num_sdma)
|
|
return dd->per_sdma[idx].sdma_int_cnt;
|
|
return 0;
|
|
}
|
|
|
|
static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
|
|
void *context, int idx, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
if (dd->per_sdma && idx < dd->num_sdma)
|
|
return dd->per_sdma[idx].idle_int_cnt;
|
|
return 0;
|
|
}
|
|
|
|
static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
|
|
void *context, int idx, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
if (dd->per_sdma && idx < dd->num_sdma)
|
|
return dd->per_sdma[idx].progress_int_cnt;
|
|
return 0;
|
|
}
|
|
|
|
static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
|
|
int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = context;
|
|
|
|
u64 val = 0;
|
|
u64 csr = entry->csr;
|
|
|
|
if (entry->flags & CNTR_VL) {
|
|
if (vl == CNTR_INVALID_VL)
|
|
return 0;
|
|
csr += 8 * vl;
|
|
} else {
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
}
|
|
|
|
val = read_write_csr(dd, csr, mode, data);
|
|
return val;
|
|
}
|
|
|
|
static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
|
|
int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = context;
|
|
u32 csr = entry->csr;
|
|
int ret = 0;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
if (mode == CNTR_MODE_R)
|
|
ret = read_lcb_csr(dd, csr, &data);
|
|
else if (mode == CNTR_MODE_W)
|
|
ret = write_lcb_csr(dd, csr, data);
|
|
|
|
if (ret) {
|
|
dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
|
|
return 0;
|
|
}
|
|
|
|
hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
|
|
return data;
|
|
}
|
|
|
|
/* Port Access */
|
|
static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
|
|
int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_pportdata *ppd = context;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
return read_write_csr(ppd->dd, entry->csr, mode, data);
|
|
}
|
|
|
|
static u64 port_access_u64_csr(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_pportdata *ppd = context;
|
|
u64 val;
|
|
u64 csr = entry->csr;
|
|
|
|
if (entry->flags & CNTR_VL) {
|
|
if (vl == CNTR_INVALID_VL)
|
|
return 0;
|
|
csr += 8 * vl;
|
|
} else {
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
}
|
|
val = read_write_csr(ppd->dd, csr, mode, data);
|
|
return val;
|
|
}
|
|
|
|
/* Software defined */
|
|
static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
|
|
u64 data)
|
|
{
|
|
u64 ret;
|
|
|
|
if (mode == CNTR_MODE_R) {
|
|
ret = *cntr;
|
|
} else if (mode == CNTR_MODE_W) {
|
|
*cntr = data;
|
|
ret = data;
|
|
} else {
|
|
dd_dev_err(dd, "Invalid cntr sw access mode");
|
|
return 0;
|
|
}
|
|
|
|
hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
|
|
int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_pportdata *ppd = context;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
|
|
}
|
|
|
|
static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
|
|
int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_pportdata *ppd = context;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
|
|
}
|
|
|
|
static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
|
|
}
|
|
|
|
static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
|
|
u64 zero = 0;
|
|
u64 *counter;
|
|
|
|
if (vl == CNTR_INVALID_VL)
|
|
counter = &ppd->port_xmit_discards;
|
|
else if (vl >= 0 && vl < C_VL_COUNT)
|
|
counter = &ppd->port_xmit_discards_vl[vl];
|
|
else
|
|
counter = &zero;
|
|
|
|
return read_write_sw(ppd->dd, counter, mode, data);
|
|
}
|
|
|
|
static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_pportdata *ppd = context;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
|
|
return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
|
|
mode, data);
|
|
}
|
|
|
|
static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_pportdata *ppd = context;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
|
|
return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
|
|
mode, data);
|
|
}
|
|
|
|
u64 get_all_cpu_total(u64 __percpu *cntr)
|
|
{
|
|
int cpu;
|
|
u64 counter = 0;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
counter += *per_cpu_ptr(cntr, cpu);
|
|
return counter;
|
|
}
|
|
|
|
static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
|
|
u64 __percpu *cntr,
|
|
int vl, int mode, u64 data)
|
|
{
|
|
u64 ret = 0;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
return 0;
|
|
|
|
if (mode == CNTR_MODE_R) {
|
|
ret = get_all_cpu_total(cntr) - *z_val;
|
|
} else if (mode == CNTR_MODE_W) {
|
|
/* A write can only zero the counter */
|
|
if (data == 0)
|
|
*z_val = get_all_cpu_total(cntr);
|
|
else
|
|
dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
|
|
} else {
|
|
dd_dev_err(dd, "Invalid cntr sw cpu access mode");
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = context;
|
|
|
|
return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
|
|
mode, data);
|
|
}
|
|
|
|
static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = context;
|
|
|
|
return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
|
|
mode, data);
|
|
}
|
|
|
|
static u64 access_sw_pio_wait(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = context;
|
|
|
|
return dd->verbs_dev.n_piowait;
|
|
}
|
|
|
|
static u64 access_sw_pio_drain(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->verbs_dev.n_piodrain;
|
|
}
|
|
|
|
static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = context;
|
|
|
|
return dd->verbs_dev.n_txwait;
|
|
}
|
|
|
|
static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = context;
|
|
|
|
return dd->verbs_dev.n_kmem_wait;
|
|
}
|
|
|
|
static u64 access_sw_send_schedule(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
|
|
mode, data);
|
|
}
|
|
|
|
/* Software counters for the error status bits within MISC_ERR_STATUS */
|
|
static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[12];
|
|
}
|
|
|
|
static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[11];
|
|
}
|
|
|
|
static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[10];
|
|
}
|
|
|
|
static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[9];
|
|
}
|
|
|
|
static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[8];
|
|
}
|
|
|
|
static u64 access_misc_efuse_read_bad_addr_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[7];
|
|
}
|
|
|
|
static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[6];
|
|
}
|
|
|
|
static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[5];
|
|
}
|
|
|
|
static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[4];
|
|
}
|
|
|
|
static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[3];
|
|
}
|
|
|
|
static u64 access_misc_csr_write_bad_addr_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[2];
|
|
}
|
|
|
|
static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[1];
|
|
}
|
|
|
|
static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->misc_err_status_cnt[0];
|
|
}
|
|
|
|
/*
|
|
* Software counter for the aggregate of
|
|
* individual CceErrStatus counters
|
|
*/
|
|
static u64 access_sw_cce_err_status_aggregated_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_cce_err_status_aggregate;
|
|
}
|
|
|
|
/*
|
|
* Software counters corresponding to each of the
|
|
* error status bits within CceErrStatus
|
|
*/
|
|
static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[40];
|
|
}
|
|
|
|
static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[39];
|
|
}
|
|
|
|
static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[38];
|
|
}
|
|
|
|
static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[37];
|
|
}
|
|
|
|
static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[36];
|
|
}
|
|
|
|
static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[35];
|
|
}
|
|
|
|
static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[34];
|
|
}
|
|
|
|
static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[33];
|
|
}
|
|
|
|
static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[32];
|
|
}
|
|
|
|
static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[31];
|
|
}
|
|
|
|
static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[30];
|
|
}
|
|
|
|
static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[29];
|
|
}
|
|
|
|
static u64 access_pcic_transmit_back_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[28];
|
|
}
|
|
|
|
static u64 access_pcic_transmit_front_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[27];
|
|
}
|
|
|
|
static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[26];
|
|
}
|
|
|
|
static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[25];
|
|
}
|
|
|
|
static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[24];
|
|
}
|
|
|
|
static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[23];
|
|
}
|
|
|
|
static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[22];
|
|
}
|
|
|
|
static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[21];
|
|
}
|
|
|
|
static u64 access_pcic_n_post_dat_q_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[20];
|
|
}
|
|
|
|
static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[19];
|
|
}
|
|
|
|
static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[18];
|
|
}
|
|
|
|
static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[17];
|
|
}
|
|
|
|
static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[16];
|
|
}
|
|
|
|
static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[15];
|
|
}
|
|
|
|
static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[14];
|
|
}
|
|
|
|
static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[13];
|
|
}
|
|
|
|
static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[12];
|
|
}
|
|
|
|
static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[11];
|
|
}
|
|
|
|
static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[10];
|
|
}
|
|
|
|
static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[9];
|
|
}
|
|
|
|
static u64 access_cce_cli2_async_fifo_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[8];
|
|
}
|
|
|
|
static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[7];
|
|
}
|
|
|
|
static u64 access_cce_cli0_async_fifo_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[6];
|
|
}
|
|
|
|
static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[5];
|
|
}
|
|
|
|
static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[4];
|
|
}
|
|
|
|
static u64 access_cce_trgt_async_fifo_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[3];
|
|
}
|
|
|
|
static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[2];
|
|
}
|
|
|
|
static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[1];
|
|
}
|
|
|
|
static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->cce_err_status_cnt[0];
|
|
}
|
|
|
|
/*
|
|
* Software counters corresponding to each of the
|
|
* error status bits within RcvErrStatus
|
|
*/
|
|
static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[63];
|
|
}
|
|
|
|
static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[62];
|
|
}
|
|
|
|
static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[61];
|
|
}
|
|
|
|
static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[60];
|
|
}
|
|
|
|
static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[59];
|
|
}
|
|
|
|
static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[58];
|
|
}
|
|
|
|
static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[57];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[56];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[55];
|
|
}
|
|
|
|
static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[54];
|
|
}
|
|
|
|
static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[53];
|
|
}
|
|
|
|
static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[52];
|
|
}
|
|
|
|
static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[51];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[50];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[49];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[48];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[47];
|
|
}
|
|
|
|
static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[46];
|
|
}
|
|
|
|
static u64 access_rx_hq_intr_csr_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[45];
|
|
}
|
|
|
|
static u64 access_rx_lookup_csr_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[44];
|
|
}
|
|
|
|
static u64 access_rx_lookup_rcv_array_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[43];
|
|
}
|
|
|
|
static u64 access_rx_lookup_rcv_array_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[42];
|
|
}
|
|
|
|
static u64 access_rx_lookup_des_part2_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[41];
|
|
}
|
|
|
|
static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[40];
|
|
}
|
|
|
|
static u64 access_rx_lookup_des_part1_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[39];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[38];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[37];
|
|
}
|
|
|
|
static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[36];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[35];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[34];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[33];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[32];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[31];
|
|
}
|
|
|
|
static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[30];
|
|
}
|
|
|
|
static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[29];
|
|
}
|
|
|
|
static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[28];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[27];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[26];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[25];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[24];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[23];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[22];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[21];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[20];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[19];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[18];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[17];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[16];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[15];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[14];
|
|
}
|
|
|
|
static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[13];
|
|
}
|
|
|
|
static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[12];
|
|
}
|
|
|
|
static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[11];
|
|
}
|
|
|
|
static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[10];
|
|
}
|
|
|
|
static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[9];
|
|
}
|
|
|
|
static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[8];
|
|
}
|
|
|
|
static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[7];
|
|
}
|
|
|
|
static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[6];
|
|
}
|
|
|
|
static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[5];
|
|
}
|
|
|
|
static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[4];
|
|
}
|
|
|
|
static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[3];
|
|
}
|
|
|
|
static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[2];
|
|
}
|
|
|
|
static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[1];
|
|
}
|
|
|
|
static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->rcv_err_status_cnt[0];
|
|
}
|
|
|
|
/*
|
|
* Software counters corresponding to each of the
|
|
* error status bits within SendPioErrStatus
|
|
*/
|
|
static u64 access_pio_pec_sop_head_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[35];
|
|
}
|
|
|
|
static u64 access_pio_pcc_sop_head_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[34];
|
|
}
|
|
|
|
static u64 access_pio_last_returned_cnt_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[33];
|
|
}
|
|
|
|
static u64 access_pio_current_free_cnt_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[32];
|
|
}
|
|
|
|
static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[31];
|
|
}
|
|
|
|
static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[30];
|
|
}
|
|
|
|
static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[29];
|
|
}
|
|
|
|
static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[28];
|
|
}
|
|
|
|
static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[27];
|
|
}
|
|
|
|
static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[26];
|
|
}
|
|
|
|
static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[25];
|
|
}
|
|
|
|
static u64 access_pio_block_qw_count_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[24];
|
|
}
|
|
|
|
static u64 access_pio_write_qw_valid_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[23];
|
|
}
|
|
|
|
static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[22];
|
|
}
|
|
|
|
static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[21];
|
|
}
|
|
|
|
static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[20];
|
|
}
|
|
|
|
static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[19];
|
|
}
|
|
|
|
static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[18];
|
|
}
|
|
|
|
static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[17];
|
|
}
|
|
|
|
static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[16];
|
|
}
|
|
|
|
static u64 access_pio_credit_ret_fifo_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[15];
|
|
}
|
|
|
|
static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[14];
|
|
}
|
|
|
|
static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[13];
|
|
}
|
|
|
|
static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[12];
|
|
}
|
|
|
|
static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[11];
|
|
}
|
|
|
|
static u64 access_pio_sm_pkt_reset_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[10];
|
|
}
|
|
|
|
static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[9];
|
|
}
|
|
|
|
static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[8];
|
|
}
|
|
|
|
static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[7];
|
|
}
|
|
|
|
static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[6];
|
|
}
|
|
|
|
static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[5];
|
|
}
|
|
|
|
static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[4];
|
|
}
|
|
|
|
static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[3];
|
|
}
|
|
|
|
static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[2];
|
|
}
|
|
|
|
static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[1];
|
|
}
|
|
|
|
static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_pio_err_status_cnt[0];
|
|
}
|
|
|
|
/*
|
|
* Software counters corresponding to each of the
|
|
* error status bits within SendDmaErrStatus
|
|
*/
|
|
static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_dma_err_status_cnt[3];
|
|
}
|
|
|
|
static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_dma_err_status_cnt[2];
|
|
}
|
|
|
|
static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_dma_err_status_cnt[1];
|
|
}
|
|
|
|
static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_dma_err_status_cnt[0];
|
|
}
|
|
|
|
/*
|
|
* Software counters corresponding to each of the
|
|
* error status bits within SendEgressErrStatus
|
|
*/
|
|
static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[63];
|
|
}
|
|
|
|
static u64 access_tx_read_sdma_memory_csr_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[62];
|
|
}
|
|
|
|
static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[61];
|
|
}
|
|
|
|
static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[60];
|
|
}
|
|
|
|
static u64 access_tx_read_sdma_memory_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[59];
|
|
}
|
|
|
|
static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[58];
|
|
}
|
|
|
|
static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[57];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[56];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[55];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[54];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[53];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[52];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[51];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[50];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[49];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[48];
|
|
}
|
|
|
|
static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[47];
|
|
}
|
|
|
|
static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[46];
|
|
}
|
|
|
|
static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[45];
|
|
}
|
|
|
|
static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[44];
|
|
}
|
|
|
|
static u64 access_tx_read_sdma_memory_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[43];
|
|
}
|
|
|
|
static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[42];
|
|
}
|
|
|
|
static u64 access_tx_credit_return_partiy_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[41];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[40];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[39];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[38];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[37];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[36];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[35];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[34];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[33];
|
|
}
|
|
|
|
static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[32];
|
|
}
|
|
|
|
static u64 access_tx_sdma15_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[31];
|
|
}
|
|
|
|
static u64 access_tx_sdma14_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[30];
|
|
}
|
|
|
|
static u64 access_tx_sdma13_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[29];
|
|
}
|
|
|
|
static u64 access_tx_sdma12_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[28];
|
|
}
|
|
|
|
static u64 access_tx_sdma11_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[27];
|
|
}
|
|
|
|
static u64 access_tx_sdma10_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[26];
|
|
}
|
|
|
|
static u64 access_tx_sdma9_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[25];
|
|
}
|
|
|
|
static u64 access_tx_sdma8_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[24];
|
|
}
|
|
|
|
static u64 access_tx_sdma7_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[23];
|
|
}
|
|
|
|
static u64 access_tx_sdma6_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[22];
|
|
}
|
|
|
|
static u64 access_tx_sdma5_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[21];
|
|
}
|
|
|
|
static u64 access_tx_sdma4_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[20];
|
|
}
|
|
|
|
static u64 access_tx_sdma3_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[19];
|
|
}
|
|
|
|
static u64 access_tx_sdma2_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[18];
|
|
}
|
|
|
|
static u64 access_tx_sdma1_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[17];
|
|
}
|
|
|
|
static u64 access_tx_sdma0_disallowed_packet_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[16];
|
|
}
|
|
|
|
static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[15];
|
|
}
|
|
|
|
static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[14];
|
|
}
|
|
|
|
static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[13];
|
|
}
|
|
|
|
static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[12];
|
|
}
|
|
|
|
static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[11];
|
|
}
|
|
|
|
static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[10];
|
|
}
|
|
|
|
static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[9];
|
|
}
|
|
|
|
static u64 access_tx_sdma_launch_intf_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[8];
|
|
}
|
|
|
|
static u64 access_tx_pio_launch_intf_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[7];
|
|
}
|
|
|
|
static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[6];
|
|
}
|
|
|
|
static u64 access_tx_incorrect_link_state_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[5];
|
|
}
|
|
|
|
static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[4];
|
|
}
|
|
|
|
static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[3];
|
|
}
|
|
|
|
static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[2];
|
|
}
|
|
|
|
static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[1];
|
|
}
|
|
|
|
static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_egress_err_status_cnt[0];
|
|
}
|
|
|
|
/*
|
|
* Software counters corresponding to each of the
|
|
* error status bits within SendErrStatus
|
|
*/
|
|
static u64 access_send_csr_write_bad_addr_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_err_status_cnt[2];
|
|
}
|
|
|
|
static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_err_status_cnt[1];
|
|
}
|
|
|
|
static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->send_err_status_cnt[0];
|
|
}
|
|
|
|
/*
|
|
* Software counters corresponding to each of the
|
|
* error status bits within SendCtxtErrStatus
|
|
*/
|
|
static u64 access_pio_write_out_of_bounds_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_ctxt_err_status_cnt[4];
|
|
}
|
|
|
|
static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_ctxt_err_status_cnt[3];
|
|
}
|
|
|
|
static u64 access_pio_write_crosses_boundary_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_ctxt_err_status_cnt[2];
|
|
}
|
|
|
|
static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_ctxt_err_status_cnt[1];
|
|
}
|
|
|
|
static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_ctxt_err_status_cnt[0];
|
|
}
|
|
|
|
/*
|
|
* Software counters corresponding to each of the
|
|
* error status bits within SendDmaEngErrStatus
|
|
*/
|
|
static u64 access_sdma_header_request_fifo_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[23];
|
|
}
|
|
|
|
static u64 access_sdma_header_storage_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[22];
|
|
}
|
|
|
|
static u64 access_sdma_packet_tracking_cor_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[21];
|
|
}
|
|
|
|
static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[20];
|
|
}
|
|
|
|
static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[19];
|
|
}
|
|
|
|
static u64 access_sdma_header_request_fifo_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[18];
|
|
}
|
|
|
|
static u64 access_sdma_header_storage_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[17];
|
|
}
|
|
|
|
static u64 access_sdma_packet_tracking_unc_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[16];
|
|
}
|
|
|
|
static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[15];
|
|
}
|
|
|
|
static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[14];
|
|
}
|
|
|
|
static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[13];
|
|
}
|
|
|
|
static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[12];
|
|
}
|
|
|
|
static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[11];
|
|
}
|
|
|
|
static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[10];
|
|
}
|
|
|
|
static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[9];
|
|
}
|
|
|
|
static u64 access_sdma_packet_desc_overflow_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[8];
|
|
}
|
|
|
|
static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl,
|
|
int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[7];
|
|
}
|
|
|
|
static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[6];
|
|
}
|
|
|
|
static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[5];
|
|
}
|
|
|
|
static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[4];
|
|
}
|
|
|
|
static u64 access_sdma_tail_out_of_bounds_err_cnt(
|
|
const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[3];
|
|
}
|
|
|
|
static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[2];
|
|
}
|
|
|
|
static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[1];
|
|
}
|
|
|
|
static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode,
|
|
u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
|
|
|
|
return dd->sw_send_dma_eng_err_status_cnt[0];
|
|
}
|
|
|
|
#define def_access_sw_cpu(cntr) \
|
|
static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
|
|
void *context, int vl, int mode, u64 data) \
|
|
{ \
|
|
struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
|
|
return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
|
|
ppd->ibport_data.rvp.cntr, vl, \
|
|
mode, data); \
|
|
}
|
|
|
|
def_access_sw_cpu(rc_acks);
|
|
def_access_sw_cpu(rc_qacks);
|
|
def_access_sw_cpu(rc_delayed_comp);
|
|
|
|
#define def_access_ibp_counter(cntr) \
|
|
static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
|
|
void *context, int vl, int mode, u64 data) \
|
|
{ \
|
|
struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
|
|
\
|
|
if (vl != CNTR_INVALID_VL) \
|
|
return 0; \
|
|
\
|
|
return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
|
|
mode, data); \
|
|
}
|
|
|
|
def_access_ibp_counter(loop_pkts);
|
|
def_access_ibp_counter(rc_resends);
|
|
def_access_ibp_counter(rnr_naks);
|
|
def_access_ibp_counter(other_naks);
|
|
def_access_ibp_counter(rc_timeouts);
|
|
def_access_ibp_counter(pkt_drops);
|
|
def_access_ibp_counter(dmawait);
|
|
def_access_ibp_counter(rc_seqnak);
|
|
def_access_ibp_counter(rc_dupreq);
|
|
def_access_ibp_counter(rdma_seq);
|
|
def_access_ibp_counter(unaligned);
|
|
def_access_ibp_counter(seq_naks);
|
|
|
|
static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
|
|
[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
|
|
[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
|
|
CNTR_NORMAL),
|
|
[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
|
|
CNTR_NORMAL),
|
|
[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
|
|
RCV_TID_FLOW_GEN_MISMATCH_CNT,
|
|
CNTR_NORMAL),
|
|
[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
|
|
CNTR_NORMAL),
|
|
[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
|
|
RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
|
|
[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
|
|
CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
|
|
[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
|
|
CNTR_NORMAL),
|
|
[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
|
|
CNTR_NORMAL),
|
|
[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
|
|
CNTR_NORMAL),
|
|
[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
|
|
CNTR_NORMAL),
|
|
[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
|
|
CNTR_NORMAL),
|
|
[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
|
|
CNTR_NORMAL),
|
|
[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
|
|
CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
|
|
[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
|
|
CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
|
|
[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
|
|
[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
|
|
DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
|
|
[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
|
|
DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
|
|
DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
|
|
[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
|
|
CNTR_SYNTH | CNTR_VL),
|
|
[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
|
|
CNTR_SYNTH | CNTR_VL),
|
|
[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
|
|
[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
|
|
CNTR_SYNTH | CNTR_VL),
|
|
[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
|
|
[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
|
|
CNTR_SYNTH | CNTR_VL),
|
|
[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
|
|
CNTR_SYNTH | CNTR_VL),
|
|
[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
|
|
CNTR_SYNTH | CNTR_VL),
|
|
[C_DC_TOTAL_CRC] =
|
|
DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
|
|
CNTR_SYNTH),
|
|
[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
|
|
CNTR_SYNTH),
|
|
[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
|
|
CNTR_SYNTH),
|
|
[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
|
|
CNTR_SYNTH),
|
|
[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
|
|
CNTR_SYNTH),
|
|
[C_DC_CRC_MULT_LN] =
|
|
DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
|
|
CNTR_SYNTH),
|
|
[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_SEQ_CRC_CNT] =
|
|
DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_ESC0_ONLY_CNT] =
|
|
DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_ESC0_PLUS1_CNT] =
|
|
DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_ESC0_PLUS2_CNT] =
|
|
DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_REINIT_FROM_PEER_CNT] =
|
|
DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_MISC_FLG_CNT] =
|
|
DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_PRF_GOOD_LTP_CNT] =
|
|
DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
|
|
[C_DC_PRF_ACCEPTED_LTP_CNT] =
|
|
DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_PRF_RX_FLIT_CNT] =
|
|
DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
|
|
[C_DC_PRF_TX_FLIT_CNT] =
|
|
DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
|
|
[C_DC_PRF_CLK_CNTR] =
|
|
DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
|
|
[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
|
|
DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
|
|
[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
|
|
DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
|
|
CNTR_SYNTH),
|
|
[C_DC_PG_STS_TX_SBE_CNT] =
|
|
DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
|
|
[C_DC_PG_STS_TX_MBE_CNT] =
|
|
DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
|
|
CNTR_SYNTH),
|
|
[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
|
|
access_sw_cpu_intr),
|
|
[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
|
|
access_sw_cpu_rcv_limit),
|
|
[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
|
|
access_sw_vtx_wait),
|
|
[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
|
|
access_sw_pio_wait),
|
|
[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
|
|
access_sw_pio_drain),
|
|
[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
|
|
access_sw_kmem_wait),
|
|
[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
|
|
access_sw_send_schedule),
|
|
[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
|
|
SEND_DMA_DESC_FETCHED_CNT, 0,
|
|
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
|
|
dev_access_u32_csr),
|
|
[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
|
|
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
|
|
access_sde_int_cnt),
|
|
[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
|
|
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
|
|
access_sde_err_cnt),
|
|
[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
|
|
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
|
|
access_sde_idle_int_cnt),
|
|
[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
|
|
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
|
|
access_sde_progress_int_cnt),
|
|
/* MISC_ERR_STATUS */
|
|
[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_pll_lock_fail_err_cnt),
|
|
[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_mbist_fail_err_cnt),
|
|
[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_invalid_eep_cmd_err_cnt),
|
|
[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_efuse_done_parity_err_cnt),
|
|
[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_efuse_write_err_cnt),
|
|
[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
|
|
0, CNTR_NORMAL,
|
|
access_misc_efuse_read_bad_addr_err_cnt),
|
|
[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_efuse_csr_parity_err_cnt),
|
|
[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_fw_auth_failed_err_cnt),
|
|
[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_key_mismatch_err_cnt),
|
|
[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_sbus_write_failed_err_cnt),
|
|
[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_csr_write_bad_addr_err_cnt),
|
|
[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_csr_read_bad_addr_err_cnt),
|
|
[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_misc_csr_parity_err_cnt),
|
|
/* CceErrStatus */
|
|
[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sw_cce_err_status_aggregated_cnt),
|
|
[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_msix_csr_parity_err_cnt),
|
|
[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_int_map_unc_err_cnt),
|
|
[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_int_map_cor_err_cnt),
|
|
[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_msix_table_unc_err_cnt),
|
|
[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_msix_table_cor_err_cnt),
|
|
[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_cce_rxdma_conv_fifo_parity_err_cnt),
|
|
[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_cce_rcpl_async_fifo_parity_err_cnt),
|
|
[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_seg_write_bad_addr_err_cnt),
|
|
[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_seg_read_bad_addr_err_cnt),
|
|
[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_la_triggered_cnt),
|
|
[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_trgt_cpl_timeout_err_cnt),
|
|
[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_receive_parity_err_cnt),
|
|
[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_transmit_back_parity_err_cnt),
|
|
[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_pcic_transmit_front_parity_err_cnt),
|
|
[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_cpl_dat_q_unc_err_cnt),
|
|
[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_cpl_hd_q_unc_err_cnt),
|
|
[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_post_dat_q_unc_err_cnt),
|
|
[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_post_hd_q_unc_err_cnt),
|
|
[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_retry_sot_mem_unc_err_cnt),
|
|
[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_retry_mem_unc_err),
|
|
[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_n_post_dat_q_parity_err_cnt),
|
|
[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_n_post_h_q_parity_err_cnt),
|
|
[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_cpl_dat_q_cor_err_cnt),
|
|
[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_cpl_hd_q_cor_err_cnt),
|
|
[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_post_dat_q_cor_err_cnt),
|
|
[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_post_hd_q_cor_err_cnt),
|
|
[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_retry_sot_mem_cor_err_cnt),
|
|
[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pcic_retry_mem_cor_err_cnt),
|
|
[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
|
|
"CceCli1AsyncFifoDbgParityError", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_cli1_async_fifo_dbg_parity_err_cnt),
|
|
[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
|
|
"CceCli1AsyncFifoRxdmaParityError", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_cli1_async_fifo_rxdma_parity_err_cnt
|
|
),
|
|
[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
|
|
"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
|
|
[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
|
|
"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
|
|
[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_cce_cli2_async_fifo_parity_err_cnt),
|
|
[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_csr_cfg_bus_parity_err_cnt),
|
|
[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_cce_cli0_async_fifo_parity_err_cnt),
|
|
[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_rspd_data_parity_err_cnt),
|
|
[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_trgt_access_err_cnt),
|
|
[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_cce_trgt_async_fifo_parity_err_cnt),
|
|
[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_csr_write_bad_addr_err_cnt),
|
|
[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_cce_csr_read_bad_addr_err_cnt),
|
|
[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_ccs_csr_parity_err_cnt),
|
|
|
|
/* RcvErrStatus */
|
|
[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_csr_parity_err_cnt),
|
|
[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_csr_write_bad_addr_err_cnt),
|
|
[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_csr_read_bad_addr_err_cnt),
|
|
[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_csr_unc_err_cnt),
|
|
[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_dq_fsm_encoding_err_cnt),
|
|
[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_eq_fsm_encoding_err_cnt),
|
|
[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_csr_parity_err_cnt),
|
|
[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_data_cor_err_cnt),
|
|
[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_data_unc_err_cnt),
|
|
[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_data_fifo_rd_cor_err_cnt),
|
|
[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_data_fifo_rd_unc_err_cnt),
|
|
[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_hdr_fifo_rd_cor_err_cnt),
|
|
[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_hdr_fifo_rd_unc_err_cnt),
|
|
[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_desc_part2_cor_err_cnt),
|
|
[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_desc_part2_unc_err_cnt),
|
|
[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_desc_part1_cor_err_cnt),
|
|
[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_desc_part1_unc_err_cnt),
|
|
[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_hq_intr_fsm_err_cnt),
|
|
[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_hq_intr_csr_parity_err_cnt),
|
|
[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_lookup_csr_parity_err_cnt),
|
|
[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_lookup_rcv_array_cor_err_cnt),
|
|
[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_lookup_rcv_array_unc_err_cnt),
|
|
[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_rx_lookup_des_part2_parity_err_cnt),
|
|
[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_rx_lookup_des_part1_unc_cor_err_cnt),
|
|
[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_lookup_des_part1_unc_err_cnt),
|
|
[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_next_free_buf_cor_err_cnt),
|
|
[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_next_free_buf_unc_err_cnt),
|
|
[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
|
|
"RxRbufFlInitWrAddrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rbuf_fl_init_wr_addr_parity_err_cnt),
|
|
[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_rx_rbuf_fl_initdone_parity_err_cnt),
|
|
[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_rx_rbuf_fl_write_addr_parity_err_cnt),
|
|
[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_fl_rd_addr_parity_err_cnt),
|
|
[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_empty_err_cnt),
|
|
[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_full_err_cnt),
|
|
[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rbuf_bad_lookup_err_cnt),
|
|
[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rbuf_ctx_id_parity_err_cnt),
|
|
[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rbuf_csr_qeopdw_parity_err_cnt),
|
|
[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
|
|
"RxRbufCsrQNumOfPktParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
|
|
[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
|
|
"RxRbufCsrQTlPtrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
|
|
[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
|
|
[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
|
|
[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
|
|
[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
|
|
[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
|
|
"RxRbufCsrQHeadBufNumParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
|
|
[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_rx_rbuf_block_list_read_cor_err_cnt),
|
|
[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_rx_rbuf_block_list_read_unc_err_cnt),
|
|
[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_lookup_des_cor_err_cnt),
|
|
[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_lookup_des_unc_err_cnt),
|
|
[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
|
|
"RxRbufLookupDesRegUncCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
|
|
[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_lookup_des_reg_unc_err_cnt),
|
|
[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_free_list_cor_err_cnt),
|
|
[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rbuf_free_list_unc_err_cnt),
|
|
[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rcv_fsm_encoding_err_cnt),
|
|
[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_flag_cor_err_cnt),
|
|
[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_flag_unc_err_cnt),
|
|
[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dc_sop_eop_parity_err_cnt),
|
|
[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rcv_csr_parity_err_cnt),
|
|
[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rcv_qp_map_table_cor_err_cnt),
|
|
[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rcv_qp_map_table_unc_err_cnt),
|
|
[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rcv_data_cor_err_cnt),
|
|
[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rcv_data_unc_err_cnt),
|
|
[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rcv_hdr_cor_err_cnt),
|
|
[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_rcv_hdr_unc_err_cnt),
|
|
[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dc_intf_parity_err_cnt),
|
|
[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_rx_dma_csr_cor_err_cnt),
|
|
/* SendPioErrStatus */
|
|
[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_pec_sop_head_parity_err_cnt),
|
|
[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_pcc_sop_head_parity_err_cnt),
|
|
[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_pio_last_returned_cnt_parity_err_cnt),
|
|
[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_pio_current_free_cnt_parity_err_cnt),
|
|
[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_reserved_31_err_cnt),
|
|
[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_reserved_30_err_cnt),
|
|
[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_ppmc_sop_len_err_cnt),
|
|
[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_ppmc_bqc_mem_parity_err_cnt),
|
|
[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_vl_fifo_parity_err_cnt),
|
|
[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_vlf_sop_parity_err_cnt),
|
|
[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_vlf_v1_len_parity_err_cnt),
|
|
[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_block_qw_count_parity_err_cnt),
|
|
[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_write_qw_valid_parity_err_cnt),
|
|
[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_state_machine_err_cnt),
|
|
[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_write_data_parity_err_cnt),
|
|
[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_host_addr_mem_cor_err_cnt),
|
|
[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_host_addr_mem_unc_err_cnt),
|
|
[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
|
|
[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_init_sm_in_err_cnt),
|
|
[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_ppmc_pbl_fifo_err_cnt),
|
|
[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_pio_credit_ret_fifo_parity_err_cnt),
|
|
[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_v1_len_mem_bank1_cor_err_cnt),
|
|
[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_v1_len_mem_bank0_cor_err_cnt),
|
|
[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_v1_len_mem_bank1_unc_err_cnt),
|
|
[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_v1_len_mem_bank0_unc_err_cnt),
|
|
[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_sm_pkt_reset_parity_err_cnt),
|
|
[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_pkt_evict_fifo_parity_err_cnt),
|
|
[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
|
|
"PioSbrdctrlCrrelFifoParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
|
|
[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_sbrdctl_crrel_parity_err_cnt),
|
|
[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_pec_fifo_parity_err_cnt),
|
|
[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_pcc_fifo_parity_err_cnt),
|
|
[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_sb_mem_fifo1_err_cnt),
|
|
[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_sb_mem_fifo0_err_cnt),
|
|
[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_csr_parity_err_cnt),
|
|
[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_write_addr_parity_err_cnt),
|
|
[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_write_bad_ctxt_err_cnt),
|
|
/* SendDmaErrStatus */
|
|
[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_sdma_pcie_req_tracking_cor_err_cnt),
|
|
[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_sdma_pcie_req_tracking_unc_err_cnt),
|
|
[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_csr_parity_err_cnt),
|
|
[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_rpy_tag_err_cnt),
|
|
/* SendEgressErrStatus */
|
|
[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_read_pio_memory_csr_unc_err_cnt),
|
|
[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
|
|
0, CNTR_NORMAL,
|
|
access_tx_read_sdma_memory_csr_err_cnt),
|
|
[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_egress_fifo_cor_err_cnt),
|
|
[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_read_pio_memory_cor_err_cnt),
|
|
[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_read_sdma_memory_cor_err_cnt),
|
|
[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_sb_hdr_cor_err_cnt),
|
|
[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_credit_overrun_err_cnt),
|
|
[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_fifo8_cor_err_cnt),
|
|
[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_fifo7_cor_err_cnt),
|
|
[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_fifo6_cor_err_cnt),
|
|
[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_fifo5_cor_err_cnt),
|
|
[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_fifo4_cor_err_cnt),
|
|
[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_fifo3_cor_err_cnt),
|
|
[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_fifo2_cor_err_cnt),
|
|
[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_fifo1_cor_err_cnt),
|
|
[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_fifo0_cor_err_cnt),
|
|
[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_credit_return_vl_err_cnt),
|
|
[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_hcrc_insertion_err_cnt),
|
|
[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_egress_fifo_unc_err_cnt),
|
|
[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_read_pio_memory_unc_err_cnt),
|
|
[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_read_sdma_memory_unc_err_cnt),
|
|
[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_sb_hdr_unc_err_cnt),
|
|
[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_credit_return_partiy_err_cnt),
|
|
[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_launch_fifo8_unc_or_parity_err_cnt),
|
|
[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_launch_fifo7_unc_or_parity_err_cnt),
|
|
[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_launch_fifo6_unc_or_parity_err_cnt),
|
|
[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_launch_fifo5_unc_or_parity_err_cnt),
|
|
[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_launch_fifo4_unc_or_parity_err_cnt),
|
|
[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_launch_fifo3_unc_or_parity_err_cnt),
|
|
[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_launch_fifo2_unc_or_parity_err_cnt),
|
|
[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_launch_fifo1_unc_or_parity_err_cnt),
|
|
[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_launch_fifo0_unc_or_parity_err_cnt),
|
|
[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma15_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma14_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma13_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma12_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma11_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma10_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma9_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma8_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma7_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma6_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma5_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma4_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma3_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma2_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma1_disallowed_packet_err_cnt),
|
|
[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma0_disallowed_packet_err_cnt),
|
|
[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_config_parity_err_cnt),
|
|
[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_sbrd_ctl_csr_parity_err_cnt),
|
|
[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_launch_csr_parity_err_cnt),
|
|
[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_illegal_vl_err_cnt),
|
|
[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
|
|
"TxSbrdCtlStateMachineParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_sbrd_ctl_state_machine_parity_err_cnt),
|
|
[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_egress_reserved_10_err_cnt),
|
|
[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_egress_reserved_9_err_cnt),
|
|
[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_tx_sdma_launch_intf_parity_err_cnt),
|
|
[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_pio_launch_intf_parity_err_cnt),
|
|
[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_egress_reserved_6_err_cnt),
|
|
[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_incorrect_link_state_err_cnt),
|
|
[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_linkdown_err_cnt),
|
|
[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
|
|
"EgressFifoUnderrunOrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_egress_fifi_underrun_or_parity_err_cnt),
|
|
[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_egress_reserved_2_err_cnt),
|
|
[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_pkt_integrity_mem_unc_err_cnt),
|
|
[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_tx_pkt_integrity_mem_cor_err_cnt),
|
|
/* SendErrStatus */
|
|
[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_send_csr_write_bad_addr_err_cnt),
|
|
[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_send_csr_read_bad_addr_err_cnt),
|
|
[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_send_csr_parity_cnt),
|
|
/* SendCtxtErrStatus */
|
|
[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_write_out_of_bounds_err_cnt),
|
|
[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_write_overflow_err_cnt),
|
|
[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_pio_write_crosses_boundary_err_cnt),
|
|
[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_disallowed_packet_err_cnt),
|
|
[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_pio_inconsistent_sop_err_cnt),
|
|
/* SendDmaEngErrStatus */
|
|
[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_sdma_header_request_fifo_cor_err_cnt),
|
|
[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_header_storage_cor_err_cnt),
|
|
[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_packet_tracking_cor_err_cnt),
|
|
[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_assembly_cor_err_cnt),
|
|
[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_desc_table_cor_err_cnt),
|
|
[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
|
|
0, 0, CNTR_NORMAL,
|
|
access_sdma_header_request_fifo_unc_err_cnt),
|
|
[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_header_storage_unc_err_cnt),
|
|
[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_packet_tracking_unc_err_cnt),
|
|
[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_assembly_unc_err_cnt),
|
|
[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_desc_table_unc_err_cnt),
|
|
[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_timeout_err_cnt),
|
|
[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_header_length_err_cnt),
|
|
[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_header_address_err_cnt),
|
|
[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_header_select_err_cnt),
|
|
[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_reserved_9_err_cnt),
|
|
[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_packet_desc_overflow_err_cnt),
|
|
[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_length_mismatch_err_cnt),
|
|
[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_halt_err_cnt),
|
|
[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_mem_read_err_cnt),
|
|
[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_first_desc_err_cnt),
|
|
[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_tail_out_of_bounds_err_cnt),
|
|
[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_too_long_err_cnt),
|
|
[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_gen_mismatch_err_cnt),
|
|
[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
|
|
CNTR_NORMAL,
|
|
access_sdma_wrong_dw_err_cnt),
|
|
};
|
|
|
|
static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
|
|
[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
|
|
CNTR_NORMAL),
|
|
[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
|
|
CNTR_NORMAL),
|
|
[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
|
|
CNTR_NORMAL),
|
|
[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
|
|
CNTR_NORMAL),
|
|
[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
|
|
CNTR_NORMAL),
|
|
[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
|
|
CNTR_NORMAL),
|
|
[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
|
|
CNTR_NORMAL),
|
|
[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
|
|
[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
|
|
[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
|
|
[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
|
|
CNTR_SYNTH | CNTR_VL),
|
|
[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
|
|
CNTR_SYNTH | CNTR_VL),
|
|
[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
|
|
CNTR_SYNTH | CNTR_VL),
|
|
[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
|
|
[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
|
|
[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
|
|
access_sw_link_dn_cnt),
|
|
[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
|
|
access_sw_link_up_cnt),
|
|
[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
|
|
access_sw_unknown_frame_cnt),
|
|
[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
|
|
access_sw_xmit_discards),
|
|
[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
|
|
CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
|
|
access_sw_xmit_discards),
|
|
[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
|
|
access_xmit_constraint_errs),
|
|
[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
|
|
access_rcv_constraint_errs),
|
|
[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
|
|
[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
|
|
[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
|
|
[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
|
|
[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
|
|
[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
|
|
[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
|
|
[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
|
|
[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
|
|
[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
|
|
[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
|
|
[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
|
|
[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
|
|
access_sw_cpu_rc_acks),
|
|
[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
|
|
access_sw_cpu_rc_qacks),
|
|
[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
|
|
access_sw_cpu_rc_delayed_comp),
|
|
[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
|
|
[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
|
|
[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
|
|
[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
|
|
[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
|
|
[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
|
|
[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
|
|
[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
|
|
[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
|
|
[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
|
|
[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
|
|
[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
|
|
[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
|
|
[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
|
|
[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
|
|
[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
|
|
[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
|
|
[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
|
|
[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
|
|
[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
|
|
[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
|
|
[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
|
|
[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
|
|
[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
|
|
[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
|
|
[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
|
|
[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
|
|
[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
|
|
[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
|
|
[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
|
|
[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
|
|
[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
|
|
[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
|
|
[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
|
|
[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
|
|
[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
|
|
[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
|
|
[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
|
|
[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
|
|
[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
|
|
[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
|
|
[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
|
|
[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
|
|
[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
|
|
[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
|
|
[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
|
|
[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
|
|
[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
|
|
[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
|
|
[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
|
|
[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
|
|
[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
|
|
[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
|
|
[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
|
|
[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
|
|
[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
|
|
[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
|
|
[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
|
|
[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
|
|
[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
|
|
[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
|
|
[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
|
|
[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
|
|
[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
|
|
[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
|
|
[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
|
|
[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
|
|
[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
|
|
[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
|
|
[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
|
|
[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
|
|
[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
|
|
[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
|
|
[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
|
|
[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
|
|
[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
|
|
[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
|
|
[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
|
|
[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
|
|
[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
|
|
};
|
|
|
|
/* ======================================================================== */
|
|
|
|
/* return true if this is chip revision revision a */
|
|
int is_ax(struct hfi1_devdata *dd)
|
|
{
|
|
u8 chip_rev_minor =
|
|
dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
|
|
& CCE_REVISION_CHIP_REV_MINOR_MASK;
|
|
return (chip_rev_minor & 0xf0) == 0;
|
|
}
|
|
|
|
/* return true if this is chip revision revision b */
|
|
int is_bx(struct hfi1_devdata *dd)
|
|
{
|
|
u8 chip_rev_minor =
|
|
dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
|
|
& CCE_REVISION_CHIP_REV_MINOR_MASK;
|
|
return (chip_rev_minor & 0xF0) == 0x10;
|
|
}
|
|
|
|
/*
|
|
* Append string s to buffer buf. Arguments curp and len are the current
|
|
* position and remaining length, respectively.
|
|
*
|
|
* return 0 on success, 1 on out of room
|
|
*/
|
|
static int append_str(char *buf, char **curp, int *lenp, const char *s)
|
|
{
|
|
char *p = *curp;
|
|
int len = *lenp;
|
|
int result = 0; /* success */
|
|
char c;
|
|
|
|
/* add a comma, if first in the buffer */
|
|
if (p != buf) {
|
|
if (len == 0) {
|
|
result = 1; /* out of room */
|
|
goto done;
|
|
}
|
|
*p++ = ',';
|
|
len--;
|
|
}
|
|
|
|
/* copy the string */
|
|
while ((c = *s++) != 0) {
|
|
if (len == 0) {
|
|
result = 1; /* out of room */
|
|
goto done;
|
|
}
|
|
*p++ = c;
|
|
len--;
|
|
}
|
|
|
|
done:
|
|
/* write return values */
|
|
*curp = p;
|
|
*lenp = len;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Using the given flag table, print a comma separated string into
|
|
* the buffer. End in '*' if the buffer is too short.
|
|
*/
|
|
static char *flag_string(char *buf, int buf_len, u64 flags,
|
|
struct flag_table *table, int table_size)
|
|
{
|
|
char extra[32];
|
|
char *p = buf;
|
|
int len = buf_len;
|
|
int no_room = 0;
|
|
int i;
|
|
|
|
/* make sure there is at least 2 so we can form "*" */
|
|
if (len < 2)
|
|
return "";
|
|
|
|
len--; /* leave room for a nul */
|
|
for (i = 0; i < table_size; i++) {
|
|
if (flags & table[i].flag) {
|
|
no_room = append_str(buf, &p, &len, table[i].str);
|
|
if (no_room)
|
|
break;
|
|
flags &= ~table[i].flag;
|
|
}
|
|
}
|
|
|
|
/* any undocumented bits left? */
|
|
if (!no_room && flags) {
|
|
snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
|
|
no_room = append_str(buf, &p, &len, extra);
|
|
}
|
|
|
|
/* add * if ran out of room */
|
|
if (no_room) {
|
|
/* may need to back up to add space for a '*' */
|
|
if (len == 0)
|
|
--p;
|
|
*p++ = '*';
|
|
}
|
|
|
|
/* add final nul - space already allocated above */
|
|
*p = 0;
|
|
return buf;
|
|
}
|
|
|
|
/* first 8 CCE error interrupt source names */
|
|
static const char * const cce_misc_names[] = {
|
|
"CceErrInt", /* 0 */
|
|
"RxeErrInt", /* 1 */
|
|
"MiscErrInt", /* 2 */
|
|
"Reserved3", /* 3 */
|
|
"PioErrInt", /* 4 */
|
|
"SDmaErrInt", /* 5 */
|
|
"EgressErrInt", /* 6 */
|
|
"TxeErrInt" /* 7 */
|
|
};
|
|
|
|
/*
|
|
* Return the miscellaneous error interrupt name.
|
|
*/
|
|
static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
if (source < ARRAY_SIZE(cce_misc_names))
|
|
strncpy(buf, cce_misc_names[source], bsize);
|
|
else
|
|
snprintf(buf, bsize, "Reserved%u",
|
|
source + IS_GENERAL_ERR_START);
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Return the SDMA engine error interrupt name.
|
|
*/
|
|
static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
snprintf(buf, bsize, "SDmaEngErrInt%u", source);
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Return the send context error interrupt name.
|
|
*/
|
|
static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
snprintf(buf, bsize, "SendCtxtErrInt%u", source);
|
|
return buf;
|
|
}
|
|
|
|
static const char * const various_names[] = {
|
|
"PbcInt",
|
|
"GpioAssertInt",
|
|
"Qsfp1Int",
|
|
"Qsfp2Int",
|
|
"TCritInt"
|
|
};
|
|
|
|
/*
|
|
* Return the various interrupt name.
|
|
*/
|
|
static char *is_various_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
if (source < ARRAY_SIZE(various_names))
|
|
strncpy(buf, various_names[source], bsize);
|
|
else
|
|
snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Return the DC interrupt name.
|
|
*/
|
|
static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
static const char * const dc_int_names[] = {
|
|
"common",
|
|
"lcb",
|
|
"8051",
|
|
"lbm" /* local block merge */
|
|
};
|
|
|
|
if (source < ARRAY_SIZE(dc_int_names))
|
|
snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
|
|
else
|
|
snprintf(buf, bsize, "DCInt%u", source);
|
|
return buf;
|
|
}
|
|
|
|
static const char * const sdma_int_names[] = {
|
|
"SDmaInt",
|
|
"SdmaIdleInt",
|
|
"SdmaProgressInt",
|
|
};
|
|
|
|
/*
|
|
* Return the SDMA engine interrupt name.
|
|
*/
|
|
static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
/* what interrupt */
|
|
unsigned int what = source / TXE_NUM_SDMA_ENGINES;
|
|
/* which engine */
|
|
unsigned int which = source % TXE_NUM_SDMA_ENGINES;
|
|
|
|
if (likely(what < 3))
|
|
snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
|
|
else
|
|
snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Return the receive available interrupt name.
|
|
*/
|
|
static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
snprintf(buf, bsize, "RcvAvailInt%u", source);
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Return the receive urgent interrupt name.
|
|
*/
|
|
static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
snprintf(buf, bsize, "RcvUrgentInt%u", source);
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Return the send credit interrupt name.
|
|
*/
|
|
static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
snprintf(buf, bsize, "SendCreditInt%u", source);
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Return the reserved interrupt name.
|
|
*/
|
|
static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
|
|
{
|
|
snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
|
|
return buf;
|
|
}
|
|
|
|
static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags,
|
|
cce_err_status_flags,
|
|
ARRAY_SIZE(cce_err_status_flags));
|
|
}
|
|
|
|
static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags,
|
|
rxe_err_status_flags,
|
|
ARRAY_SIZE(rxe_err_status_flags));
|
|
}
|
|
|
|
static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags, misc_err_status_flags,
|
|
ARRAY_SIZE(misc_err_status_flags));
|
|
}
|
|
|
|
static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags,
|
|
pio_err_status_flags,
|
|
ARRAY_SIZE(pio_err_status_flags));
|
|
}
|
|
|
|
static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags,
|
|
sdma_err_status_flags,
|
|
ARRAY_SIZE(sdma_err_status_flags));
|
|
}
|
|
|
|
static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags,
|
|
egress_err_status_flags,
|
|
ARRAY_SIZE(egress_err_status_flags));
|
|
}
|
|
|
|
static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags,
|
|
egress_err_info_flags,
|
|
ARRAY_SIZE(egress_err_info_flags));
|
|
}
|
|
|
|
static char *send_err_status_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags,
|
|
send_err_status_flags,
|
|
ARRAY_SIZE(send_err_status_flags));
|
|
}
|
|
|
|
static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
char buf[96];
|
|
int i = 0;
|
|
|
|
/*
|
|
* For most these errors, there is nothing that can be done except
|
|
* report or record it.
|
|
*/
|
|
dd_dev_info(dd, "CCE Error: %s\n",
|
|
cce_err_status_string(buf, sizeof(buf), reg));
|
|
|
|
if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
|
|
is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
|
|
/* this error requires a manual drop into SPC freeze mode */
|
|
/* then a fix up */
|
|
start_freeze_handling(dd->pport, FREEZE_SELF);
|
|
}
|
|
|
|
for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
|
|
if (reg & (1ull << i)) {
|
|
incr_cntr64(&dd->cce_err_status_cnt[i]);
|
|
/* maintain a counter over all cce_err_status errors */
|
|
incr_cntr64(&dd->sw_cce_err_status_aggregate);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check counters for receive errors that do not have an interrupt
|
|
* associated with them.
|
|
*/
|
|
#define RCVERR_CHECK_TIME 10
|
|
static void update_rcverr_timer(unsigned long opaque)
|
|
{
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
|
|
|
|
if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
|
|
ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
|
|
dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
|
|
set_link_down_reason(
|
|
ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
|
|
OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
|
|
queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
|
|
}
|
|
dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
|
|
|
|
mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
|
|
}
|
|
|
|
static int init_rcverr(struct hfi1_devdata *dd)
|
|
{
|
|
setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
|
|
/* Assume the hardware counter has been reset */
|
|
dd->rcv_ovfl_cnt = 0;
|
|
return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
|
|
}
|
|
|
|
static void free_rcverr(struct hfi1_devdata *dd)
|
|
{
|
|
if (dd->rcverr_timer.data)
|
|
del_timer_sync(&dd->rcverr_timer);
|
|
dd->rcverr_timer.data = 0;
|
|
}
|
|
|
|
static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
char buf[96];
|
|
int i = 0;
|
|
|
|
dd_dev_info(dd, "Receive Error: %s\n",
|
|
rxe_err_status_string(buf, sizeof(buf), reg));
|
|
|
|
if (reg & ALL_RXE_FREEZE_ERR) {
|
|
int flags = 0;
|
|
|
|
/*
|
|
* Freeze mode recovery is disabled for the errors
|
|
* in RXE_FREEZE_ABORT_MASK
|
|
*/
|
|
if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
|
|
flags = FREEZE_ABORT;
|
|
|
|
start_freeze_handling(dd->pport, flags);
|
|
}
|
|
|
|
for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
|
|
if (reg & (1ull << i))
|
|
incr_cntr64(&dd->rcv_err_status_cnt[i]);
|
|
}
|
|
}
|
|
|
|
static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
char buf[96];
|
|
int i = 0;
|
|
|
|
dd_dev_info(dd, "Misc Error: %s",
|
|
misc_err_status_string(buf, sizeof(buf), reg));
|
|
for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
|
|
if (reg & (1ull << i))
|
|
incr_cntr64(&dd->misc_err_status_cnt[i]);
|
|
}
|
|
}
|
|
|
|
static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
char buf[96];
|
|
int i = 0;
|
|
|
|
dd_dev_info(dd, "PIO Error: %s\n",
|
|
pio_err_status_string(buf, sizeof(buf), reg));
|
|
|
|
if (reg & ALL_PIO_FREEZE_ERR)
|
|
start_freeze_handling(dd->pport, 0);
|
|
|
|
for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
|
|
if (reg & (1ull << i))
|
|
incr_cntr64(&dd->send_pio_err_status_cnt[i]);
|
|
}
|
|
}
|
|
|
|
static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
char buf[96];
|
|
int i = 0;
|
|
|
|
dd_dev_info(dd, "SDMA Error: %s\n",
|
|
sdma_err_status_string(buf, sizeof(buf), reg));
|
|
|
|
if (reg & ALL_SDMA_FREEZE_ERR)
|
|
start_freeze_handling(dd->pport, 0);
|
|
|
|
for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
|
|
if (reg & (1ull << i))
|
|
incr_cntr64(&dd->send_dma_err_status_cnt[i]);
|
|
}
|
|
}
|
|
|
|
static inline void __count_port_discards(struct hfi1_pportdata *ppd)
|
|
{
|
|
incr_cntr64(&ppd->port_xmit_discards);
|
|
}
|
|
|
|
static void count_port_inactive(struct hfi1_devdata *dd)
|
|
{
|
|
__count_port_discards(dd->pport);
|
|
}
|
|
|
|
/*
|
|
* We have had a "disallowed packet" error during egress. Determine the
|
|
* integrity check which failed, and update relevant error counter, etc.
|
|
*
|
|
* Note that the SEND_EGRESS_ERR_INFO register has only a single
|
|
* bit of state per integrity check, and so we can miss the reason for an
|
|
* egress error if more than one packet fails the same integrity check
|
|
* since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
|
|
*/
|
|
static void handle_send_egress_err_info(struct hfi1_devdata *dd,
|
|
int vl)
|
|
{
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
|
|
u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
|
|
char buf[96];
|
|
|
|
/* clear down all observed info as quickly as possible after read */
|
|
write_csr(dd, SEND_EGRESS_ERR_INFO, info);
|
|
|
|
dd_dev_info(dd,
|
|
"Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
|
|
info, egress_err_info_string(buf, sizeof(buf), info), src);
|
|
|
|
/* Eventually add other counters for each bit */
|
|
if (info & PORT_DISCARD_EGRESS_ERRS) {
|
|
int weight, i;
|
|
|
|
/*
|
|
* Count all applicable bits as individual errors and
|
|
* attribute them to the packet that triggered this handler.
|
|
* This may not be completely accurate due to limitations
|
|
* on the available hardware error information. There is
|
|
* a single information register and any number of error
|
|
* packets may have occurred and contributed to it before
|
|
* this routine is called. This means that:
|
|
* a) If multiple packets with the same error occur before
|
|
* this routine is called, earlier packets are missed.
|
|
* There is only a single bit for each error type.
|
|
* b) Errors may not be attributed to the correct VL.
|
|
* The driver is attributing all bits in the info register
|
|
* to the packet that triggered this call, but bits
|
|
* could be an accumulation of different packets with
|
|
* different VLs.
|
|
* c) A single error packet may have multiple counts attached
|
|
* to it. There is no way for the driver to know if
|
|
* multiple bits set in the info register are due to a
|
|
* single packet or multiple packets. The driver assumes
|
|
* multiple packets.
|
|
*/
|
|
weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
|
|
for (i = 0; i < weight; i++) {
|
|
__count_port_discards(ppd);
|
|
if (vl >= 0 && vl < TXE_NUM_DATA_VL)
|
|
incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
|
|
else if (vl == 15)
|
|
incr_cntr64(&ppd->port_xmit_discards_vl
|
|
[C_VL_15]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Input value is a bit position within the SEND_EGRESS_ERR_STATUS
|
|
* register. Does it represent a 'port inactive' error?
|
|
*/
|
|
static inline int port_inactive_err(u64 posn)
|
|
{
|
|
return (posn >= SEES(TX_LINKDOWN) &&
|
|
posn <= SEES(TX_INCORRECT_LINK_STATE));
|
|
}
|
|
|
|
/*
|
|
* Input value is a bit position within the SEND_EGRESS_ERR_STATUS
|
|
* register. Does it represent a 'disallowed packet' error?
|
|
*/
|
|
static inline int disallowed_pkt_err(int posn)
|
|
{
|
|
return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
|
|
posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
|
|
}
|
|
|
|
/*
|
|
* Input value is a bit position of one of the SDMA engine disallowed
|
|
* packet errors. Return which engine. Use of this must be guarded by
|
|
* disallowed_pkt_err().
|
|
*/
|
|
static inline int disallowed_pkt_engine(int posn)
|
|
{
|
|
return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
|
|
}
|
|
|
|
/*
|
|
* Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
|
|
* be done.
|
|
*/
|
|
static int engine_to_vl(struct hfi1_devdata *dd, int engine)
|
|
{
|
|
struct sdma_vl_map *m;
|
|
int vl;
|
|
|
|
/* range check */
|
|
if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
|
|
return -1;
|
|
|
|
rcu_read_lock();
|
|
m = rcu_dereference(dd->sdma_map);
|
|
vl = m->engine_to_vl[engine];
|
|
rcu_read_unlock();
|
|
|
|
return vl;
|
|
}
|
|
|
|
/*
|
|
* Translate the send context (sofware index) into a VL. Return -1 if the
|
|
* translation cannot be done.
|
|
*/
|
|
static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
|
|
{
|
|
struct send_context_info *sci;
|
|
struct send_context *sc;
|
|
int i;
|
|
|
|
sci = &dd->send_contexts[sw_index];
|
|
|
|
/* there is no information for user (PSM) and ack contexts */
|
|
if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
|
|
return -1;
|
|
|
|
sc = sci->sc;
|
|
if (!sc)
|
|
return -1;
|
|
if (dd->vld[15].sc == sc)
|
|
return 15;
|
|
for (i = 0; i < num_vls; i++)
|
|
if (dd->vld[i].sc == sc)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
u64 reg_copy = reg, handled = 0;
|
|
char buf[96];
|
|
int i = 0;
|
|
|
|
if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
|
|
start_freeze_handling(dd->pport, 0);
|
|
else if (is_ax(dd) &&
|
|
(reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
|
|
(dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
|
|
start_freeze_handling(dd->pport, 0);
|
|
|
|
while (reg_copy) {
|
|
int posn = fls64(reg_copy);
|
|
/* fls64() returns a 1-based offset, we want it zero based */
|
|
int shift = posn - 1;
|
|
u64 mask = 1ULL << shift;
|
|
|
|
if (port_inactive_err(shift)) {
|
|
count_port_inactive(dd);
|
|
handled |= mask;
|
|
} else if (disallowed_pkt_err(shift)) {
|
|
int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
|
|
|
|
handle_send_egress_err_info(dd, vl);
|
|
handled |= mask;
|
|
}
|
|
reg_copy &= ~mask;
|
|
}
|
|
|
|
reg &= ~handled;
|
|
|
|
if (reg)
|
|
dd_dev_info(dd, "Egress Error: %s\n",
|
|
egress_err_status_string(buf, sizeof(buf), reg));
|
|
|
|
for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
|
|
if (reg & (1ull << i))
|
|
incr_cntr64(&dd->send_egress_err_status_cnt[i]);
|
|
}
|
|
}
|
|
|
|
static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
char buf[96];
|
|
int i = 0;
|
|
|
|
dd_dev_info(dd, "Send Error: %s\n",
|
|
send_err_status_string(buf, sizeof(buf), reg));
|
|
|
|
for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
|
|
if (reg & (1ull << i))
|
|
incr_cntr64(&dd->send_err_status_cnt[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The maximum number of times the error clear down will loop before
|
|
* blocking a repeating error. This value is arbitrary.
|
|
*/
|
|
#define MAX_CLEAR_COUNT 20
|
|
|
|
/*
|
|
* Clear and handle an error register. All error interrupts are funneled
|
|
* through here to have a central location to correctly handle single-
|
|
* or multi-shot errors.
|
|
*
|
|
* For non per-context registers, call this routine with a context value
|
|
* of 0 so the per-context offset is zero.
|
|
*
|
|
* If the handler loops too many times, assume that something is wrong
|
|
* and can't be fixed, so mask the error bits.
|
|
*/
|
|
static void interrupt_clear_down(struct hfi1_devdata *dd,
|
|
u32 context,
|
|
const struct err_reg_info *eri)
|
|
{
|
|
u64 reg;
|
|
u32 count;
|
|
|
|
/* read in a loop until no more errors are seen */
|
|
count = 0;
|
|
while (1) {
|
|
reg = read_kctxt_csr(dd, context, eri->status);
|
|
if (reg == 0)
|
|
break;
|
|
write_kctxt_csr(dd, context, eri->clear, reg);
|
|
if (likely(eri->handler))
|
|
eri->handler(dd, context, reg);
|
|
count++;
|
|
if (count > MAX_CLEAR_COUNT) {
|
|
u64 mask;
|
|
|
|
dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
|
|
eri->desc, reg);
|
|
/*
|
|
* Read-modify-write so any other masked bits
|
|
* remain masked.
|
|
*/
|
|
mask = read_kctxt_csr(dd, context, eri->mask);
|
|
mask &= ~reg;
|
|
write_kctxt_csr(dd, context, eri->mask, mask);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* CCE block "misc" interrupt. Source is < 16.
|
|
*/
|
|
static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
const struct err_reg_info *eri = &misc_errs[source];
|
|
|
|
if (eri->handler) {
|
|
interrupt_clear_down(dd, 0, eri);
|
|
} else {
|
|
dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
|
|
source);
|
|
}
|
|
}
|
|
|
|
static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags,
|
|
sc_err_status_flags,
|
|
ARRAY_SIZE(sc_err_status_flags));
|
|
}
|
|
|
|
/*
|
|
* Send context error interrupt. Source (hw_context) is < 160.
|
|
*
|
|
* All send context errors cause the send context to halt. The normal
|
|
* clear-down mechanism cannot be used because we cannot clear the
|
|
* error bits until several other long-running items are done first.
|
|
* This is OK because with the context halted, nothing else is going
|
|
* to happen on it anyway.
|
|
*/
|
|
static void is_sendctxt_err_int(struct hfi1_devdata *dd,
|
|
unsigned int hw_context)
|
|
{
|
|
struct send_context_info *sci;
|
|
struct send_context *sc;
|
|
char flags[96];
|
|
u64 status;
|
|
u32 sw_index;
|
|
int i = 0;
|
|
|
|
sw_index = dd->hw_to_sw[hw_context];
|
|
if (sw_index >= dd->num_send_contexts) {
|
|
dd_dev_err(dd,
|
|
"out of range sw index %u for send context %u\n",
|
|
sw_index, hw_context);
|
|
return;
|
|
}
|
|
sci = &dd->send_contexts[sw_index];
|
|
sc = sci->sc;
|
|
if (!sc) {
|
|
dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
|
|
sw_index, hw_context);
|
|
return;
|
|
}
|
|
|
|
/* tell the software that a halt has begun */
|
|
sc_stop(sc, SCF_HALTED);
|
|
|
|
status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
|
|
|
|
dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
|
|
send_context_err_status_string(flags, sizeof(flags),
|
|
status));
|
|
|
|
if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
|
|
handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
|
|
|
|
/*
|
|
* Automatically restart halted kernel contexts out of interrupt
|
|
* context. User contexts must ask the driver to restart the context.
|
|
*/
|
|
if (sc->type != SC_USER)
|
|
queue_work(dd->pport->hfi1_wq, &sc->halt_work);
|
|
|
|
/*
|
|
* Update the counters for the corresponding status bits.
|
|
* Note that these particular counters are aggregated over all
|
|
* 160 contexts.
|
|
*/
|
|
for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
|
|
if (status & (1ull << i))
|
|
incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
|
|
}
|
|
}
|
|
|
|
static void handle_sdma_eng_err(struct hfi1_devdata *dd,
|
|
unsigned int source, u64 status)
|
|
{
|
|
struct sdma_engine *sde;
|
|
int i = 0;
|
|
|
|
sde = &dd->per_sdma[source];
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
|
|
slashstrip(__FILE__), __LINE__, __func__);
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
|
|
sde->this_idx, source, (unsigned long long)status);
|
|
#endif
|
|
sde->err_cnt++;
|
|
sdma_engine_error(sde, status);
|
|
|
|
/*
|
|
* Update the counters for the corresponding status bits.
|
|
* Note that these particular counters are aggregated over
|
|
* all 16 DMA engines.
|
|
*/
|
|
for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
|
|
if (status & (1ull << i))
|
|
incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* CCE block SDMA error interrupt. Source is < 16.
|
|
*/
|
|
static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
struct sdma_engine *sde = &dd->per_sdma[source];
|
|
|
|
dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
|
|
slashstrip(__FILE__), __LINE__, __func__);
|
|
dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
|
|
source);
|
|
sdma_dumpstate(sde);
|
|
#endif
|
|
interrupt_clear_down(dd, source, &sdma_eng_err);
|
|
}
|
|
|
|
/*
|
|
* CCE block "various" interrupt. Source is < 8.
|
|
*/
|
|
static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
const struct err_reg_info *eri = &various_err[source];
|
|
|
|
/*
|
|
* TCritInt cannot go through interrupt_clear_down()
|
|
* because it is not a second tier interrupt. The handler
|
|
* should be called directly.
|
|
*/
|
|
if (source == TCRIT_INT_SOURCE)
|
|
handle_temp_err(dd);
|
|
else if (eri->handler)
|
|
interrupt_clear_down(dd, 0, eri);
|
|
else
|
|
dd_dev_info(dd,
|
|
"%s: Unimplemented/reserved interrupt %d\n",
|
|
__func__, source);
|
|
}
|
|
|
|
static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
|
|
{
|
|
/* src_ctx is always zero */
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
unsigned long flags;
|
|
u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
|
|
|
|
if (reg & QSFP_HFI0_MODPRST_N) {
|
|
if (!qsfp_mod_present(ppd)) {
|
|
dd_dev_info(dd, "%s: QSFP module removed\n",
|
|
__func__);
|
|
|
|
ppd->driver_link_ready = 0;
|
|
/*
|
|
* Cable removed, reset all our information about the
|
|
* cache and cable capabilities
|
|
*/
|
|
|
|
spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
|
|
/*
|
|
* We don't set cache_refresh_required here as we expect
|
|
* an interrupt when a cable is inserted
|
|
*/
|
|
ppd->qsfp_info.cache_valid = 0;
|
|
ppd->qsfp_info.reset_needed = 0;
|
|
ppd->qsfp_info.limiting_active = 0;
|
|
spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
|
|
flags);
|
|
/* Invert the ModPresent pin now to detect plug-in */
|
|
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
|
|
ASIC_QSFP1_INVERT, qsfp_int_mgmt);
|
|
|
|
if ((ppd->offline_disabled_reason >
|
|
HFI1_ODR_MASK(
|
|
OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
|
|
(ppd->offline_disabled_reason ==
|
|
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
|
|
ppd->offline_disabled_reason =
|
|
HFI1_ODR_MASK(
|
|
OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
|
|
|
|
if (ppd->host_link_state == HLS_DN_POLL) {
|
|
/*
|
|
* The link is still in POLL. This means
|
|
* that the normal link down processing
|
|
* will not happen. We have to do it here
|
|
* before turning the DC off.
|
|
*/
|
|
queue_work(ppd->hfi1_wq, &ppd->link_down_work);
|
|
}
|
|
} else {
|
|
dd_dev_info(dd, "%s: QSFP module inserted\n",
|
|
__func__);
|
|
|
|
spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
|
|
ppd->qsfp_info.cache_valid = 0;
|
|
ppd->qsfp_info.cache_refresh_required = 1;
|
|
spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
|
|
flags);
|
|
|
|
/*
|
|
* Stop inversion of ModPresent pin to detect
|
|
* removal of the cable
|
|
*/
|
|
qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
|
|
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
|
|
ASIC_QSFP1_INVERT, qsfp_int_mgmt);
|
|
|
|
ppd->offline_disabled_reason =
|
|
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
|
|
}
|
|
}
|
|
|
|
if (reg & QSFP_HFI0_INT_N) {
|
|
dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
|
|
__func__);
|
|
spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
|
|
ppd->qsfp_info.check_interrupt_flags = 1;
|
|
spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
|
|
}
|
|
|
|
/* Schedule the QSFP work only if there is a cable attached. */
|
|
if (qsfp_mod_present(ppd))
|
|
queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
|
|
}
|
|
|
|
static int request_host_lcb_access(struct hfi1_devdata *dd)
|
|
{
|
|
int ret;
|
|
|
|
ret = do_8051_command(dd, HCMD_MISC,
|
|
(u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
|
|
LOAD_DATA_FIELD_ID_SHIFT, NULL);
|
|
if (ret != HCMD_SUCCESS) {
|
|
dd_dev_err(dd, "%s: command failed with error %d\n",
|
|
__func__, ret);
|
|
}
|
|
return ret == HCMD_SUCCESS ? 0 : -EBUSY;
|
|
}
|
|
|
|
static int request_8051_lcb_access(struct hfi1_devdata *dd)
|
|
{
|
|
int ret;
|
|
|
|
ret = do_8051_command(dd, HCMD_MISC,
|
|
(u64)HCMD_MISC_GRANT_LCB_ACCESS <<
|
|
LOAD_DATA_FIELD_ID_SHIFT, NULL);
|
|
if (ret != HCMD_SUCCESS) {
|
|
dd_dev_err(dd, "%s: command failed with error %d\n",
|
|
__func__, ret);
|
|
}
|
|
return ret == HCMD_SUCCESS ? 0 : -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Set the LCB selector - allow host access. The DCC selector always
|
|
* points to the host.
|
|
*/
|
|
static inline void set_host_lcb_access(struct hfi1_devdata *dd)
|
|
{
|
|
write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
|
|
DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
|
|
DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
|
|
}
|
|
|
|
/*
|
|
* Clear the LCB selector - allow 8051 access. The DCC selector always
|
|
* points to the host.
|
|
*/
|
|
static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
|
|
{
|
|
write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
|
|
DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
|
|
}
|
|
|
|
/*
|
|
* Acquire LCB access from the 8051. If the host already has access,
|
|
* just increment a counter. Otherwise, inform the 8051 that the
|
|
* host is taking access.
|
|
*
|
|
* Returns:
|
|
* 0 on success
|
|
* -EBUSY if the 8051 has control and cannot be disturbed
|
|
* -errno if unable to acquire access from the 8051
|
|
*/
|
|
int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
|
|
{
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Use the host link state lock so the operation of this routine
|
|
* { link state check, selector change, count increment } can occur
|
|
* as a unit against a link state change. Otherwise there is a
|
|
* race between the state change and the count increment.
|
|
*/
|
|
if (sleep_ok) {
|
|
mutex_lock(&ppd->hls_lock);
|
|
} else {
|
|
while (!mutex_trylock(&ppd->hls_lock))
|
|
udelay(1);
|
|
}
|
|
|
|
/* this access is valid only when the link is up */
|
|
if (ppd->host_link_state & HLS_DOWN) {
|
|
dd_dev_info(dd, "%s: link state %s not up\n",
|
|
__func__, link_state_name(ppd->host_link_state));
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
if (dd->lcb_access_count == 0) {
|
|
ret = request_host_lcb_access(dd);
|
|
if (ret) {
|
|
dd_dev_err(dd,
|
|
"%s: unable to acquire LCB access, err %d\n",
|
|
__func__, ret);
|
|
goto done;
|
|
}
|
|
set_host_lcb_access(dd);
|
|
}
|
|
dd->lcb_access_count++;
|
|
done:
|
|
mutex_unlock(&ppd->hls_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Release LCB access by decrementing the use count. If the count is moving
|
|
* from 1 to 0, inform 8051 that it has control back.
|
|
*
|
|
* Returns:
|
|
* 0 on success
|
|
* -errno if unable to release access to the 8051
|
|
*/
|
|
int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Use the host link state lock because the acquire needed it.
|
|
* Here, we only need to keep { selector change, count decrement }
|
|
* as a unit.
|
|
*/
|
|
if (sleep_ok) {
|
|
mutex_lock(&dd->pport->hls_lock);
|
|
} else {
|
|
while (!mutex_trylock(&dd->pport->hls_lock))
|
|
udelay(1);
|
|
}
|
|
|
|
if (dd->lcb_access_count == 0) {
|
|
dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
|
|
__func__);
|
|
goto done;
|
|
}
|
|
|
|
if (dd->lcb_access_count == 1) {
|
|
set_8051_lcb_access(dd);
|
|
ret = request_8051_lcb_access(dd);
|
|
if (ret) {
|
|
dd_dev_err(dd,
|
|
"%s: unable to release LCB access, err %d\n",
|
|
__func__, ret);
|
|
/* restore host access if the grant didn't work */
|
|
set_host_lcb_access(dd);
|
|
goto done;
|
|
}
|
|
}
|
|
dd->lcb_access_count--;
|
|
done:
|
|
mutex_unlock(&dd->pport->hls_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initialize LCB access variables and state. Called during driver load,
|
|
* after most of the initialization is finished.
|
|
*
|
|
* The DC default is LCB access on for the host. The driver defaults to
|
|
* leaving access to the 8051. Assign access now - this constrains the call
|
|
* to this routine to be after all LCB set-up is done. In particular, after
|
|
* hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
|
|
*/
|
|
static void init_lcb_access(struct hfi1_devdata *dd)
|
|
{
|
|
dd->lcb_access_count = 0;
|
|
}
|
|
|
|
/*
|
|
* Write a response back to a 8051 request.
|
|
*/
|
|
static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
|
|
{
|
|
write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
|
|
DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
|
|
(u64)return_code <<
|
|
DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
|
|
(u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Handle host requests from the 8051.
|
|
*/
|
|
static void handle_8051_request(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 reg;
|
|
u16 data = 0;
|
|
u8 type;
|
|
|
|
reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
|
|
if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
|
|
return; /* no request */
|
|
|
|
/* zero out COMPLETED so the response is seen */
|
|
write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
|
|
|
|
/* extract request details */
|
|
type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
|
|
& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
|
|
data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
|
|
& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
|
|
|
|
switch (type) {
|
|
case HREQ_LOAD_CONFIG:
|
|
case HREQ_SAVE_CONFIG:
|
|
case HREQ_READ_CONFIG:
|
|
case HREQ_SET_TX_EQ_ABS:
|
|
case HREQ_SET_TX_EQ_REL:
|
|
case HREQ_ENABLE:
|
|
dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
|
|
type);
|
|
hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
|
|
break;
|
|
case HREQ_CONFIG_DONE:
|
|
hreq_response(dd, HREQ_SUCCESS, 0);
|
|
break;
|
|
|
|
case HREQ_INTERFACE_TEST:
|
|
hreq_response(dd, HREQ_SUCCESS, data);
|
|
break;
|
|
default:
|
|
dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
|
|
hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void write_global_credit(struct hfi1_devdata *dd,
|
|
u8 vau, u16 total, u16 shared)
|
|
{
|
|
write_csr(dd, SEND_CM_GLOBAL_CREDIT,
|
|
((u64)total <<
|
|
SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
|
|
((u64)shared <<
|
|
SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
|
|
((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
|
|
}
|
|
|
|
/*
|
|
* Set up initial VL15 credits of the remote. Assumes the rest of
|
|
* the CM credit registers are zero from a previous global or credit reset .
|
|
*/
|
|
void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
|
|
{
|
|
/* leave shared count at zero for both global and VL15 */
|
|
write_global_credit(dd, vau, vl15buf, 0);
|
|
|
|
/* We may need some credits for another VL when sending packets
|
|
* with the snoop interface. Dividing it down the middle for VL15
|
|
* and VL0 should suffice.
|
|
*/
|
|
if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
|
|
write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
|
|
<< SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
|
|
write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
|
|
<< SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
|
|
} else {
|
|
write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
|
|
<< SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Zero all credit details from the previous connection and
|
|
* reset the CM manager's internal counters.
|
|
*/
|
|
void reset_link_credits(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/* remove all previous VL credit limits */
|
|
for (i = 0; i < TXE_NUM_DATA_VL; i++)
|
|
write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
|
|
write_csr(dd, SEND_CM_CREDIT_VL15, 0);
|
|
write_global_credit(dd, 0, 0, 0);
|
|
/* reset the CM block */
|
|
pio_send_control(dd, PSC_CM_RESET);
|
|
}
|
|
|
|
/* convert a vCU to a CU */
|
|
static u32 vcu_to_cu(u8 vcu)
|
|
{
|
|
return 1 << vcu;
|
|
}
|
|
|
|
/* convert a CU to a vCU */
|
|
static u8 cu_to_vcu(u32 cu)
|
|
{
|
|
return ilog2(cu);
|
|
}
|
|
|
|
/* convert a vAU to an AU */
|
|
static u32 vau_to_au(u8 vau)
|
|
{
|
|
return 8 * (1 << vau);
|
|
}
|
|
|
|
static void set_linkup_defaults(struct hfi1_pportdata *ppd)
|
|
{
|
|
ppd->sm_trap_qp = 0x0;
|
|
ppd->sa_qp = 0x1;
|
|
}
|
|
|
|
/*
|
|
* Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
|
|
*/
|
|
static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
|
|
{
|
|
u64 reg;
|
|
|
|
/* clear lcb run: LCB_CFG_RUN.EN = 0 */
|
|
write_csr(dd, DC_LCB_CFG_RUN, 0);
|
|
/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
|
|
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
|
|
1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
|
|
/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
|
|
dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
|
|
reg = read_csr(dd, DCC_CFG_RESET);
|
|
write_csr(dd, DCC_CFG_RESET, reg |
|
|
(1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
|
|
(1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
|
|
(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
|
|
if (!abort) {
|
|
udelay(1); /* must hold for the longer of 16cclks or 20ns */
|
|
write_csr(dd, DCC_CFG_RESET, reg);
|
|
write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine should be called after the link has been transitioned to
|
|
* OFFLINE (OFFLINE state has the side effect of putting the SerDes into
|
|
* reset).
|
|
*
|
|
* The expectation is that the caller of this routine would have taken
|
|
* care of properly transitioning the link into the correct state.
|
|
*/
|
|
static void dc_shutdown(struct hfi1_devdata *dd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dd->dc8051_lock, flags);
|
|
if (dd->dc_shutdown) {
|
|
spin_unlock_irqrestore(&dd->dc8051_lock, flags);
|
|
return;
|
|
}
|
|
dd->dc_shutdown = 1;
|
|
spin_unlock_irqrestore(&dd->dc8051_lock, flags);
|
|
/* Shutdown the LCB */
|
|
lcb_shutdown(dd, 1);
|
|
/*
|
|
* Going to OFFLINE would have causes the 8051 to put the
|
|
* SerDes into reset already. Just need to shut down the 8051,
|
|
* itself.
|
|
*/
|
|
write_csr(dd, DC_DC8051_CFG_RST, 0x1);
|
|
}
|
|
|
|
/*
|
|
* Calling this after the DC has been brought out of reset should not
|
|
* do any damage.
|
|
*/
|
|
static void dc_start(struct hfi1_devdata *dd)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&dd->dc8051_lock, flags);
|
|
if (!dd->dc_shutdown)
|
|
goto done;
|
|
spin_unlock_irqrestore(&dd->dc8051_lock, flags);
|
|
/* Take the 8051 out of reset */
|
|
write_csr(dd, DC_DC8051_CFG_RST, 0ull);
|
|
/* Wait until 8051 is ready */
|
|
ret = wait_fm_ready(dd, TIMEOUT_8051_START);
|
|
if (ret) {
|
|
dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
|
|
__func__);
|
|
}
|
|
/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
|
|
write_csr(dd, DCC_CFG_RESET, 0x10);
|
|
/* lcb_shutdown() with abort=1 does not restore these */
|
|
write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
|
|
spin_lock_irqsave(&dd->dc8051_lock, flags);
|
|
dd->dc_shutdown = 0;
|
|
done:
|
|
spin_unlock_irqrestore(&dd->dc8051_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* These LCB adjustments are for the Aurora SerDes core in the FPGA.
|
|
*/
|
|
static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
|
|
{
|
|
u64 rx_radr, tx_radr;
|
|
u32 version;
|
|
|
|
if (dd->icode != ICODE_FPGA_EMULATION)
|
|
return;
|
|
|
|
/*
|
|
* These LCB defaults on emulator _s are good, nothing to do here:
|
|
* LCB_CFG_TX_FIFOS_RADR
|
|
* LCB_CFG_RX_FIFOS_RADR
|
|
* LCB_CFG_LN_DCLK
|
|
* LCB_CFG_IGNORE_LOST_RCLK
|
|
*/
|
|
if (is_emulator_s(dd))
|
|
return;
|
|
/* else this is _p */
|
|
|
|
version = emulator_rev(dd);
|
|
if (!is_ax(dd))
|
|
version = 0x2d; /* all B0 use 0x2d or higher settings */
|
|
|
|
if (version <= 0x12) {
|
|
/* release 0x12 and below */
|
|
|
|
/*
|
|
* LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
|
|
* LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
|
|
* LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
|
|
*/
|
|
rx_radr =
|
|
0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
|
|
| 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
|
|
| 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
/*
|
|
* LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
|
|
* LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
|
|
*/
|
|
tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
} else if (version <= 0x18) {
|
|
/* release 0x13 up to 0x18 */
|
|
/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
|
|
rx_radr =
|
|
0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
|
|
| 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
|
|
| 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
} else if (version == 0x19) {
|
|
/* release 0x19 */
|
|
/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
|
|
rx_radr =
|
|
0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
|
|
| 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
|
|
| 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
} else if (version == 0x1a) {
|
|
/* release 0x1a */
|
|
/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
|
|
rx_radr =
|
|
0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
|
|
| 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
|
|
| 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
|
|
} else {
|
|
/* release 0x1b and higher */
|
|
/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
|
|
rx_radr =
|
|
0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
|
|
| 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
|
|
| 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
|
|
}
|
|
|
|
write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
|
|
/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
|
|
write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
|
|
DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
|
|
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
|
|
}
|
|
|
|
/*
|
|
* Handle a SMA idle message
|
|
*
|
|
* This is a work-queue function outside of the interrupt.
|
|
*/
|
|
void handle_sma_message(struct work_struct *work)
|
|
{
|
|
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
|
|
sma_message_work);
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 msg;
|
|
int ret;
|
|
|
|
/*
|
|
* msg is bytes 1-4 of the 40-bit idle message - the command code
|
|
* is stripped off
|
|
*/
|
|
ret = read_idle_sma(dd, &msg);
|
|
if (ret)
|
|
return;
|
|
dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
|
|
/*
|
|
* React to the SMA message. Byte[1] (0 for us) is the command.
|
|
*/
|
|
switch (msg & 0xff) {
|
|
case SMA_IDLE_ARM:
|
|
/*
|
|
* See OPAv1 table 9-14 - HFI and External Switch Ports Key
|
|
* State Transitions
|
|
*
|
|
* Only expected in INIT or ARMED, discard otherwise.
|
|
*/
|
|
if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
|
|
ppd->neighbor_normal = 1;
|
|
break;
|
|
case SMA_IDLE_ACTIVE:
|
|
/*
|
|
* See OPAv1 table 9-14 - HFI and External Switch Ports Key
|
|
* State Transitions
|
|
*
|
|
* Can activate the node. Discard otherwise.
|
|
*/
|
|
if (ppd->host_link_state == HLS_UP_ARMED &&
|
|
ppd->is_active_optimize_enabled) {
|
|
ppd->neighbor_normal = 1;
|
|
ret = set_link_state(ppd, HLS_UP_ACTIVE);
|
|
if (ret)
|
|
dd_dev_err(
|
|
dd,
|
|
"%s: received Active SMA idle message, couldn't set link to Active\n",
|
|
__func__);
|
|
}
|
|
break;
|
|
default:
|
|
dd_dev_err(dd,
|
|
"%s: received unexpected SMA idle message 0x%llx\n",
|
|
__func__, msg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
|
|
{
|
|
u64 rcvctrl;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dd->rcvctrl_lock, flags);
|
|
rcvctrl = read_csr(dd, RCV_CTRL);
|
|
rcvctrl |= add;
|
|
rcvctrl &= ~clear;
|
|
write_csr(dd, RCV_CTRL, rcvctrl);
|
|
spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
|
|
}
|
|
|
|
static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
|
|
{
|
|
adjust_rcvctrl(dd, add, 0);
|
|
}
|
|
|
|
static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
|
|
{
|
|
adjust_rcvctrl(dd, 0, clear);
|
|
}
|
|
|
|
/*
|
|
* Called from all interrupt handlers to start handling an SPC freeze.
|
|
*/
|
|
void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
struct send_context *sc;
|
|
int i;
|
|
|
|
if (flags & FREEZE_SELF)
|
|
write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
|
|
|
|
/* enter frozen mode */
|
|
dd->flags |= HFI1_FROZEN;
|
|
|
|
/* notify all SDMA engines that they are going into a freeze */
|
|
sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
|
|
|
|
/* do halt pre-handling on all enabled send contexts */
|
|
for (i = 0; i < dd->num_send_contexts; i++) {
|
|
sc = dd->send_contexts[i].sc;
|
|
if (sc && (sc->flags & SCF_ENABLED))
|
|
sc_stop(sc, SCF_FROZEN | SCF_HALTED);
|
|
}
|
|
|
|
/* Send context are frozen. Notify user space */
|
|
hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
|
|
|
|
if (flags & FREEZE_ABORT) {
|
|
dd_dev_err(dd,
|
|
"Aborted freeze recovery. Please REBOOT system\n");
|
|
return;
|
|
}
|
|
/* queue non-interrupt handler */
|
|
queue_work(ppd->hfi1_wq, &ppd->freeze_work);
|
|
}
|
|
|
|
/*
|
|
* Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
|
|
* depending on the "freeze" parameter.
|
|
*
|
|
* No need to return an error if it times out, our only option
|
|
* is to proceed anyway.
|
|
*/
|
|
static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
|
|
{
|
|
unsigned long timeout;
|
|
u64 reg;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
|
|
while (1) {
|
|
reg = read_csr(dd, CCE_STATUS);
|
|
if (freeze) {
|
|
/* waiting until all indicators are set */
|
|
if ((reg & ALL_FROZE) == ALL_FROZE)
|
|
return; /* all done */
|
|
} else {
|
|
/* waiting until all indicators are clear */
|
|
if ((reg & ALL_FROZE) == 0)
|
|
return; /* all done */
|
|
}
|
|
|
|
if (time_after(jiffies, timeout)) {
|
|
dd_dev_err(dd,
|
|
"Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
|
|
freeze ? "" : "un", reg & ALL_FROZE,
|
|
freeze ? ALL_FROZE : 0ull);
|
|
return;
|
|
}
|
|
usleep_range(80, 120);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do all freeze handling for the RXE block.
|
|
*/
|
|
static void rxe_freeze(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/* disable port */
|
|
clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
|
|
|
|
/* disable all receive contexts */
|
|
for (i = 0; i < dd->num_rcv_contexts; i++)
|
|
hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
|
|
}
|
|
|
|
/*
|
|
* Unfreeze handling for the RXE block - kernel contexts only.
|
|
* This will also enable the port. User contexts will do unfreeze
|
|
* handling on a per-context basis as they call into the driver.
|
|
*
|
|
*/
|
|
static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
|
|
{
|
|
u32 rcvmask;
|
|
int i;
|
|
|
|
/* enable all kernel contexts */
|
|
for (i = 0; i < dd->n_krcv_queues; i++) {
|
|
rcvmask = HFI1_RCVCTRL_CTXT_ENB;
|
|
/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
|
|
rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
|
|
HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
|
|
hfi1_rcvctrl(dd, rcvmask, i);
|
|
}
|
|
|
|
/* enable port */
|
|
add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
|
|
}
|
|
|
|
/*
|
|
* Non-interrupt SPC freeze handling.
|
|
*
|
|
* This is a work-queue function outside of the triggering interrupt.
|
|
*/
|
|
void handle_freeze(struct work_struct *work)
|
|
{
|
|
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
|
|
freeze_work);
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
|
|
/* wait for freeze indicators on all affected blocks */
|
|
wait_for_freeze_status(dd, 1);
|
|
|
|
/* SPC is now frozen */
|
|
|
|
/* do send PIO freeze steps */
|
|
pio_freeze(dd);
|
|
|
|
/* do send DMA freeze steps */
|
|
sdma_freeze(dd);
|
|
|
|
/* do send egress freeze steps - nothing to do */
|
|
|
|
/* do receive freeze steps */
|
|
rxe_freeze(dd);
|
|
|
|
/*
|
|
* Unfreeze the hardware - clear the freeze, wait for each
|
|
* block's frozen bit to clear, then clear the frozen flag.
|
|
*/
|
|
write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
|
|
wait_for_freeze_status(dd, 0);
|
|
|
|
if (is_ax(dd)) {
|
|
write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
|
|
wait_for_freeze_status(dd, 1);
|
|
write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
|
|
wait_for_freeze_status(dd, 0);
|
|
}
|
|
|
|
/* do send PIO unfreeze steps for kernel contexts */
|
|
pio_kernel_unfreeze(dd);
|
|
|
|
/* do send DMA unfreeze steps */
|
|
sdma_unfreeze(dd);
|
|
|
|
/* do send egress unfreeze steps - nothing to do */
|
|
|
|
/* do receive unfreeze steps for kernel contexts */
|
|
rxe_kernel_unfreeze(dd);
|
|
|
|
/*
|
|
* The unfreeze procedure touches global device registers when
|
|
* it disables and re-enables RXE. Mark the device unfrozen
|
|
* after all that is done so other parts of the driver waiting
|
|
* for the device to unfreeze don't do things out of order.
|
|
*
|
|
* The above implies that the meaning of HFI1_FROZEN flag is
|
|
* "Device has gone into freeze mode and freeze mode handling
|
|
* is still in progress."
|
|
*
|
|
* The flag will be removed when freeze mode processing has
|
|
* completed.
|
|
*/
|
|
dd->flags &= ~HFI1_FROZEN;
|
|
wake_up(&dd->event_queue);
|
|
|
|
/* no longer frozen */
|
|
}
|
|
|
|
/*
|
|
* Handle a link up interrupt from the 8051.
|
|
*
|
|
* This is a work-queue function outside of the interrupt.
|
|
*/
|
|
void handle_link_up(struct work_struct *work)
|
|
{
|
|
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
|
|
link_up_work);
|
|
set_link_state(ppd, HLS_UP_INIT);
|
|
|
|
/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
|
|
read_ltp_rtt(ppd->dd);
|
|
/*
|
|
* OPA specifies that certain counters are cleared on a transition
|
|
* to link up, so do that.
|
|
*/
|
|
clear_linkup_counters(ppd->dd);
|
|
/*
|
|
* And (re)set link up default values.
|
|
*/
|
|
set_linkup_defaults(ppd);
|
|
|
|
/* enforce link speed enabled */
|
|
if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
|
|
/* oops - current speed is not enabled, bounce */
|
|
dd_dev_err(ppd->dd,
|
|
"Link speed active 0x%x is outside enabled 0x%x, downing link\n",
|
|
ppd->link_speed_active, ppd->link_speed_enabled);
|
|
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
|
|
OPA_LINKDOWN_REASON_SPEED_POLICY);
|
|
set_link_state(ppd, HLS_DN_OFFLINE);
|
|
tune_serdes(ppd);
|
|
start_link(ppd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Several pieces of LNI information were cached for SMA in ppd.
|
|
* Reset these on link down
|
|
*/
|
|
static void reset_neighbor_info(struct hfi1_pportdata *ppd)
|
|
{
|
|
ppd->neighbor_guid = 0;
|
|
ppd->neighbor_port_number = 0;
|
|
ppd->neighbor_type = 0;
|
|
ppd->neighbor_fm_security = 0;
|
|
}
|
|
|
|
static const char * const link_down_reason_strs[] = {
|
|
[OPA_LINKDOWN_REASON_NONE] = "None",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
|
|
[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
|
|
[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
|
|
[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
|
|
[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
|
|
[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
|
|
[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
|
|
[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
|
|
[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
|
|
[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
|
|
[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
|
|
[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
|
|
[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
|
|
[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
|
|
[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
|
|
[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
|
|
[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
|
|
[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
|
|
[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
|
|
[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
|
|
[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
|
|
[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
|
|
"Excessive buffer overrun",
|
|
[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
|
|
[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
|
|
[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
|
|
[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
|
|
[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
|
|
[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
|
|
[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
|
|
[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
|
|
"Local media not installed",
|
|
[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
|
|
[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
|
|
[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
|
|
"End to end not installed",
|
|
[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
|
|
[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
|
|
[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
|
|
[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
|
|
[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
|
|
[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
|
|
};
|
|
|
|
/* return the neighbor link down reason string */
|
|
static const char *link_down_reason_str(u8 reason)
|
|
{
|
|
const char *str = NULL;
|
|
|
|
if (reason < ARRAY_SIZE(link_down_reason_strs))
|
|
str = link_down_reason_strs[reason];
|
|
if (!str)
|
|
str = "(invalid)";
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* Handle a link down interrupt from the 8051.
|
|
*
|
|
* This is a work-queue function outside of the interrupt.
|
|
*/
|
|
void handle_link_down(struct work_struct *work)
|
|
{
|
|
u8 lcl_reason, neigh_reason = 0;
|
|
u8 link_down_reason;
|
|
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
|
|
link_down_work);
|
|
int was_up;
|
|
static const char ldr_str[] = "Link down reason: ";
|
|
|
|
if ((ppd->host_link_state &
|
|
(HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
|
|
ppd->port_type == PORT_TYPE_FIXED)
|
|
ppd->offline_disabled_reason =
|
|
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
|
|
|
|
/* Go offline first, then deal with reading/writing through 8051 */
|
|
was_up = !!(ppd->host_link_state & HLS_UP);
|
|
set_link_state(ppd, HLS_DN_OFFLINE);
|
|
|
|
if (was_up) {
|
|
lcl_reason = 0;
|
|
/* link down reason is only valid if the link was up */
|
|
read_link_down_reason(ppd->dd, &link_down_reason);
|
|
switch (link_down_reason) {
|
|
case LDR_LINK_TRANSFER_ACTIVE_LOW:
|
|
/* the link went down, no idle message reason */
|
|
dd_dev_info(ppd->dd, "%sUnexpected link down\n",
|
|
ldr_str);
|
|
break;
|
|
case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
|
|
/*
|
|
* The neighbor reason is only valid if an idle message
|
|
* was received for it.
|
|
*/
|
|
read_planned_down_reason_code(ppd->dd, &neigh_reason);
|
|
dd_dev_info(ppd->dd,
|
|
"%sNeighbor link down message %d, %s\n",
|
|
ldr_str, neigh_reason,
|
|
link_down_reason_str(neigh_reason));
|
|
break;
|
|
case LDR_RECEIVED_HOST_OFFLINE_REQ:
|
|
dd_dev_info(ppd->dd,
|
|
"%sHost requested link to go offline\n",
|
|
ldr_str);
|
|
break;
|
|
default:
|
|
dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
|
|
ldr_str, link_down_reason);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If no reason, assume peer-initiated but missed
|
|
* LinkGoingDown idle flits.
|
|
*/
|
|
if (neigh_reason == 0)
|
|
lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
|
|
} else {
|
|
/* went down while polling or going up */
|
|
lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
|
|
}
|
|
|
|
set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
|
|
|
|
/* inform the SMA when the link transitions from up to down */
|
|
if (was_up && ppd->local_link_down_reason.sma == 0 &&
|
|
ppd->neigh_link_down_reason.sma == 0) {
|
|
ppd->local_link_down_reason.sma =
|
|
ppd->local_link_down_reason.latest;
|
|
ppd->neigh_link_down_reason.sma =
|
|
ppd->neigh_link_down_reason.latest;
|
|
}
|
|
|
|
reset_neighbor_info(ppd);
|
|
if (ppd->mgmt_allowed)
|
|
remove_full_mgmt_pkey(ppd);
|
|
|
|
/* disable the port */
|
|
clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
|
|
|
|
/*
|
|
* If there is no cable attached, turn the DC off. Otherwise,
|
|
* start the link bring up.
|
|
*/
|
|
if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) {
|
|
dc_shutdown(ppd->dd);
|
|
} else {
|
|
tune_serdes(ppd);
|
|
start_link(ppd);
|
|
}
|
|
}
|
|
|
|
void handle_link_bounce(struct work_struct *work)
|
|
{
|
|
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
|
|
link_bounce_work);
|
|
|
|
/*
|
|
* Only do something if the link is currently up.
|
|
*/
|
|
if (ppd->host_link_state & HLS_UP) {
|
|
set_link_state(ppd, HLS_DN_OFFLINE);
|
|
tune_serdes(ppd);
|
|
start_link(ppd);
|
|
} else {
|
|
dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
|
|
__func__, link_state_name(ppd->host_link_state));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mask conversion: Capability exchange to Port LTP. The capability
|
|
* exchange has an implicit 16b CRC that is mandatory.
|
|
*/
|
|
static int cap_to_port_ltp(int cap)
|
|
{
|
|
int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
|
|
|
|
if (cap & CAP_CRC_14B)
|
|
port_ltp |= PORT_LTP_CRC_MODE_14;
|
|
if (cap & CAP_CRC_48B)
|
|
port_ltp |= PORT_LTP_CRC_MODE_48;
|
|
if (cap & CAP_CRC_12B_16B_PER_LANE)
|
|
port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
|
|
|
|
return port_ltp;
|
|
}
|
|
|
|
/*
|
|
* Convert an OPA Port LTP mask to capability mask
|
|
*/
|
|
int port_ltp_to_cap(int port_ltp)
|
|
{
|
|
int cap_mask = 0;
|
|
|
|
if (port_ltp & PORT_LTP_CRC_MODE_14)
|
|
cap_mask |= CAP_CRC_14B;
|
|
if (port_ltp & PORT_LTP_CRC_MODE_48)
|
|
cap_mask |= CAP_CRC_48B;
|
|
if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
|
|
cap_mask |= CAP_CRC_12B_16B_PER_LANE;
|
|
|
|
return cap_mask;
|
|
}
|
|
|
|
/*
|
|
* Convert a single DC LCB CRC mode to an OPA Port LTP mask.
|
|
*/
|
|
static int lcb_to_port_ltp(int lcb_crc)
|
|
{
|
|
int port_ltp = 0;
|
|
|
|
if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
|
|
port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
|
|
else if (lcb_crc == LCB_CRC_48B)
|
|
port_ltp = PORT_LTP_CRC_MODE_48;
|
|
else if (lcb_crc == LCB_CRC_14B)
|
|
port_ltp = PORT_LTP_CRC_MODE_14;
|
|
else
|
|
port_ltp = PORT_LTP_CRC_MODE_16;
|
|
|
|
return port_ltp;
|
|
}
|
|
|
|
/*
|
|
* Our neighbor has indicated that we are allowed to act as a fabric
|
|
* manager, so place the full management partition key in the second
|
|
* (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
|
|
* that we should already have the limited management partition key in
|
|
* array element 1, and also that the port is not yet up when
|
|
* add_full_mgmt_pkey() is invoked.
|
|
*/
|
|
static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
|
|
/* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
|
|
if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
|
|
dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
|
|
__func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
|
|
ppd->pkeys[2] = FULL_MGMT_P_KEY;
|
|
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
|
|
}
|
|
|
|
static void remove_full_mgmt_pkey(struct hfi1_pportdata *ppd)
|
|
{
|
|
ppd->pkeys[2] = 0;
|
|
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
|
|
}
|
|
|
|
/*
|
|
* Convert the given link width to the OPA link width bitmask.
|
|
*/
|
|
static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
|
|
{
|
|
switch (width) {
|
|
case 0:
|
|
/*
|
|
* Simulator and quick linkup do not set the width.
|
|
* Just set it to 4x without complaint.
|
|
*/
|
|
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
|
|
return OPA_LINK_WIDTH_4X;
|
|
return 0; /* no lanes up */
|
|
case 1: return OPA_LINK_WIDTH_1X;
|
|
case 2: return OPA_LINK_WIDTH_2X;
|
|
case 3: return OPA_LINK_WIDTH_3X;
|
|
default:
|
|
dd_dev_info(dd, "%s: invalid width %d, using 4\n",
|
|
__func__, width);
|
|
/* fall through */
|
|
case 4: return OPA_LINK_WIDTH_4X;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do a population count on the bottom nibble.
|
|
*/
|
|
static const u8 bit_counts[16] = {
|
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
|
|
};
|
|
|
|
static inline u8 nibble_to_count(u8 nibble)
|
|
{
|
|
return bit_counts[nibble & 0xf];
|
|
}
|
|
|
|
/*
|
|
* Read the active lane information from the 8051 registers and return
|
|
* their widths.
|
|
*
|
|
* Active lane information is found in these 8051 registers:
|
|
* enable_lane_tx
|
|
* enable_lane_rx
|
|
*/
|
|
static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
|
|
u16 *rx_width)
|
|
{
|
|
u16 tx, rx;
|
|
u8 enable_lane_rx;
|
|
u8 enable_lane_tx;
|
|
u8 tx_polarity_inversion;
|
|
u8 rx_polarity_inversion;
|
|
u8 max_rate;
|
|
|
|
/* read the active lanes */
|
|
read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
|
|
&rx_polarity_inversion, &max_rate);
|
|
read_local_lni(dd, &enable_lane_rx);
|
|
|
|
/* convert to counts */
|
|
tx = nibble_to_count(enable_lane_tx);
|
|
rx = nibble_to_count(enable_lane_rx);
|
|
|
|
/*
|
|
* Set link_speed_active here, overriding what was set in
|
|
* handle_verify_cap(). The ASIC 8051 firmware does not correctly
|
|
* set the max_rate field in handle_verify_cap until v0.19.
|
|
*/
|
|
if ((dd->icode == ICODE_RTL_SILICON) &&
|
|
(dd->dc8051_ver < dc8051_ver(0, 19))) {
|
|
/* max_rate: 0 = 12.5G, 1 = 25G */
|
|
switch (max_rate) {
|
|
case 0:
|
|
dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
|
|
break;
|
|
default:
|
|
dd_dev_err(dd,
|
|
"%s: unexpected max rate %d, using 25Gb\n",
|
|
__func__, (int)max_rate);
|
|
/* fall through */
|
|
case 1:
|
|
dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
|
|
break;
|
|
}
|
|
}
|
|
|
|
dd_dev_info(dd,
|
|
"Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
|
|
enable_lane_tx, tx, enable_lane_rx, rx);
|
|
*tx_width = link_width_to_bits(dd, tx);
|
|
*rx_width = link_width_to_bits(dd, rx);
|
|
}
|
|
|
|
/*
|
|
* Read verify_cap_local_fm_link_width[1] to obtain the link widths.
|
|
* Valid after the end of VerifyCap and during LinkUp. Does not change
|
|
* after link up. I.e. look elsewhere for downgrade information.
|
|
*
|
|
* Bits are:
|
|
* + bits [7:4] contain the number of active transmitters
|
|
* + bits [3:0] contain the number of active receivers
|
|
* These are numbers 1 through 4 and can be different values if the
|
|
* link is asymmetric.
|
|
*
|
|
* verify_cap_local_fm_link_width[0] retains its original value.
|
|
*/
|
|
static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
|
|
u16 *rx_width)
|
|
{
|
|
u16 widths, tx, rx;
|
|
u8 misc_bits, local_flags;
|
|
u16 active_tx, active_rx;
|
|
|
|
read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
|
|
tx = widths >> 12;
|
|
rx = (widths >> 8) & 0xf;
|
|
|
|
*tx_width = link_width_to_bits(dd, tx);
|
|
*rx_width = link_width_to_bits(dd, rx);
|
|
|
|
/* print the active widths */
|
|
get_link_widths(dd, &active_tx, &active_rx);
|
|
}
|
|
|
|
/*
|
|
* Set ppd->link_width_active and ppd->link_width_downgrade_active using
|
|
* hardware information when the link first comes up.
|
|
*
|
|
* The link width is not available until after VerifyCap.AllFramesReceived
|
|
* (the trigger for handle_verify_cap), so this is outside that routine
|
|
* and should be called when the 8051 signals linkup.
|
|
*/
|
|
void get_linkup_link_widths(struct hfi1_pportdata *ppd)
|
|
{
|
|
u16 tx_width, rx_width;
|
|
|
|
/* get end-of-LNI link widths */
|
|
get_linkup_widths(ppd->dd, &tx_width, &rx_width);
|
|
|
|
/* use tx_width as the link is supposed to be symmetric on link up */
|
|
ppd->link_width_active = tx_width;
|
|
/* link width downgrade active (LWD.A) starts out matching LW.A */
|
|
ppd->link_width_downgrade_tx_active = ppd->link_width_active;
|
|
ppd->link_width_downgrade_rx_active = ppd->link_width_active;
|
|
/* per OPA spec, on link up LWD.E resets to LWD.S */
|
|
ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
|
|
/* cache the active egress rate (units {10^6 bits/sec]) */
|
|
ppd->current_egress_rate = active_egress_rate(ppd);
|
|
}
|
|
|
|
/*
|
|
* Handle a verify capabilities interrupt from the 8051.
|
|
*
|
|
* This is a work-queue function outside of the interrupt.
|
|
*/
|
|
void handle_verify_cap(struct work_struct *work)
|
|
{
|
|
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
|
|
link_vc_work);
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 reg;
|
|
u8 power_management;
|
|
u8 continious;
|
|
u8 vcu;
|
|
u8 vau;
|
|
u8 z;
|
|
u16 vl15buf;
|
|
u16 link_widths;
|
|
u16 crc_mask;
|
|
u16 crc_val;
|
|
u16 device_id;
|
|
u16 active_tx, active_rx;
|
|
u8 partner_supported_crc;
|
|
u8 remote_tx_rate;
|
|
u8 device_rev;
|
|
|
|
set_link_state(ppd, HLS_VERIFY_CAP);
|
|
|
|
lcb_shutdown(dd, 0);
|
|
adjust_lcb_for_fpga_serdes(dd);
|
|
|
|
/*
|
|
* These are now valid:
|
|
* remote VerifyCap fields in the general LNI config
|
|
* CSR DC8051_STS_REMOTE_GUID
|
|
* CSR DC8051_STS_REMOTE_NODE_TYPE
|
|
* CSR DC8051_STS_REMOTE_FM_SECURITY
|
|
* CSR DC8051_STS_REMOTE_PORT_NO
|
|
*/
|
|
|
|
read_vc_remote_phy(dd, &power_management, &continious);
|
|
read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
|
|
&partner_supported_crc);
|
|
read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
|
|
read_remote_device_id(dd, &device_id, &device_rev);
|
|
/*
|
|
* And the 'MgmtAllowed' information, which is exchanged during
|
|
* LNI, is also be available at this point.
|
|
*/
|
|
read_mgmt_allowed(dd, &ppd->mgmt_allowed);
|
|
/* print the active widths */
|
|
get_link_widths(dd, &active_tx, &active_rx);
|
|
dd_dev_info(dd,
|
|
"Peer PHY: power management 0x%x, continuous updates 0x%x\n",
|
|
(int)power_management, (int)continious);
|
|
dd_dev_info(dd,
|
|
"Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
|
|
(int)vau, (int)z, (int)vcu, (int)vl15buf,
|
|
(int)partner_supported_crc);
|
|
dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
|
|
(u32)remote_tx_rate, (u32)link_widths);
|
|
dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
|
|
(u32)device_id, (u32)device_rev);
|
|
/*
|
|
* The peer vAU value just read is the peer receiver value. HFI does
|
|
* not support a transmit vAU of 0 (AU == 8). We advertised that
|
|
* with Z=1 in the fabric capabilities sent to the peer. The peer
|
|
* will see our Z=1, and, if it advertised a vAU of 0, will move its
|
|
* receive to vAU of 1 (AU == 16). Do the same here. We do not care
|
|
* about the peer Z value - our sent vAU is 3 (hardwired) and is not
|
|
* subject to the Z value exception.
|
|
*/
|
|
if (vau == 0)
|
|
vau = 1;
|
|
set_up_vl15(dd, vau, vl15buf);
|
|
|
|
/* set up the LCB CRC mode */
|
|
crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
|
|
|
|
/* order is important: use the lowest bit in common */
|
|
if (crc_mask & CAP_CRC_14B)
|
|
crc_val = LCB_CRC_14B;
|
|
else if (crc_mask & CAP_CRC_48B)
|
|
crc_val = LCB_CRC_48B;
|
|
else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
|
|
crc_val = LCB_CRC_12B_16B_PER_LANE;
|
|
else
|
|
crc_val = LCB_CRC_16B;
|
|
|
|
dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
|
|
write_csr(dd, DC_LCB_CFG_CRC_MODE,
|
|
(u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
|
|
|
|
/* set (14b only) or clear sideband credit */
|
|
reg = read_csr(dd, SEND_CM_CTRL);
|
|
if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
|
|
write_csr(dd, SEND_CM_CTRL,
|
|
reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
|
|
} else {
|
|
write_csr(dd, SEND_CM_CTRL,
|
|
reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
|
|
}
|
|
|
|
ppd->link_speed_active = 0; /* invalid value */
|
|
if (dd->dc8051_ver < dc8051_ver(0, 20)) {
|
|
/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
|
|
switch (remote_tx_rate) {
|
|
case 0:
|
|
ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
|
|
break;
|
|
case 1:
|
|
ppd->link_speed_active = OPA_LINK_SPEED_25G;
|
|
break;
|
|
}
|
|
} else {
|
|
/* actual rate is highest bit of the ANDed rates */
|
|
u8 rate = remote_tx_rate & ppd->local_tx_rate;
|
|
|
|
if (rate & 2)
|
|
ppd->link_speed_active = OPA_LINK_SPEED_25G;
|
|
else if (rate & 1)
|
|
ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
|
|
}
|
|
if (ppd->link_speed_active == 0) {
|
|
dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
|
|
__func__, (int)remote_tx_rate);
|
|
ppd->link_speed_active = OPA_LINK_SPEED_25G;
|
|
}
|
|
|
|
/*
|
|
* Cache the values of the supported, enabled, and active
|
|
* LTP CRC modes to return in 'portinfo' queries. But the bit
|
|
* flags that are returned in the portinfo query differ from
|
|
* what's in the link_crc_mask, crc_sizes, and crc_val
|
|
* variables. Convert these here.
|
|
*/
|
|
ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
|
|
/* supported crc modes */
|
|
ppd->port_ltp_crc_mode |=
|
|
cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
|
|
/* enabled crc modes */
|
|
ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
|
|
/* active crc mode */
|
|
|
|
/* set up the remote credit return table */
|
|
assign_remote_cm_au_table(dd, vcu);
|
|
|
|
/*
|
|
* The LCB is reset on entry to handle_verify_cap(), so this must
|
|
* be applied on every link up.
|
|
*
|
|
* Adjust LCB error kill enable to kill the link if
|
|
* these RBUF errors are seen:
|
|
* REPLAY_BUF_MBE_SMASK
|
|
* FLIT_INPUT_BUF_MBE_SMASK
|
|
*/
|
|
if (is_ax(dd)) { /* fixed in B0 */
|
|
reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
|
|
reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
|
|
| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
|
|
write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
|
|
}
|
|
|
|
/* pull LCB fifos out of reset - all fifo clocks must be stable */
|
|
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
|
|
|
|
/* give 8051 access to the LCB CSRs */
|
|
write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
|
|
set_8051_lcb_access(dd);
|
|
|
|
ppd->neighbor_guid =
|
|
read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
|
|
ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
|
|
DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
|
|
ppd->neighbor_type =
|
|
read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
|
|
DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
|
|
ppd->neighbor_fm_security =
|
|
read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
|
|
DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
|
|
dd_dev_info(dd,
|
|
"Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
|
|
ppd->neighbor_guid, ppd->neighbor_type,
|
|
ppd->mgmt_allowed, ppd->neighbor_fm_security);
|
|
if (ppd->mgmt_allowed)
|
|
add_full_mgmt_pkey(ppd);
|
|
|
|
/* tell the 8051 to go to LinkUp */
|
|
set_link_state(ppd, HLS_GOING_UP);
|
|
}
|
|
|
|
/*
|
|
* Apply the link width downgrade enabled policy against the current active
|
|
* link widths.
|
|
*
|
|
* Called when the enabled policy changes or the active link widths change.
|
|
*/
|
|
void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
|
|
{
|
|
int do_bounce = 0;
|
|
int tries;
|
|
u16 lwde;
|
|
u16 tx, rx;
|
|
|
|
/* use the hls lock to avoid a race with actual link up */
|
|
tries = 0;
|
|
retry:
|
|
mutex_lock(&ppd->hls_lock);
|
|
/* only apply if the link is up */
|
|
if (ppd->host_link_state & HLS_DOWN) {
|
|
/* still going up..wait and retry */
|
|
if (ppd->host_link_state & HLS_GOING_UP) {
|
|
if (++tries < 1000) {
|
|
mutex_unlock(&ppd->hls_lock);
|
|
usleep_range(100, 120); /* arbitrary */
|
|
goto retry;
|
|
}
|
|
dd_dev_err(ppd->dd,
|
|
"%s: giving up waiting for link state change\n",
|
|
__func__);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
lwde = ppd->link_width_downgrade_enabled;
|
|
|
|
if (refresh_widths) {
|
|
get_link_widths(ppd->dd, &tx, &rx);
|
|
ppd->link_width_downgrade_tx_active = tx;
|
|
ppd->link_width_downgrade_rx_active = rx;
|
|
}
|
|
|
|
if (ppd->link_width_downgrade_tx_active == 0 ||
|
|
ppd->link_width_downgrade_rx_active == 0) {
|
|
/* the 8051 reported a dead link as a downgrade */
|
|
dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
|
|
} else if (lwde == 0) {
|
|
/* downgrade is disabled */
|
|
|
|
/* bounce if not at starting active width */
|
|
if ((ppd->link_width_active !=
|
|
ppd->link_width_downgrade_tx_active) ||
|
|
(ppd->link_width_active !=
|
|
ppd->link_width_downgrade_rx_active)) {
|
|
dd_dev_err(ppd->dd,
|
|
"Link downgrade is disabled and link has downgraded, downing link\n");
|
|
dd_dev_err(ppd->dd,
|
|
" original 0x%x, tx active 0x%x, rx active 0x%x\n",
|
|
ppd->link_width_active,
|
|
ppd->link_width_downgrade_tx_active,
|
|
ppd->link_width_downgrade_rx_active);
|
|
do_bounce = 1;
|
|
}
|
|
} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
|
|
(lwde & ppd->link_width_downgrade_rx_active) == 0) {
|
|
/* Tx or Rx is outside the enabled policy */
|
|
dd_dev_err(ppd->dd,
|
|
"Link is outside of downgrade allowed, downing link\n");
|
|
dd_dev_err(ppd->dd,
|
|
" enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
|
|
lwde, ppd->link_width_downgrade_tx_active,
|
|
ppd->link_width_downgrade_rx_active);
|
|
do_bounce = 1;
|
|
}
|
|
|
|
done:
|
|
mutex_unlock(&ppd->hls_lock);
|
|
|
|
if (do_bounce) {
|
|
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
|
|
OPA_LINKDOWN_REASON_WIDTH_POLICY);
|
|
set_link_state(ppd, HLS_DN_OFFLINE);
|
|
tune_serdes(ppd);
|
|
start_link(ppd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle a link downgrade interrupt from the 8051.
|
|
*
|
|
* This is a work-queue function outside of the interrupt.
|
|
*/
|
|
void handle_link_downgrade(struct work_struct *work)
|
|
{
|
|
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
|
|
link_downgrade_work);
|
|
|
|
dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
|
|
apply_link_downgrade_policy(ppd, 1);
|
|
}
|
|
|
|
static char *dcc_err_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags, dcc_err_flags,
|
|
ARRAY_SIZE(dcc_err_flags));
|
|
}
|
|
|
|
static char *lcb_err_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags, lcb_err_flags,
|
|
ARRAY_SIZE(lcb_err_flags));
|
|
}
|
|
|
|
static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags, dc8051_err_flags,
|
|
ARRAY_SIZE(dc8051_err_flags));
|
|
}
|
|
|
|
static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
|
|
ARRAY_SIZE(dc8051_info_err_flags));
|
|
}
|
|
|
|
static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
|
|
{
|
|
return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
|
|
ARRAY_SIZE(dc8051_info_host_msg_flags));
|
|
}
|
|
|
|
static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
u64 info, err, host_msg;
|
|
int queue_link_down = 0;
|
|
char buf[96];
|
|
|
|
/* look at the flags */
|
|
if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
|
|
/* 8051 information set by firmware */
|
|
/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
|
|
info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
|
|
err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
|
|
& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
|
|
host_msg = (info >>
|
|
DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
|
|
& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
|
|
|
|
/*
|
|
* Handle error flags.
|
|
*/
|
|
if (err & FAILED_LNI) {
|
|
/*
|
|
* LNI error indications are cleared by the 8051
|
|
* only when starting polling. Only pay attention
|
|
* to them when in the states that occur during
|
|
* LNI.
|
|
*/
|
|
if (ppd->host_link_state
|
|
& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
|
|
queue_link_down = 1;
|
|
dd_dev_info(dd, "Link error: %s\n",
|
|
dc8051_info_err_string(buf,
|
|
sizeof(buf),
|
|
err &
|
|
FAILED_LNI));
|
|
}
|
|
err &= ~(u64)FAILED_LNI;
|
|
}
|
|
/* unknown frames can happen durning LNI, just count */
|
|
if (err & UNKNOWN_FRAME) {
|
|
ppd->unknown_frame_count++;
|
|
err &= ~(u64)UNKNOWN_FRAME;
|
|
}
|
|
if (err) {
|
|
/* report remaining errors, but do not do anything */
|
|
dd_dev_err(dd, "8051 info error: %s\n",
|
|
dc8051_info_err_string(buf, sizeof(buf),
|
|
err));
|
|
}
|
|
|
|
/*
|
|
* Handle host message flags.
|
|
*/
|
|
if (host_msg & HOST_REQ_DONE) {
|
|
/*
|
|
* Presently, the driver does a busy wait for
|
|
* host requests to complete. This is only an
|
|
* informational message.
|
|
* NOTE: The 8051 clears the host message
|
|
* information *on the next 8051 command*.
|
|
* Therefore, when linkup is achieved,
|
|
* this flag will still be set.
|
|
*/
|
|
host_msg &= ~(u64)HOST_REQ_DONE;
|
|
}
|
|
if (host_msg & BC_SMA_MSG) {
|
|
queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
|
|
host_msg &= ~(u64)BC_SMA_MSG;
|
|
}
|
|
if (host_msg & LINKUP_ACHIEVED) {
|
|
dd_dev_info(dd, "8051: Link up\n");
|
|
queue_work(ppd->hfi1_wq, &ppd->link_up_work);
|
|
host_msg &= ~(u64)LINKUP_ACHIEVED;
|
|
}
|
|
if (host_msg & EXT_DEVICE_CFG_REQ) {
|
|
handle_8051_request(ppd);
|
|
host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
|
|
}
|
|
if (host_msg & VERIFY_CAP_FRAME) {
|
|
queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
|
|
host_msg &= ~(u64)VERIFY_CAP_FRAME;
|
|
}
|
|
if (host_msg & LINK_GOING_DOWN) {
|
|
const char *extra = "";
|
|
/* no downgrade action needed if going down */
|
|
if (host_msg & LINK_WIDTH_DOWNGRADED) {
|
|
host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
|
|
extra = " (ignoring downgrade)";
|
|
}
|
|
dd_dev_info(dd, "8051: Link down%s\n", extra);
|
|
queue_link_down = 1;
|
|
host_msg &= ~(u64)LINK_GOING_DOWN;
|
|
}
|
|
if (host_msg & LINK_WIDTH_DOWNGRADED) {
|
|
queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
|
|
host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
|
|
}
|
|
if (host_msg) {
|
|
/* report remaining messages, but do not do anything */
|
|
dd_dev_info(dd, "8051 info host message: %s\n",
|
|
dc8051_info_host_msg_string(buf,
|
|
sizeof(buf),
|
|
host_msg));
|
|
}
|
|
|
|
reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
|
|
}
|
|
if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
|
|
/*
|
|
* Lost the 8051 heartbeat. If this happens, we
|
|
* receive constant interrupts about it. Disable
|
|
* the interrupt after the first.
|
|
*/
|
|
dd_dev_err(dd, "Lost 8051 heartbeat\n");
|
|
write_csr(dd, DC_DC8051_ERR_EN,
|
|
read_csr(dd, DC_DC8051_ERR_EN) &
|
|
~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
|
|
|
|
reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
|
|
}
|
|
if (reg) {
|
|
/* report the error, but do not do anything */
|
|
dd_dev_err(dd, "8051 error: %s\n",
|
|
dc8051_err_string(buf, sizeof(buf), reg));
|
|
}
|
|
|
|
if (queue_link_down) {
|
|
/*
|
|
* if the link is already going down or disabled, do not
|
|
* queue another
|
|
*/
|
|
if ((ppd->host_link_state &
|
|
(HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
|
|
ppd->link_enabled == 0) {
|
|
dd_dev_info(dd, "%s: not queuing link down\n",
|
|
__func__);
|
|
} else {
|
|
queue_work(ppd->hfi1_wq, &ppd->link_down_work);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char * const fm_config_txt[] = {
|
|
[0] =
|
|
"BadHeadDist: Distance violation between two head flits",
|
|
[1] =
|
|
"BadTailDist: Distance violation between two tail flits",
|
|
[2] =
|
|
"BadCtrlDist: Distance violation between two credit control flits",
|
|
[3] =
|
|
"BadCrdAck: Credits return for unsupported VL",
|
|
[4] =
|
|
"UnsupportedVLMarker: Received VL Marker",
|
|
[5] =
|
|
"BadPreempt: Exceeded the preemption nesting level",
|
|
[6] =
|
|
"BadControlFlit: Received unsupported control flit",
|
|
/* no 7 */
|
|
[8] =
|
|
"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
|
|
};
|
|
|
|
static const char * const port_rcv_txt[] = {
|
|
[1] =
|
|
"BadPktLen: Illegal PktLen",
|
|
[2] =
|
|
"PktLenTooLong: Packet longer than PktLen",
|
|
[3] =
|
|
"PktLenTooShort: Packet shorter than PktLen",
|
|
[4] =
|
|
"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
|
|
[5] =
|
|
"BadDLID: Illegal DLID (0, doesn't match HFI)",
|
|
[6] =
|
|
"BadL2: Illegal L2 opcode",
|
|
[7] =
|
|
"BadSC: Unsupported SC",
|
|
[9] =
|
|
"BadRC: Illegal RC",
|
|
[11] =
|
|
"PreemptError: Preempting with same VL",
|
|
[12] =
|
|
"PreemptVL15: Preempting a VL15 packet",
|
|
};
|
|
|
|
#define OPA_LDR_FMCONFIG_OFFSET 16
|
|
#define OPA_LDR_PORTRCV_OFFSET 0
|
|
static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
u64 info, hdr0, hdr1;
|
|
const char *extra;
|
|
char buf[96];
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
u8 lcl_reason = 0;
|
|
int do_bounce = 0;
|
|
|
|
if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
|
|
if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
|
|
info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
|
|
dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
|
|
/* set status bit */
|
|
dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
|
|
}
|
|
reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
|
|
}
|
|
|
|
if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
/* this counter saturates at (2^32) - 1 */
|
|
if (ppd->link_downed < (u32)UINT_MAX)
|
|
ppd->link_downed++;
|
|
reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
|
|
}
|
|
|
|
if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
|
|
u8 reason_valid = 1;
|
|
|
|
info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
|
|
if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
|
|
dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
|
|
/* set status bit */
|
|
dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
|
|
}
|
|
switch (info) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
extra = fm_config_txt[info];
|
|
break;
|
|
case 8:
|
|
extra = fm_config_txt[info];
|
|
if (ppd->port_error_action &
|
|
OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
|
|
do_bounce = 1;
|
|
/*
|
|
* lcl_reason cannot be derived from info
|
|
* for this error
|
|
*/
|
|
lcl_reason =
|
|
OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
|
|
}
|
|
break;
|
|
default:
|
|
reason_valid = 0;
|
|
snprintf(buf, sizeof(buf), "reserved%lld", info);
|
|
extra = buf;
|
|
break;
|
|
}
|
|
|
|
if (reason_valid && !do_bounce) {
|
|
do_bounce = ppd->port_error_action &
|
|
(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
|
|
lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
|
|
}
|
|
|
|
/* just report this */
|
|
dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
|
|
reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
|
|
}
|
|
|
|
if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
|
|
u8 reason_valid = 1;
|
|
|
|
info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
|
|
hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
|
|
hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
|
|
if (!(dd->err_info_rcvport.status_and_code &
|
|
OPA_EI_STATUS_SMASK)) {
|
|
dd->err_info_rcvport.status_and_code =
|
|
info & OPA_EI_CODE_SMASK;
|
|
/* set status bit */
|
|
dd->err_info_rcvport.status_and_code |=
|
|
OPA_EI_STATUS_SMASK;
|
|
/*
|
|
* save first 2 flits in the packet that caused
|
|
* the error
|
|
*/
|
|
dd->err_info_rcvport.packet_flit1 = hdr0;
|
|
dd->err_info_rcvport.packet_flit2 = hdr1;
|
|
}
|
|
switch (info) {
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 9:
|
|
case 11:
|
|
case 12:
|
|
extra = port_rcv_txt[info];
|
|
break;
|
|
default:
|
|
reason_valid = 0;
|
|
snprintf(buf, sizeof(buf), "reserved%lld", info);
|
|
extra = buf;
|
|
break;
|
|
}
|
|
|
|
if (reason_valid && !do_bounce) {
|
|
do_bounce = ppd->port_error_action &
|
|
(1 << (OPA_LDR_PORTRCV_OFFSET + info));
|
|
lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
|
|
}
|
|
|
|
/* just report this */
|
|
dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
|
|
dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
|
|
hdr0, hdr1);
|
|
|
|
reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
|
|
}
|
|
|
|
if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
|
|
/* informative only */
|
|
dd_dev_info(dd, "8051 access to LCB blocked\n");
|
|
reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
|
|
}
|
|
if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
|
|
/* informative only */
|
|
dd_dev_info(dd, "host access to LCB blocked\n");
|
|
reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
|
|
}
|
|
|
|
/* report any remaining errors */
|
|
if (reg)
|
|
dd_dev_info(dd, "DCC Error: %s\n",
|
|
dcc_err_string(buf, sizeof(buf), reg));
|
|
|
|
if (lcl_reason == 0)
|
|
lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
|
|
|
|
if (do_bounce) {
|
|
dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
|
|
set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
|
|
queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
|
|
}
|
|
}
|
|
|
|
static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
|
|
{
|
|
char buf[96];
|
|
|
|
dd_dev_info(dd, "LCB Error: %s\n",
|
|
lcb_err_string(buf, sizeof(buf), reg));
|
|
}
|
|
|
|
/*
|
|
* CCE block DC interrupt. Source is < 8.
|
|
*/
|
|
static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
const struct err_reg_info *eri = &dc_errs[source];
|
|
|
|
if (eri->handler) {
|
|
interrupt_clear_down(dd, 0, eri);
|
|
} else if (source == 3 /* dc_lbm_int */) {
|
|
/*
|
|
* This indicates that a parity error has occurred on the
|
|
* address/control lines presented to the LBM. The error
|
|
* is a single pulse, there is no associated error flag,
|
|
* and it is non-maskable. This is because if a parity
|
|
* error occurs on the request the request is dropped.
|
|
* This should never occur, but it is nice to know if it
|
|
* ever does.
|
|
*/
|
|
dd_dev_err(dd, "Parity error in DC LBM block\n");
|
|
} else {
|
|
dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TX block send credit interrupt. Source is < 160.
|
|
*/
|
|
static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
sc_group_release_update(dd, source);
|
|
}
|
|
|
|
/*
|
|
* TX block SDMA interrupt. Source is < 48.
|
|
*
|
|
* SDMA interrupts are grouped by type:
|
|
*
|
|
* 0 - N-1 = SDma
|
|
* N - 2N-1 = SDmaProgress
|
|
* 2N - 3N-1 = SDmaIdle
|
|
*/
|
|
static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
/* what interrupt */
|
|
unsigned int what = source / TXE_NUM_SDMA_ENGINES;
|
|
/* which engine */
|
|
unsigned int which = source % TXE_NUM_SDMA_ENGINES;
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
|
|
slashstrip(__FILE__), __LINE__, __func__);
|
|
sdma_dumpstate(&dd->per_sdma[which]);
|
|
#endif
|
|
|
|
if (likely(what < 3 && which < dd->num_sdma)) {
|
|
sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
|
|
} else {
|
|
/* should not happen */
|
|
dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* RX block receive available interrupt. Source is < 160.
|
|
*/
|
|
static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
struct hfi1_ctxtdata *rcd;
|
|
char *err_detail;
|
|
|
|
if (likely(source < dd->num_rcv_contexts)) {
|
|
rcd = dd->rcd[source];
|
|
if (rcd) {
|
|
if (source < dd->first_user_ctxt)
|
|
rcd->do_interrupt(rcd, 0);
|
|
else
|
|
handle_user_interrupt(rcd);
|
|
return; /* OK */
|
|
}
|
|
/* received an interrupt, but no rcd */
|
|
err_detail = "dataless";
|
|
} else {
|
|
/* received an interrupt, but are not using that context */
|
|
err_detail = "out of range";
|
|
}
|
|
dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
|
|
err_detail, source);
|
|
}
|
|
|
|
/*
|
|
* RX block receive urgent interrupt. Source is < 160.
|
|
*/
|
|
static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
struct hfi1_ctxtdata *rcd;
|
|
char *err_detail;
|
|
|
|
if (likely(source < dd->num_rcv_contexts)) {
|
|
rcd = dd->rcd[source];
|
|
if (rcd) {
|
|
/* only pay attention to user urgent interrupts */
|
|
if (source >= dd->first_user_ctxt)
|
|
handle_user_interrupt(rcd);
|
|
return; /* OK */
|
|
}
|
|
/* received an interrupt, but no rcd */
|
|
err_detail = "dataless";
|
|
} else {
|
|
/* received an interrupt, but are not using that context */
|
|
err_detail = "out of range";
|
|
}
|
|
dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
|
|
err_detail, source);
|
|
}
|
|
|
|
/*
|
|
* Reserved range interrupt. Should not be called in normal operation.
|
|
*/
|
|
static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
char name[64];
|
|
|
|
dd_dev_err(dd, "unexpected %s interrupt\n",
|
|
is_reserved_name(name, sizeof(name), source));
|
|
}
|
|
|
|
static const struct is_table is_table[] = {
|
|
/*
|
|
* start end
|
|
* name func interrupt func
|
|
*/
|
|
{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
|
|
is_misc_err_name, is_misc_err_int },
|
|
{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
|
|
is_sdma_eng_err_name, is_sdma_eng_err_int },
|
|
{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
|
|
is_sendctxt_err_name, is_sendctxt_err_int },
|
|
{ IS_SDMA_START, IS_SDMA_END,
|
|
is_sdma_eng_name, is_sdma_eng_int },
|
|
{ IS_VARIOUS_START, IS_VARIOUS_END,
|
|
is_various_name, is_various_int },
|
|
{ IS_DC_START, IS_DC_END,
|
|
is_dc_name, is_dc_int },
|
|
{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
|
|
is_rcv_avail_name, is_rcv_avail_int },
|
|
{ IS_RCVURGENT_START, IS_RCVURGENT_END,
|
|
is_rcv_urgent_name, is_rcv_urgent_int },
|
|
{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
|
|
is_send_credit_name, is_send_credit_int},
|
|
{ IS_RESERVED_START, IS_RESERVED_END,
|
|
is_reserved_name, is_reserved_int},
|
|
};
|
|
|
|
/*
|
|
* Interrupt source interrupt - called when the given source has an interrupt.
|
|
* Source is a bit index into an array of 64-bit integers.
|
|
*/
|
|
static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
|
|
{
|
|
const struct is_table *entry;
|
|
|
|
/* avoids a double compare by walking the table in-order */
|
|
for (entry = &is_table[0]; entry->is_name; entry++) {
|
|
if (source < entry->end) {
|
|
trace_hfi1_interrupt(dd, entry, source);
|
|
entry->is_int(dd, source - entry->start);
|
|
return;
|
|
}
|
|
}
|
|
/* fell off the end */
|
|
dd_dev_err(dd, "invalid interrupt source %u\n", source);
|
|
}
|
|
|
|
/*
|
|
* General interrupt handler. This is able to correctly handle
|
|
* all interrupts in case INTx is used.
|
|
*/
|
|
static irqreturn_t general_interrupt(int irq, void *data)
|
|
{
|
|
struct hfi1_devdata *dd = data;
|
|
u64 regs[CCE_NUM_INT_CSRS];
|
|
u32 bit;
|
|
int i;
|
|
|
|
this_cpu_inc(*dd->int_counter);
|
|
|
|
/* phase 1: scan and clear all handled interrupts */
|
|
for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
|
|
if (dd->gi_mask[i] == 0) {
|
|
regs[i] = 0; /* used later */
|
|
continue;
|
|
}
|
|
regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
|
|
dd->gi_mask[i];
|
|
/* only clear if anything is set */
|
|
if (regs[i])
|
|
write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
|
|
}
|
|
|
|
/* phase 2: call the appropriate handler */
|
|
for_each_set_bit(bit, (unsigned long *)®s[0],
|
|
CCE_NUM_INT_CSRS * 64) {
|
|
is_interrupt(dd, bit);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sdma_interrupt(int irq, void *data)
|
|
{
|
|
struct sdma_engine *sde = data;
|
|
struct hfi1_devdata *dd = sde->dd;
|
|
u64 status;
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
|
|
slashstrip(__FILE__), __LINE__, __func__);
|
|
sdma_dumpstate(sde);
|
|
#endif
|
|
|
|
this_cpu_inc(*dd->int_counter);
|
|
|
|
/* This read_csr is really bad in the hot path */
|
|
status = read_csr(dd,
|
|
CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
|
|
& sde->imask;
|
|
if (likely(status)) {
|
|
/* clear the interrupt(s) */
|
|
write_csr(dd,
|
|
CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
|
|
status);
|
|
|
|
/* handle the interrupt(s) */
|
|
sdma_engine_interrupt(sde, status);
|
|
} else
|
|
dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
|
|
sde->this_idx);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Clear the receive interrupt. Use a read of the interrupt clear CSR
|
|
* to insure that the write completed. This does NOT guarantee that
|
|
* queued DMA writes to memory from the chip are pushed.
|
|
*/
|
|
static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
|
|
{
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
|
|
|
|
mmiowb(); /* make sure everything before is written */
|
|
write_csr(dd, addr, rcd->imask);
|
|
/* force the above write on the chip and get a value back */
|
|
(void)read_csr(dd, addr);
|
|
}
|
|
|
|
/* force the receive interrupt */
|
|
void force_recv_intr(struct hfi1_ctxtdata *rcd)
|
|
{
|
|
write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
|
|
}
|
|
|
|
/*
|
|
* Return non-zero if a packet is present.
|
|
*
|
|
* This routine is called when rechecking for packets after the RcvAvail
|
|
* interrupt has been cleared down. First, do a quick check of memory for
|
|
* a packet present. If not found, use an expensive CSR read of the context
|
|
* tail to determine the actual tail. The CSR read is necessary because there
|
|
* is no method to push pending DMAs to memory other than an interrupt and we
|
|
* are trying to determine if we need to force an interrupt.
|
|
*/
|
|
static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
|
|
{
|
|
u32 tail;
|
|
int present;
|
|
|
|
if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
|
|
present = (rcd->seq_cnt ==
|
|
rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
|
|
else /* is RDMA rtail */
|
|
present = (rcd->head != get_rcvhdrtail(rcd));
|
|
|
|
if (present)
|
|
return 1;
|
|
|
|
/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
|
|
tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
|
|
return rcd->head != tail;
|
|
}
|
|
|
|
/*
|
|
* Receive packet IRQ handler. This routine expects to be on its own IRQ.
|
|
* This routine will try to handle packets immediately (latency), but if
|
|
* it finds too many, it will invoke the thread handler (bandwitdh). The
|
|
* chip receive interrupt is *not* cleared down until this or the thread (if
|
|
* invoked) is finished. The intent is to avoid extra interrupts while we
|
|
* are processing packets anyway.
|
|
*/
|
|
static irqreturn_t receive_context_interrupt(int irq, void *data)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = data;
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
int disposition;
|
|
int present;
|
|
|
|
trace_hfi1_receive_interrupt(dd, rcd->ctxt);
|
|
this_cpu_inc(*dd->int_counter);
|
|
aspm_ctx_disable(rcd);
|
|
|
|
/* receive interrupt remains blocked while processing packets */
|
|
disposition = rcd->do_interrupt(rcd, 0);
|
|
|
|
/*
|
|
* Too many packets were seen while processing packets in this
|
|
* IRQ handler. Invoke the handler thread. The receive interrupt
|
|
* remains blocked.
|
|
*/
|
|
if (disposition == RCV_PKT_LIMIT)
|
|
return IRQ_WAKE_THREAD;
|
|
|
|
/*
|
|
* The packet processor detected no more packets. Clear the receive
|
|
* interrupt and recheck for a packet packet that may have arrived
|
|
* after the previous check and interrupt clear. If a packet arrived,
|
|
* force another interrupt.
|
|
*/
|
|
clear_recv_intr(rcd);
|
|
present = check_packet_present(rcd);
|
|
if (present)
|
|
force_recv_intr(rcd);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Receive packet thread handler. This expects to be invoked with the
|
|
* receive interrupt still blocked.
|
|
*/
|
|
static irqreturn_t receive_context_thread(int irq, void *data)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = data;
|
|
int present;
|
|
|
|
/* receive interrupt is still blocked from the IRQ handler */
|
|
(void)rcd->do_interrupt(rcd, 1);
|
|
|
|
/*
|
|
* The packet processor will only return if it detected no more
|
|
* packets. Hold IRQs here so we can safely clear the interrupt and
|
|
* recheck for a packet that may have arrived after the previous
|
|
* check and the interrupt clear. If a packet arrived, force another
|
|
* interrupt.
|
|
*/
|
|
local_irq_disable();
|
|
clear_recv_intr(rcd);
|
|
present = check_packet_present(rcd);
|
|
if (present)
|
|
force_recv_intr(rcd);
|
|
local_irq_enable();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* ========================================================================= */
|
|
|
|
u32 read_physical_state(struct hfi1_devdata *dd)
|
|
{
|
|
u64 reg;
|
|
|
|
reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
|
|
return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
|
|
& DC_DC8051_STS_CUR_STATE_PORT_MASK;
|
|
}
|
|
|
|
u32 read_logical_state(struct hfi1_devdata *dd)
|
|
{
|
|
u64 reg;
|
|
|
|
reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
|
|
return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
|
|
& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
|
|
}
|
|
|
|
static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
|
|
{
|
|
u64 reg;
|
|
|
|
reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
|
|
/* clear current state, set new state */
|
|
reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
|
|
reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
|
|
write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
|
|
}
|
|
|
|
/*
|
|
* Use the 8051 to read a LCB CSR.
|
|
*/
|
|
static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
|
|
{
|
|
u32 regno;
|
|
int ret;
|
|
|
|
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
|
|
if (acquire_lcb_access(dd, 0) == 0) {
|
|
*data = read_csr(dd, addr);
|
|
release_lcb_access(dd, 0);
|
|
return 0;
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* register is an index of LCB registers: (offset - base) / 8 */
|
|
regno = (addr - DC_LCB_CFG_RUN) >> 3;
|
|
ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
|
|
if (ret != HCMD_SUCCESS)
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read an LCB CSR. Access may not be in host control, so check.
|
|
* Return 0 on success, -EBUSY on failure.
|
|
*/
|
|
int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
|
|
{
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
|
|
/* if up, go through the 8051 for the value */
|
|
if (ppd->host_link_state & HLS_UP)
|
|
return read_lcb_via_8051(dd, addr, data);
|
|
/* if going up or down, no access */
|
|
if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
|
|
return -EBUSY;
|
|
/* otherwise, host has access */
|
|
*data = read_csr(dd, addr);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Use the 8051 to write a LCB CSR.
|
|
*/
|
|
static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
|
|
{
|
|
u32 regno;
|
|
int ret;
|
|
|
|
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
|
|
(dd->dc8051_ver < dc8051_ver(0, 20))) {
|
|
if (acquire_lcb_access(dd, 0) == 0) {
|
|
write_csr(dd, addr, data);
|
|
release_lcb_access(dd, 0);
|
|
return 0;
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* register is an index of LCB registers: (offset - base) / 8 */
|
|
regno = (addr - DC_LCB_CFG_RUN) >> 3;
|
|
ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
|
|
if (ret != HCMD_SUCCESS)
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write an LCB CSR. Access may not be in host control, so check.
|
|
* Return 0 on success, -EBUSY on failure.
|
|
*/
|
|
int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
|
|
{
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
|
|
/* if up, go through the 8051 for the value */
|
|
if (ppd->host_link_state & HLS_UP)
|
|
return write_lcb_via_8051(dd, addr, data);
|
|
/* if going up or down, no access */
|
|
if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
|
|
return -EBUSY;
|
|
/* otherwise, host has access */
|
|
write_csr(dd, addr, data);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns:
|
|
* < 0 = Linux error, not able to get access
|
|
* > 0 = 8051 command RETURN_CODE
|
|
*/
|
|
static int do_8051_command(
|
|
struct hfi1_devdata *dd,
|
|
u32 type,
|
|
u64 in_data,
|
|
u64 *out_data)
|
|
{
|
|
u64 reg, completed;
|
|
int return_code;
|
|
unsigned long flags;
|
|
unsigned long timeout;
|
|
|
|
hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
|
|
|
|
/*
|
|
* Alternative to holding the lock for a long time:
|
|
* - keep busy wait - have other users bounce off
|
|
*/
|
|
spin_lock_irqsave(&dd->dc8051_lock, flags);
|
|
|
|
/* We can't send any commands to the 8051 if it's in reset */
|
|
if (dd->dc_shutdown) {
|
|
return_code = -ENODEV;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* If an 8051 host command timed out previously, then the 8051 is
|
|
* stuck.
|
|
*
|
|
* On first timeout, attempt to reset and restart the entire DC
|
|
* block (including 8051). (Is this too big of a hammer?)
|
|
*
|
|
* If the 8051 times out a second time, the reset did not bring it
|
|
* back to healthy life. In that case, fail any subsequent commands.
|
|
*/
|
|
if (dd->dc8051_timed_out) {
|
|
if (dd->dc8051_timed_out > 1) {
|
|
dd_dev_err(dd,
|
|
"Previous 8051 host command timed out, skipping command %u\n",
|
|
type);
|
|
return_code = -ENXIO;
|
|
goto fail;
|
|
}
|
|
spin_unlock_irqrestore(&dd->dc8051_lock, flags);
|
|
dc_shutdown(dd);
|
|
dc_start(dd);
|
|
spin_lock_irqsave(&dd->dc8051_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* If there is no timeout, then the 8051 command interface is
|
|
* waiting for a command.
|
|
*/
|
|
|
|
/*
|
|
* When writing a LCB CSR, out_data contains the full value to
|
|
* to be written, while in_data contains the relative LCB
|
|
* address in 7:0. Do the work here, rather than the caller,
|
|
* of distrubting the write data to where it needs to go:
|
|
*
|
|
* Write data
|
|
* 39:00 -> in_data[47:8]
|
|
* 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
|
|
* 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
|
|
*/
|
|
if (type == HCMD_WRITE_LCB_CSR) {
|
|
in_data |= ((*out_data) & 0xffffffffffull) << 8;
|
|
reg = ((((*out_data) >> 40) & 0xff) <<
|
|
DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
|
|
| ((((*out_data) >> 48) & 0xffff) <<
|
|
DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
|
|
write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
|
|
}
|
|
|
|
/*
|
|
* Do two writes: the first to stabilize the type and req_data, the
|
|
* second to activate.
|
|
*/
|
|
reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
|
|
<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
|
|
| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
|
|
<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
|
|
write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
|
|
reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
|
|
write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
|
|
|
|
/* wait for completion, alternate: interrupt */
|
|
timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
|
|
while (1) {
|
|
reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
|
|
completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
|
|
if (completed)
|
|
break;
|
|
if (time_after(jiffies, timeout)) {
|
|
dd->dc8051_timed_out++;
|
|
dd_dev_err(dd, "8051 host command %u timeout\n", type);
|
|
if (out_data)
|
|
*out_data = 0;
|
|
return_code = -ETIMEDOUT;
|
|
goto fail;
|
|
}
|
|
udelay(2);
|
|
}
|
|
|
|
if (out_data) {
|
|
*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
|
|
& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
|
|
if (type == HCMD_READ_LCB_CSR) {
|
|
/* top 16 bits are in a different register */
|
|
*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
|
|
& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
|
|
<< (48
|
|
- DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
|
|
}
|
|
}
|
|
return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
|
|
& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
|
|
dd->dc8051_timed_out = 0;
|
|
/*
|
|
* Clear command for next user.
|
|
*/
|
|
write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
|
|
|
|
fail:
|
|
spin_unlock_irqrestore(&dd->dc8051_lock, flags);
|
|
|
|
return return_code;
|
|
}
|
|
|
|
static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
|
|
{
|
|
return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
|
|
}
|
|
|
|
int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
|
|
u8 lane_id, u32 config_data)
|
|
{
|
|
u64 data;
|
|
int ret;
|
|
|
|
data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
|
|
| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
|
|
| (u64)config_data << LOAD_DATA_DATA_SHIFT;
|
|
ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
|
|
if (ret != HCMD_SUCCESS) {
|
|
dd_dev_err(dd,
|
|
"load 8051 config: field id %d, lane %d, err %d\n",
|
|
(int)field_id, (int)lane_id, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Read the 8051 firmware "registers". Use the RAM directly. Always
|
|
* set the result, even on error.
|
|
* Return 0 on success, -errno on failure
|
|
*/
|
|
int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
|
|
u32 *result)
|
|
{
|
|
u64 big_data;
|
|
u32 addr;
|
|
int ret;
|
|
|
|
/* address start depends on the lane_id */
|
|
if (lane_id < 4)
|
|
addr = (4 * NUM_GENERAL_FIELDS)
|
|
+ (lane_id * 4 * NUM_LANE_FIELDS);
|
|
else
|
|
addr = 0;
|
|
addr += field_id * 4;
|
|
|
|
/* read is in 8-byte chunks, hardware will truncate the address down */
|
|
ret = read_8051_data(dd, addr, 8, &big_data);
|
|
|
|
if (ret == 0) {
|
|
/* extract the 4 bytes we want */
|
|
if (addr & 0x4)
|
|
*result = (u32)(big_data >> 32);
|
|
else
|
|
*result = (u32)big_data;
|
|
} else {
|
|
*result = 0;
|
|
dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
|
|
__func__, lane_id, field_id);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
|
|
u8 continuous)
|
|
{
|
|
u32 frame;
|
|
|
|
frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
|
|
| power_management << POWER_MANAGEMENT_SHIFT;
|
|
return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
|
|
GENERAL_CONFIG, frame);
|
|
}
|
|
|
|
static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
|
|
u16 vl15buf, u8 crc_sizes)
|
|
{
|
|
u32 frame;
|
|
|
|
frame = (u32)vau << VAU_SHIFT
|
|
| (u32)z << Z_SHIFT
|
|
| (u32)vcu << VCU_SHIFT
|
|
| (u32)vl15buf << VL15BUF_SHIFT
|
|
| (u32)crc_sizes << CRC_SIZES_SHIFT;
|
|
return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
|
|
GENERAL_CONFIG, frame);
|
|
}
|
|
|
|
static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
|
|
u8 *flag_bits, u16 *link_widths)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
|
|
&frame);
|
|
*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
|
|
*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
|
|
*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
|
|
}
|
|
|
|
static int write_vc_local_link_width(struct hfi1_devdata *dd,
|
|
u8 misc_bits,
|
|
u8 flag_bits,
|
|
u16 link_widths)
|
|
{
|
|
u32 frame;
|
|
|
|
frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
|
|
| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
|
|
| (u32)link_widths << LINK_WIDTH_SHIFT;
|
|
return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
|
|
frame);
|
|
}
|
|
|
|
static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
|
|
u8 device_rev)
|
|
{
|
|
u32 frame;
|
|
|
|
frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
|
|
| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
|
|
return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
|
|
}
|
|
|
|
static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
|
|
u8 *device_rev)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
|
|
*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
|
|
*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
|
|
& REMOTE_DEVICE_REV_MASK;
|
|
}
|
|
|
|
void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
|
|
*ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
|
|
*ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
|
|
}
|
|
|
|
static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
|
|
u8 *continuous)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
|
|
*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
|
|
& POWER_MANAGEMENT_MASK;
|
|
*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
|
|
& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
|
|
}
|
|
|
|
static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
|
|
u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
|
|
*vau = (frame >> VAU_SHIFT) & VAU_MASK;
|
|
*z = (frame >> Z_SHIFT) & Z_MASK;
|
|
*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
|
|
*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
|
|
*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
|
|
}
|
|
|
|
static void read_vc_remote_link_width(struct hfi1_devdata *dd,
|
|
u8 *remote_tx_rate,
|
|
u16 *link_widths)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
|
|
&frame);
|
|
*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
|
|
& REMOTE_TX_RATE_MASK;
|
|
*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
|
|
}
|
|
|
|
static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
|
|
*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
|
|
}
|
|
|
|
static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
|
|
*mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
|
|
}
|
|
|
|
static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
|
|
{
|
|
read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
|
|
}
|
|
|
|
static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
|
|
{
|
|
read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
|
|
}
|
|
|
|
void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
|
|
{
|
|
u32 frame;
|
|
int ret;
|
|
|
|
*link_quality = 0;
|
|
if (dd->pport->host_link_state & HLS_UP) {
|
|
ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
|
|
&frame);
|
|
if (ret == 0)
|
|
*link_quality = (frame >> LINK_QUALITY_SHIFT)
|
|
& LINK_QUALITY_MASK;
|
|
}
|
|
}
|
|
|
|
static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
|
|
*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
|
|
}
|
|
|
|
static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
|
|
{
|
|
u32 frame;
|
|
|
|
read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
|
|
*ldr = (frame & 0xff);
|
|
}
|
|
|
|
static int read_tx_settings(struct hfi1_devdata *dd,
|
|
u8 *enable_lane_tx,
|
|
u8 *tx_polarity_inversion,
|
|
u8 *rx_polarity_inversion,
|
|
u8 *max_rate)
|
|
{
|
|
u32 frame;
|
|
int ret;
|
|
|
|
ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
|
|
*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
|
|
& ENABLE_LANE_TX_MASK;
|
|
*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
|
|
& TX_POLARITY_INVERSION_MASK;
|
|
*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
|
|
& RX_POLARITY_INVERSION_MASK;
|
|
*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
|
|
return ret;
|
|
}
|
|
|
|
static int write_tx_settings(struct hfi1_devdata *dd,
|
|
u8 enable_lane_tx,
|
|
u8 tx_polarity_inversion,
|
|
u8 rx_polarity_inversion,
|
|
u8 max_rate)
|
|
{
|
|
u32 frame;
|
|
|
|
/* no need to mask, all variable sizes match field widths */
|
|
frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
|
|
| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
|
|
| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
|
|
| max_rate << MAX_RATE_SHIFT;
|
|
return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
|
|
}
|
|
|
|
static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
|
|
{
|
|
u32 frame, version, prod_id;
|
|
int ret, lane;
|
|
|
|
/* 4 lanes */
|
|
for (lane = 0; lane < 4; lane++) {
|
|
ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
|
|
if (ret) {
|
|
dd_dev_err(dd,
|
|
"Unable to read lane %d firmware details\n",
|
|
lane);
|
|
continue;
|
|
}
|
|
version = (frame >> SPICO_ROM_VERSION_SHIFT)
|
|
& SPICO_ROM_VERSION_MASK;
|
|
prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
|
|
& SPICO_ROM_PROD_ID_MASK;
|
|
dd_dev_info(dd,
|
|
"Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
|
|
lane, version, prod_id);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read an idle LCB message.
|
|
*
|
|
* Returns 0 on success, -EINVAL on error
|
|
*/
|
|
static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
|
|
{
|
|
int ret;
|
|
|
|
ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
|
|
if (ret != HCMD_SUCCESS) {
|
|
dd_dev_err(dd, "read idle message: type %d, err %d\n",
|
|
(u32)type, ret);
|
|
return -EINVAL;
|
|
}
|
|
dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
|
|
/* return only the payload as we already know the type */
|
|
*data_out >>= IDLE_PAYLOAD_SHIFT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read an idle SMA message. To be done in response to a notification from
|
|
* the 8051.
|
|
*
|
|
* Returns 0 on success, -EINVAL on error
|
|
*/
|
|
static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
|
|
{
|
|
return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
|
|
data);
|
|
}
|
|
|
|
/*
|
|
* Send an idle LCB message.
|
|
*
|
|
* Returns 0 on success, -EINVAL on error
|
|
*/
|
|
static int send_idle_message(struct hfi1_devdata *dd, u64 data)
|
|
{
|
|
int ret;
|
|
|
|
dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
|
|
ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
|
|
if (ret != HCMD_SUCCESS) {
|
|
dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
|
|
data, ret);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send an idle SMA message.
|
|
*
|
|
* Returns 0 on success, -EINVAL on error
|
|
*/
|
|
int send_idle_sma(struct hfi1_devdata *dd, u64 message)
|
|
{
|
|
u64 data;
|
|
|
|
data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
|
|
((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
|
|
return send_idle_message(dd, data);
|
|
}
|
|
|
|
/*
|
|
* Initialize the LCB then do a quick link up. This may or may not be
|
|
* in loopback.
|
|
*
|
|
* return 0 on success, -errno on error
|
|
*/
|
|
static int do_quick_linkup(struct hfi1_devdata *dd)
|
|
{
|
|
u64 reg;
|
|
unsigned long timeout;
|
|
int ret;
|
|
|
|
lcb_shutdown(dd, 0);
|
|
|
|
if (loopback) {
|
|
/* LCB_CFG_LOOPBACK.VAL = 2 */
|
|
/* LCB_CFG_LANE_WIDTH.VAL = 0 */
|
|
write_csr(dd, DC_LCB_CFG_LOOPBACK,
|
|
IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
|
|
write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
|
|
}
|
|
|
|
/* start the LCBs */
|
|
/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
|
|
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
|
|
|
|
/* simulator only loopback steps */
|
|
if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
|
|
/* LCB_CFG_RUN.EN = 1 */
|
|
write_csr(dd, DC_LCB_CFG_RUN,
|
|
1ull << DC_LCB_CFG_RUN_EN_SHIFT);
|
|
|
|
/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
|
|
timeout = jiffies + msecs_to_jiffies(10);
|
|
while (1) {
|
|
reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
|
|
if (reg)
|
|
break;
|
|
if (time_after(jiffies, timeout)) {
|
|
dd_dev_err(dd,
|
|
"timeout waiting for LINK_TRANSFER_ACTIVE\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
udelay(2);
|
|
}
|
|
|
|
write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
|
|
1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
|
|
}
|
|
|
|
if (!loopback) {
|
|
/*
|
|
* When doing quick linkup and not in loopback, both
|
|
* sides must be done with LCB set-up before either
|
|
* starts the quick linkup. Put a delay here so that
|
|
* both sides can be started and have a chance to be
|
|
* done with LCB set up before resuming.
|
|
*/
|
|
dd_dev_err(dd,
|
|
"Pausing for peer to be finished with LCB set up\n");
|
|
msleep(5000);
|
|
dd_dev_err(dd, "Continuing with quick linkup\n");
|
|
}
|
|
|
|
write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
|
|
set_8051_lcb_access(dd);
|
|
|
|
/*
|
|
* State "quick" LinkUp request sets the physical link state to
|
|
* LinkUp without a verify capability sequence.
|
|
* This state is in simulator v37 and later.
|
|
*/
|
|
ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
|
|
if (ret != HCMD_SUCCESS) {
|
|
dd_dev_err(dd,
|
|
"%s: set physical link state to quick LinkUp failed with return %d\n",
|
|
__func__, ret);
|
|
|
|
set_host_lcb_access(dd);
|
|
write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
|
|
|
|
if (ret >= 0)
|
|
ret = -EINVAL;
|
|
return ret;
|
|
}
|
|
|
|
return 0; /* success */
|
|
}
|
|
|
|
/*
|
|
* Set the SerDes to internal loopback mode.
|
|
* Returns 0 on success, -errno on error.
|
|
*/
|
|
static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
|
|
{
|
|
int ret;
|
|
|
|
ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
|
|
if (ret == HCMD_SUCCESS)
|
|
return 0;
|
|
dd_dev_err(dd,
|
|
"Set physical link state to SerDes Loopback failed with return %d\n",
|
|
ret);
|
|
if (ret >= 0)
|
|
ret = -EINVAL;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do all special steps to set up loopback.
|
|
*/
|
|
static int init_loopback(struct hfi1_devdata *dd)
|
|
{
|
|
dd_dev_info(dd, "Entering loopback mode\n");
|
|
|
|
/* all loopbacks should disable self GUID check */
|
|
write_csr(dd, DC_DC8051_CFG_MODE,
|
|
(read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
|
|
|
|
/*
|
|
* The simulator has only one loopback option - LCB. Switch
|
|
* to that option, which includes quick link up.
|
|
*
|
|
* Accept all valid loopback values.
|
|
*/
|
|
if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
|
|
(loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
|
|
loopback == LOOPBACK_CABLE)) {
|
|
loopback = LOOPBACK_LCB;
|
|
quick_linkup = 1;
|
|
return 0;
|
|
}
|
|
|
|
/* handle serdes loopback */
|
|
if (loopback == LOOPBACK_SERDES) {
|
|
/* internal serdes loopack needs quick linkup on RTL */
|
|
if (dd->icode == ICODE_RTL_SILICON)
|
|
quick_linkup = 1;
|
|
return set_serdes_loopback_mode(dd);
|
|
}
|
|
|
|
/* LCB loopback - handled at poll time */
|
|
if (loopback == LOOPBACK_LCB) {
|
|
quick_linkup = 1; /* LCB is always quick linkup */
|
|
|
|
/* not supported in emulation due to emulation RTL changes */
|
|
if (dd->icode == ICODE_FPGA_EMULATION) {
|
|
dd_dev_err(dd,
|
|
"LCB loopback not supported in emulation\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* external cable loopback requires no extra steps */
|
|
if (loopback == LOOPBACK_CABLE)
|
|
return 0;
|
|
|
|
dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
|
|
* used in the Verify Capability link width attribute.
|
|
*/
|
|
static u16 opa_to_vc_link_widths(u16 opa_widths)
|
|
{
|
|
int i;
|
|
u16 result = 0;
|
|
|
|
static const struct link_bits {
|
|
u16 from;
|
|
u16 to;
|
|
} opa_link_xlate[] = {
|
|
{ OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
|
|
{ OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
|
|
{ OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
|
|
{ OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
|
|
};
|
|
|
|
for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
|
|
if (opa_widths & opa_link_xlate[i].from)
|
|
result |= opa_link_xlate[i].to;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Set link attributes before moving to polling.
|
|
*/
|
|
static int set_local_link_attributes(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u8 enable_lane_tx;
|
|
u8 tx_polarity_inversion;
|
|
u8 rx_polarity_inversion;
|
|
int ret;
|
|
|
|
/* reset our fabric serdes to clear any lingering problems */
|
|
fabric_serdes_reset(dd);
|
|
|
|
/* set the local tx rate - need to read-modify-write */
|
|
ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
|
|
&rx_polarity_inversion, &ppd->local_tx_rate);
|
|
if (ret)
|
|
goto set_local_link_attributes_fail;
|
|
|
|
if (dd->dc8051_ver < dc8051_ver(0, 20)) {
|
|
/* set the tx rate to the fastest enabled */
|
|
if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
|
|
ppd->local_tx_rate = 1;
|
|
else
|
|
ppd->local_tx_rate = 0;
|
|
} else {
|
|
/* set the tx rate to all enabled */
|
|
ppd->local_tx_rate = 0;
|
|
if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
|
|
ppd->local_tx_rate |= 2;
|
|
if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
|
|
ppd->local_tx_rate |= 1;
|
|
}
|
|
|
|
enable_lane_tx = 0xF; /* enable all four lanes */
|
|
ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
|
|
rx_polarity_inversion, ppd->local_tx_rate);
|
|
if (ret != HCMD_SUCCESS)
|
|
goto set_local_link_attributes_fail;
|
|
|
|
/*
|
|
* DC supports continuous updates.
|
|
*/
|
|
ret = write_vc_local_phy(dd,
|
|
0 /* no power management */,
|
|
1 /* continuous updates */);
|
|
if (ret != HCMD_SUCCESS)
|
|
goto set_local_link_attributes_fail;
|
|
|
|
/* z=1 in the next call: AU of 0 is not supported by the hardware */
|
|
ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
|
|
ppd->port_crc_mode_enabled);
|
|
if (ret != HCMD_SUCCESS)
|
|
goto set_local_link_attributes_fail;
|
|
|
|
ret = write_vc_local_link_width(dd, 0, 0,
|
|
opa_to_vc_link_widths(
|
|
ppd->link_width_enabled));
|
|
if (ret != HCMD_SUCCESS)
|
|
goto set_local_link_attributes_fail;
|
|
|
|
/* let peer know who we are */
|
|
ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
|
|
if (ret == HCMD_SUCCESS)
|
|
return 0;
|
|
|
|
set_local_link_attributes_fail:
|
|
dd_dev_err(dd,
|
|
"Failed to set local link attributes, return 0x%x\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Call this to start the link.
|
|
* Do not do anything if the link is disabled.
|
|
* Returns 0 if link is disabled, moved to polling, or the driver is not ready.
|
|
*/
|
|
int start_link(struct hfi1_pportdata *ppd)
|
|
{
|
|
if (!ppd->link_enabled) {
|
|
dd_dev_info(ppd->dd,
|
|
"%s: stopping link start because link is disabled\n",
|
|
__func__);
|
|
return 0;
|
|
}
|
|
if (!ppd->driver_link_ready) {
|
|
dd_dev_info(ppd->dd,
|
|
"%s: stopping link start because driver is not ready\n",
|
|
__func__);
|
|
return 0;
|
|
}
|
|
|
|
return set_link_state(ppd, HLS_DN_POLL);
|
|
}
|
|
|
|
static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 mask;
|
|
unsigned long timeout;
|
|
|
|
/*
|
|
* Check for QSFP interrupt for t_init (SFF 8679)
|
|
*/
|
|
timeout = jiffies + msecs_to_jiffies(2000);
|
|
while (1) {
|
|
mask = read_csr(dd, dd->hfi1_id ?
|
|
ASIC_QSFP2_IN : ASIC_QSFP1_IN);
|
|
if (!(mask & QSFP_HFI0_INT_N)) {
|
|
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR :
|
|
ASIC_QSFP1_CLEAR, QSFP_HFI0_INT_N);
|
|
break;
|
|
}
|
|
if (time_after(jiffies, timeout)) {
|
|
dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
udelay(2);
|
|
}
|
|
}
|
|
|
|
static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 mask;
|
|
|
|
mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
|
|
if (enable)
|
|
mask |= (u64)QSFP_HFI0_INT_N;
|
|
else
|
|
mask &= ~(u64)QSFP_HFI0_INT_N;
|
|
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
|
|
}
|
|
|
|
void reset_qsfp(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 mask, qsfp_mask;
|
|
|
|
/* Disable INT_N from triggering QSFP interrupts */
|
|
set_qsfp_int_n(ppd, 0);
|
|
|
|
/* Reset the QSFP */
|
|
mask = (u64)QSFP_HFI0_RESET_N;
|
|
|
|
qsfp_mask = read_csr(dd,
|
|
dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
|
|
qsfp_mask &= ~mask;
|
|
write_csr(dd,
|
|
dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
|
|
|
|
udelay(10);
|
|
|
|
qsfp_mask |= mask;
|
|
write_csr(dd,
|
|
dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
|
|
|
|
wait_for_qsfp_init(ppd);
|
|
|
|
/*
|
|
* Allow INT_N to trigger the QSFP interrupt to watch
|
|
* for alarms and warnings
|
|
*/
|
|
set_qsfp_int_n(ppd, 1);
|
|
}
|
|
|
|
static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
|
|
u8 *qsfp_interrupt_status)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
|
|
if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
|
|
(qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
|
|
dd_dev_info(dd, "%s: QSFP cable on fire\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
|
|
(qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
|
|
dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
|
|
__func__);
|
|
|
|
/*
|
|
* The remaining alarms/warnings don't matter if the link is down.
|
|
*/
|
|
if (ppd->host_link_state & HLS_DOWN)
|
|
return 0;
|
|
|
|
if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
|
|
(qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
|
|
dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
|
|
(qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
|
|
dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
|
|
__func__);
|
|
|
|
/* Byte 2 is vendor specific */
|
|
|
|
if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
|
|
(qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
|
|
dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
|
|
(qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
|
|
dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
|
|
(qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
|
|
dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
|
|
(qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
|
|
dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
|
|
(qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
|
|
dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
|
|
(qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
|
|
dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
|
|
(qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
|
|
dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
|
|
(qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
|
|
dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
|
|
(qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
|
|
dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
|
|
(qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
|
|
dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
|
|
(qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
|
|
dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
|
|
__func__);
|
|
|
|
if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
|
|
(qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
|
|
dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
|
|
__func__);
|
|
|
|
/* Bytes 9-10 and 11-12 are reserved */
|
|
/* Bytes 13-15 are vendor specific */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This routine will only be scheduled if the QSFP module present is asserted */
|
|
void qsfp_event(struct work_struct *work)
|
|
{
|
|
struct qsfp_data *qd;
|
|
struct hfi1_pportdata *ppd;
|
|
struct hfi1_devdata *dd;
|
|
|
|
qd = container_of(work, struct qsfp_data, qsfp_work);
|
|
ppd = qd->ppd;
|
|
dd = ppd->dd;
|
|
|
|
/* Sanity check */
|
|
if (!qsfp_mod_present(ppd))
|
|
return;
|
|
|
|
/*
|
|
* Turn DC back on after cable has been re-inserted. Up until
|
|
* now, the DC has been in reset to save power.
|
|
*/
|
|
dc_start(dd);
|
|
|
|
if (qd->cache_refresh_required) {
|
|
set_qsfp_int_n(ppd, 0);
|
|
|
|
wait_for_qsfp_init(ppd);
|
|
|
|
/*
|
|
* Allow INT_N to trigger the QSFP interrupt to watch
|
|
* for alarms and warnings
|
|
*/
|
|
set_qsfp_int_n(ppd, 1);
|
|
|
|
tune_serdes(ppd);
|
|
|
|
start_link(ppd);
|
|
}
|
|
|
|
if (qd->check_interrupt_flags) {
|
|
u8 qsfp_interrupt_status[16] = {0,};
|
|
|
|
if (one_qsfp_read(ppd, dd->hfi1_id, 6,
|
|
&qsfp_interrupt_status[0], 16) != 16) {
|
|
dd_dev_info(dd,
|
|
"%s: Failed to read status of QSFP module\n",
|
|
__func__);
|
|
} else {
|
|
unsigned long flags;
|
|
|
|
handle_qsfp_error_conditions(
|
|
ppd, qsfp_interrupt_status);
|
|
spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
|
|
ppd->qsfp_info.check_interrupt_flags = 0;
|
|
spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
|
|
flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_qsfp_int(struct hfi1_devdata *dd)
|
|
{
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
u64 qsfp_mask, cce_int_mask;
|
|
const int qsfp1_int_smask = QSFP1_INT % 64;
|
|
const int qsfp2_int_smask = QSFP2_INT % 64;
|
|
|
|
/*
|
|
* disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
|
|
* Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
|
|
* therefore just one of QSFP1_INT/QSFP2_INT can be used to find
|
|
* the index of the appropriate CSR in the CCEIntMask CSR array
|
|
*/
|
|
cce_int_mask = read_csr(dd, CCE_INT_MASK +
|
|
(8 * (QSFP1_INT / 64)));
|
|
if (dd->hfi1_id) {
|
|
cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
|
|
write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
|
|
cce_int_mask);
|
|
} else {
|
|
cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
|
|
write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
|
|
cce_int_mask);
|
|
}
|
|
|
|
qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
|
|
/* Clear current status to avoid spurious interrupts */
|
|
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
|
|
qsfp_mask);
|
|
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
|
|
qsfp_mask);
|
|
|
|
set_qsfp_int_n(ppd, 0);
|
|
|
|
/* Handle active low nature of INT_N and MODPRST_N pins */
|
|
if (qsfp_mod_present(ppd))
|
|
qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
|
|
write_csr(dd,
|
|
dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
|
|
qsfp_mask);
|
|
}
|
|
|
|
/*
|
|
* Do a one-time initialize of the LCB block.
|
|
*/
|
|
static void init_lcb(struct hfi1_devdata *dd)
|
|
{
|
|
/* simulator does not correctly handle LCB cclk loopback, skip */
|
|
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
|
|
return;
|
|
|
|
/* the DC has been reset earlier in the driver load */
|
|
|
|
/* set LCB for cclk loopback on the port */
|
|
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
|
|
write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
|
|
write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
|
|
write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
|
|
write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
|
|
write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
|
|
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
|
|
}
|
|
|
|
int bringup_serdes(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 guid;
|
|
int ret;
|
|
|
|
if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
|
|
add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
|
|
|
|
guid = ppd->guid;
|
|
if (!guid) {
|
|
if (dd->base_guid)
|
|
guid = dd->base_guid + ppd->port - 1;
|
|
ppd->guid = guid;
|
|
}
|
|
|
|
/* Set linkinit_reason on power up per OPA spec */
|
|
ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
|
|
|
|
/* one-time init of the LCB */
|
|
init_lcb(dd);
|
|
|
|
if (loopback) {
|
|
ret = init_loopback(dd);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
get_port_type(ppd);
|
|
if (ppd->port_type == PORT_TYPE_QSFP) {
|
|
set_qsfp_int_n(ppd, 0);
|
|
wait_for_qsfp_init(ppd);
|
|
set_qsfp_int_n(ppd, 1);
|
|
}
|
|
|
|
/*
|
|
* Tune the SerDes to a ballpark setting for
|
|
* optimal signal and bit error rate
|
|
* Needs to be done before starting the link
|
|
*/
|
|
tune_serdes(ppd);
|
|
|
|
return start_link(ppd);
|
|
}
|
|
|
|
void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
|
|
/*
|
|
* Shut down the link and keep it down. First turn off that the
|
|
* driver wants to allow the link to be up (driver_link_ready).
|
|
* Then make sure the link is not automatically restarted
|
|
* (link_enabled). Cancel any pending restart. And finally
|
|
* go offline.
|
|
*/
|
|
ppd->driver_link_ready = 0;
|
|
ppd->link_enabled = 0;
|
|
|
|
ppd->offline_disabled_reason =
|
|
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
|
|
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
|
|
OPA_LINKDOWN_REASON_SMA_DISABLED);
|
|
set_link_state(ppd, HLS_DN_OFFLINE);
|
|
|
|
/* disable the port */
|
|
clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
|
|
}
|
|
|
|
static inline int init_cpu_counters(struct hfi1_devdata *dd)
|
|
{
|
|
struct hfi1_pportdata *ppd;
|
|
int i;
|
|
|
|
ppd = (struct hfi1_pportdata *)(dd + 1);
|
|
for (i = 0; i < dd->num_pports; i++, ppd++) {
|
|
ppd->ibport_data.rvp.rc_acks = NULL;
|
|
ppd->ibport_data.rvp.rc_qacks = NULL;
|
|
ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
|
|
ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
|
|
ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
|
|
if (!ppd->ibport_data.rvp.rc_acks ||
|
|
!ppd->ibport_data.rvp.rc_delayed_comp ||
|
|
!ppd->ibport_data.rvp.rc_qacks)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const char * const pt_names[] = {
|
|
"expected",
|
|
"eager",
|
|
"invalid"
|
|
};
|
|
|
|
static const char *pt_name(u32 type)
|
|
{
|
|
return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
|
|
}
|
|
|
|
/*
|
|
* index is the index into the receive array
|
|
*/
|
|
void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
|
|
u32 type, unsigned long pa, u16 order)
|
|
{
|
|
u64 reg;
|
|
void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
|
|
(dd->kregbase + RCV_ARRAY));
|
|
|
|
if (!(dd->flags & HFI1_PRESENT))
|
|
goto done;
|
|
|
|
if (type == PT_INVALID) {
|
|
pa = 0;
|
|
} else if (type > PT_INVALID) {
|
|
dd_dev_err(dd,
|
|
"unexpected receive array type %u for index %u, not handled\n",
|
|
type, index);
|
|
goto done;
|
|
}
|
|
|
|
hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
|
|
pt_name(type), index, pa, (unsigned long)order);
|
|
|
|
#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
|
|
reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
|
|
| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
|
|
| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
|
|
<< RCV_ARRAY_RT_ADDR_SHIFT;
|
|
writeq(reg, base + (index * 8));
|
|
|
|
if (type == PT_EAGER)
|
|
/*
|
|
* Eager entries are written one-by-one so we have to push them
|
|
* after we write the entry.
|
|
*/
|
|
flush_wc();
|
|
done:
|
|
return;
|
|
}
|
|
|
|
void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
|
|
{
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
u32 i;
|
|
|
|
/* this could be optimized */
|
|
for (i = rcd->eager_base; i < rcd->eager_base +
|
|
rcd->egrbufs.alloced; i++)
|
|
hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
|
|
|
|
for (i = rcd->expected_base;
|
|
i < rcd->expected_base + rcd->expected_count; i++)
|
|
hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
|
|
}
|
|
|
|
int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
|
|
struct hfi1_ctxt_info *kinfo)
|
|
{
|
|
kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
|
|
HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
|
|
return 0;
|
|
}
|
|
|
|
struct hfi1_message_header *hfi1_get_msgheader(
|
|
struct hfi1_devdata *dd, __le32 *rhf_addr)
|
|
{
|
|
u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
|
|
|
|
return (struct hfi1_message_header *)
|
|
(rhf_addr - dd->rhf_offset + offset);
|
|
}
|
|
|
|
static const char * const ib_cfg_name_strings[] = {
|
|
"HFI1_IB_CFG_LIDLMC",
|
|
"HFI1_IB_CFG_LWID_DG_ENB",
|
|
"HFI1_IB_CFG_LWID_ENB",
|
|
"HFI1_IB_CFG_LWID",
|
|
"HFI1_IB_CFG_SPD_ENB",
|
|
"HFI1_IB_CFG_SPD",
|
|
"HFI1_IB_CFG_RXPOL_ENB",
|
|
"HFI1_IB_CFG_LREV_ENB",
|
|
"HFI1_IB_CFG_LINKLATENCY",
|
|
"HFI1_IB_CFG_HRTBT",
|
|
"HFI1_IB_CFG_OP_VLS",
|
|
"HFI1_IB_CFG_VL_HIGH_CAP",
|
|
"HFI1_IB_CFG_VL_LOW_CAP",
|
|
"HFI1_IB_CFG_OVERRUN_THRESH",
|
|
"HFI1_IB_CFG_PHYERR_THRESH",
|
|
"HFI1_IB_CFG_LINKDEFAULT",
|
|
"HFI1_IB_CFG_PKEYS",
|
|
"HFI1_IB_CFG_MTU",
|
|
"HFI1_IB_CFG_LSTATE",
|
|
"HFI1_IB_CFG_VL_HIGH_LIMIT",
|
|
"HFI1_IB_CFG_PMA_TICKS",
|
|
"HFI1_IB_CFG_PORT"
|
|
};
|
|
|
|
static const char *ib_cfg_name(int which)
|
|
{
|
|
if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
|
|
return "invalid";
|
|
return ib_cfg_name_strings[which];
|
|
}
|
|
|
|
int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
int val = 0;
|
|
|
|
switch (which) {
|
|
case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
|
|
val = ppd->link_width_enabled;
|
|
break;
|
|
case HFI1_IB_CFG_LWID: /* currently active Link-width */
|
|
val = ppd->link_width_active;
|
|
break;
|
|
case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
|
|
val = ppd->link_speed_enabled;
|
|
break;
|
|
case HFI1_IB_CFG_SPD: /* current Link speed */
|
|
val = ppd->link_speed_active;
|
|
break;
|
|
|
|
case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
|
|
case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
|
|
case HFI1_IB_CFG_LINKLATENCY:
|
|
goto unimplemented;
|
|
|
|
case HFI1_IB_CFG_OP_VLS:
|
|
val = ppd->vls_operational;
|
|
break;
|
|
case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
|
|
val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
|
|
break;
|
|
case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
|
|
val = VL_ARB_LOW_PRIO_TABLE_SIZE;
|
|
break;
|
|
case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
|
|
val = ppd->overrun_threshold;
|
|
break;
|
|
case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
|
|
val = ppd->phy_error_threshold;
|
|
break;
|
|
case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
|
|
val = dd->link_default;
|
|
break;
|
|
|
|
case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
|
|
case HFI1_IB_CFG_PMA_TICKS:
|
|
default:
|
|
unimplemented:
|
|
if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
|
|
dd_dev_info(
|
|
dd,
|
|
"%s: which %s: not implemented\n",
|
|
__func__,
|
|
ib_cfg_name(which));
|
|
break;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* The largest MAD packet size.
|
|
*/
|
|
#define MAX_MAD_PACKET 2048
|
|
|
|
/*
|
|
* Return the maximum header bytes that can go on the _wire_
|
|
* for this device. This count includes the ICRC which is
|
|
* not part of the packet held in memory but it is appended
|
|
* by the HW.
|
|
* This is dependent on the device's receive header entry size.
|
|
* HFI allows this to be set per-receive context, but the
|
|
* driver presently enforces a global value.
|
|
*/
|
|
u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
|
|
{
|
|
/*
|
|
* The maximum non-payload (MTU) bytes in LRH.PktLen are
|
|
* the Receive Header Entry Size minus the PBC (or RHF) size
|
|
* plus one DW for the ICRC appended by HW.
|
|
*
|
|
* dd->rcd[0].rcvhdrqentsize is in DW.
|
|
* We use rcd[0] as all context will have the same value. Also,
|
|
* the first kernel context would have been allocated by now so
|
|
* we are guaranteed a valid value.
|
|
*/
|
|
return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
|
|
}
|
|
|
|
/*
|
|
* Set Send Length
|
|
* @ppd - per port data
|
|
*
|
|
* Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
|
|
* registers compare against LRH.PktLen, so use the max bytes included
|
|
* in the LRH.
|
|
*
|
|
* This routine changes all VL values except VL15, which it maintains at
|
|
* the same value.
|
|
*/
|
|
static void set_send_length(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
|
|
u32 maxvlmtu = dd->vld[15].mtu;
|
|
u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
|
|
& SEND_LEN_CHECK1_LEN_VL15_MASK) <<
|
|
SEND_LEN_CHECK1_LEN_VL15_SHIFT;
|
|
int i;
|
|
u32 thres;
|
|
|
|
for (i = 0; i < ppd->vls_supported; i++) {
|
|
if (dd->vld[i].mtu > maxvlmtu)
|
|
maxvlmtu = dd->vld[i].mtu;
|
|
if (i <= 3)
|
|
len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
|
|
& SEND_LEN_CHECK0_LEN_VL0_MASK) <<
|
|
((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
|
|
else
|
|
len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
|
|
& SEND_LEN_CHECK1_LEN_VL4_MASK) <<
|
|
((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
|
|
}
|
|
write_csr(dd, SEND_LEN_CHECK0, len1);
|
|
write_csr(dd, SEND_LEN_CHECK1, len2);
|
|
/* adjust kernel credit return thresholds based on new MTUs */
|
|
/* all kernel receive contexts have the same hdrqentsize */
|
|
for (i = 0; i < ppd->vls_supported; i++) {
|
|
thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
|
|
sc_mtu_to_threshold(dd->vld[i].sc,
|
|
dd->vld[i].mtu,
|
|
dd->rcd[0]->rcvhdrqentsize));
|
|
sc_set_cr_threshold(dd->vld[i].sc, thres);
|
|
}
|
|
thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
|
|
sc_mtu_to_threshold(dd->vld[15].sc,
|
|
dd->vld[15].mtu,
|
|
dd->rcd[0]->rcvhdrqentsize));
|
|
sc_set_cr_threshold(dd->vld[15].sc, thres);
|
|
|
|
/* Adjust maximum MTU for the port in DC */
|
|
dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
|
|
(ilog2(maxvlmtu >> 8) + 1);
|
|
len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
|
|
len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
|
|
len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
|
|
DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
|
|
write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
|
|
}
|
|
|
|
static void set_lidlmc(struct hfi1_pportdata *ppd)
|
|
{
|
|
int i;
|
|
u64 sreg = 0;
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u32 mask = ~((1U << ppd->lmc) - 1);
|
|
u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
|
|
|
|
if (dd->hfi1_snoop.mode_flag)
|
|
dd_dev_info(dd, "Set lid/lmc while snooping");
|
|
|
|
c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
|
|
| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
|
|
c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
|
|
<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
|
|
((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
|
|
<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
|
|
write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
|
|
|
|
/*
|
|
* Iterate over all the send contexts and set their SLID check
|
|
*/
|
|
sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
|
|
SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
|
|
(((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
|
|
SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
|
|
|
|
for (i = 0; i < dd->chip_send_contexts; i++) {
|
|
hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
|
|
i, (u32)sreg);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
|
|
}
|
|
|
|
/* Now we have to do the same thing for the sdma engines */
|
|
sdma_update_lmc(dd, mask, ppd->lid);
|
|
}
|
|
|
|
static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
|
|
{
|
|
unsigned long timeout;
|
|
u32 curr_state;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(msecs);
|
|
while (1) {
|
|
curr_state = read_physical_state(dd);
|
|
if (curr_state == state)
|
|
break;
|
|
if (time_after(jiffies, timeout)) {
|
|
dd_dev_err(dd,
|
|
"timeout waiting for phy link state 0x%x, current state is 0x%x\n",
|
|
state, curr_state);
|
|
return -ETIMEDOUT;
|
|
}
|
|
usleep_range(1950, 2050); /* sleep 2ms-ish */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper for set_link_state(). Do not call except from that routine.
|
|
* Expects ppd->hls_mutex to be held.
|
|
*
|
|
* @rem_reason value to be sent to the neighbor
|
|
*
|
|
* LinkDownReasons only set if transition succeeds.
|
|
*/
|
|
static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u32 pstate, previous_state;
|
|
u32 last_local_state;
|
|
u32 last_remote_state;
|
|
int ret;
|
|
int do_transition;
|
|
int do_wait;
|
|
|
|
previous_state = ppd->host_link_state;
|
|
ppd->host_link_state = HLS_GOING_OFFLINE;
|
|
pstate = read_physical_state(dd);
|
|
if (pstate == PLS_OFFLINE) {
|
|
do_transition = 0; /* in right state */
|
|
do_wait = 0; /* ...no need to wait */
|
|
} else if ((pstate & 0xff) == PLS_OFFLINE) {
|
|
do_transition = 0; /* in an offline transient state */
|
|
do_wait = 1; /* ...wait for it to settle */
|
|
} else {
|
|
do_transition = 1; /* need to move to offline */
|
|
do_wait = 1; /* ...will need to wait */
|
|
}
|
|
|
|
if (do_transition) {
|
|
ret = set_physical_link_state(dd,
|
|
(rem_reason << 8) | PLS_OFFLINE);
|
|
|
|
if (ret != HCMD_SUCCESS) {
|
|
dd_dev_err(dd,
|
|
"Failed to transition to Offline link state, return %d\n",
|
|
ret);
|
|
return -EINVAL;
|
|
}
|
|
if (ppd->offline_disabled_reason ==
|
|
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
|
|
ppd->offline_disabled_reason =
|
|
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
|
|
}
|
|
|
|
if (do_wait) {
|
|
/* it can take a while for the link to go down */
|
|
ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* make sure the logical state is also down */
|
|
wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
|
|
|
|
/*
|
|
* Now in charge of LCB - must be after the physical state is
|
|
* offline.quiet and before host_link_state is changed.
|
|
*/
|
|
set_host_lcb_access(dd);
|
|
write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
|
|
ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
|
|
|
|
if (ppd->port_type == PORT_TYPE_QSFP &&
|
|
ppd->qsfp_info.limiting_active &&
|
|
qsfp_mod_present(ppd)) {
|
|
int ret;
|
|
|
|
ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
|
|
if (ret == 0) {
|
|
set_qsfp_tx(ppd, 0);
|
|
release_chip_resource(dd, qsfp_resource(dd));
|
|
} else {
|
|
/* not fatal, but should warn */
|
|
dd_dev_err(dd,
|
|
"Unable to acquire lock to turn off QSFP TX\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The LNI has a mandatory wait time after the physical state
|
|
* moves to Offline.Quiet. The wait time may be different
|
|
* depending on how the link went down. The 8051 firmware
|
|
* will observe the needed wait time and only move to ready
|
|
* when that is completed. The largest of the quiet timeouts
|
|
* is 6s, so wait that long and then at least 0.5s more for
|
|
* other transitions, and another 0.5s for a buffer.
|
|
*/
|
|
ret = wait_fm_ready(dd, 7000);
|
|
if (ret) {
|
|
dd_dev_err(dd,
|
|
"After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
|
|
/* state is really offline, so make it so */
|
|
ppd->host_link_state = HLS_DN_OFFLINE;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The state is now offline and the 8051 is ready to accept host
|
|
* requests.
|
|
* - change our state
|
|
* - notify others if we were previously in a linkup state
|
|
*/
|
|
ppd->host_link_state = HLS_DN_OFFLINE;
|
|
if (previous_state & HLS_UP) {
|
|
/* went down while link was up */
|
|
handle_linkup_change(dd, 0);
|
|
} else if (previous_state
|
|
& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
|
|
/* went down while attempting link up */
|
|
/* byte 1 of last_*_state is the failure reason */
|
|
read_last_local_state(dd, &last_local_state);
|
|
read_last_remote_state(dd, &last_remote_state);
|
|
dd_dev_err(dd,
|
|
"LNI failure last states: local 0x%08x, remote 0x%08x\n",
|
|
last_local_state, last_remote_state);
|
|
}
|
|
|
|
/* the active link width (downgrade) is 0 on link down */
|
|
ppd->link_width_active = 0;
|
|
ppd->link_width_downgrade_tx_active = 0;
|
|
ppd->link_width_downgrade_rx_active = 0;
|
|
ppd->current_egress_rate = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* return the link state name */
|
|
static const char *link_state_name(u32 state)
|
|
{
|
|
const char *name;
|
|
int n = ilog2(state);
|
|
static const char * const names[] = {
|
|
[__HLS_UP_INIT_BP] = "INIT",
|
|
[__HLS_UP_ARMED_BP] = "ARMED",
|
|
[__HLS_UP_ACTIVE_BP] = "ACTIVE",
|
|
[__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
|
|
[__HLS_DN_POLL_BP] = "POLL",
|
|
[__HLS_DN_DISABLE_BP] = "DISABLE",
|
|
[__HLS_DN_OFFLINE_BP] = "OFFLINE",
|
|
[__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
|
|
[__HLS_GOING_UP_BP] = "GOING_UP",
|
|
[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
|
|
[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
|
|
};
|
|
|
|
name = n < ARRAY_SIZE(names) ? names[n] : NULL;
|
|
return name ? name : "unknown";
|
|
}
|
|
|
|
/* return the link state reason name */
|
|
static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
|
|
{
|
|
if (state == HLS_UP_INIT) {
|
|
switch (ppd->linkinit_reason) {
|
|
case OPA_LINKINIT_REASON_LINKUP:
|
|
return "(LINKUP)";
|
|
case OPA_LINKINIT_REASON_FLAPPING:
|
|
return "(FLAPPING)";
|
|
case OPA_LINKINIT_OUTSIDE_POLICY:
|
|
return "(OUTSIDE_POLICY)";
|
|
case OPA_LINKINIT_QUARANTINED:
|
|
return "(QUARANTINED)";
|
|
case OPA_LINKINIT_INSUFIC_CAPABILITY:
|
|
return "(INSUFIC_CAPABILITY)";
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return "";
|
|
}
|
|
|
|
/*
|
|
* driver_physical_state - convert the driver's notion of a port's
|
|
* state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
|
|
* Return -1 (converted to a u32) to indicate error.
|
|
*/
|
|
u32 driver_physical_state(struct hfi1_pportdata *ppd)
|
|
{
|
|
switch (ppd->host_link_state) {
|
|
case HLS_UP_INIT:
|
|
case HLS_UP_ARMED:
|
|
case HLS_UP_ACTIVE:
|
|
return IB_PORTPHYSSTATE_LINKUP;
|
|
case HLS_DN_POLL:
|
|
return IB_PORTPHYSSTATE_POLLING;
|
|
case HLS_DN_DISABLE:
|
|
return IB_PORTPHYSSTATE_DISABLED;
|
|
case HLS_DN_OFFLINE:
|
|
return OPA_PORTPHYSSTATE_OFFLINE;
|
|
case HLS_VERIFY_CAP:
|
|
return IB_PORTPHYSSTATE_POLLING;
|
|
case HLS_GOING_UP:
|
|
return IB_PORTPHYSSTATE_POLLING;
|
|
case HLS_GOING_OFFLINE:
|
|
return OPA_PORTPHYSSTATE_OFFLINE;
|
|
case HLS_LINK_COOLDOWN:
|
|
return OPA_PORTPHYSSTATE_OFFLINE;
|
|
case HLS_DN_DOWNDEF:
|
|
default:
|
|
dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
|
|
ppd->host_link_state);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* driver_logical_state - convert the driver's notion of a port's
|
|
* state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
|
|
* (converted to a u32) to indicate error.
|
|
*/
|
|
u32 driver_logical_state(struct hfi1_pportdata *ppd)
|
|
{
|
|
if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
|
|
return IB_PORT_DOWN;
|
|
|
|
switch (ppd->host_link_state & HLS_UP) {
|
|
case HLS_UP_INIT:
|
|
return IB_PORT_INIT;
|
|
case HLS_UP_ARMED:
|
|
return IB_PORT_ARMED;
|
|
case HLS_UP_ACTIVE:
|
|
return IB_PORT_ACTIVE;
|
|
default:
|
|
dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
|
|
ppd->host_link_state);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
|
|
u8 neigh_reason, u8 rem_reason)
|
|
{
|
|
if (ppd->local_link_down_reason.latest == 0 &&
|
|
ppd->neigh_link_down_reason.latest == 0) {
|
|
ppd->local_link_down_reason.latest = lcl_reason;
|
|
ppd->neigh_link_down_reason.latest = neigh_reason;
|
|
ppd->remote_link_down_reason = rem_reason;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Change the physical and/or logical link state.
|
|
*
|
|
* Do not call this routine while inside an interrupt. It contains
|
|
* calls to routines that can take multiple seconds to finish.
|
|
*
|
|
* Returns 0 on success, -errno on failure.
|
|
*/
|
|
int set_link_state(struct hfi1_pportdata *ppd, u32 state)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
struct ib_event event = {.device = NULL};
|
|
int ret1, ret = 0;
|
|
int orig_new_state, poll_bounce;
|
|
|
|
mutex_lock(&ppd->hls_lock);
|
|
|
|
orig_new_state = state;
|
|
if (state == HLS_DN_DOWNDEF)
|
|
state = dd->link_default;
|
|
|
|
/* interpret poll -> poll as a link bounce */
|
|
poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
|
|
state == HLS_DN_POLL;
|
|
|
|
dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
|
|
link_state_name(ppd->host_link_state),
|
|
link_state_name(orig_new_state),
|
|
poll_bounce ? "(bounce) " : "",
|
|
link_state_reason_name(ppd, state));
|
|
|
|
/*
|
|
* If we're going to a (HLS_*) link state that implies the logical
|
|
* link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
|
|
* reset is_sm_config_started to 0.
|
|
*/
|
|
if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
|
|
ppd->is_sm_config_started = 0;
|
|
|
|
/*
|
|
* Do nothing if the states match. Let a poll to poll link bounce
|
|
* go through.
|
|
*/
|
|
if (ppd->host_link_state == state && !poll_bounce)
|
|
goto done;
|
|
|
|
switch (state) {
|
|
case HLS_UP_INIT:
|
|
if (ppd->host_link_state == HLS_DN_POLL &&
|
|
(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
|
|
/*
|
|
* Quick link up jumps from polling to here.
|
|
*
|
|
* Whether in normal or loopback mode, the
|
|
* simulator jumps from polling to link up.
|
|
* Accept that here.
|
|
*/
|
|
/* OK */
|
|
} else if (ppd->host_link_state != HLS_GOING_UP) {
|
|
goto unexpected;
|
|
}
|
|
|
|
ppd->host_link_state = HLS_UP_INIT;
|
|
ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
|
|
if (ret) {
|
|
/* logical state didn't change, stay at going_up */
|
|
ppd->host_link_state = HLS_GOING_UP;
|
|
dd_dev_err(dd,
|
|
"%s: logical state did not change to INIT\n",
|
|
__func__);
|
|
} else {
|
|
/* clear old transient LINKINIT_REASON code */
|
|
if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
|
|
ppd->linkinit_reason =
|
|
OPA_LINKINIT_REASON_LINKUP;
|
|
|
|
/* enable the port */
|
|
add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
|
|
|
|
handle_linkup_change(dd, 1);
|
|
}
|
|
break;
|
|
case HLS_UP_ARMED:
|
|
if (ppd->host_link_state != HLS_UP_INIT)
|
|
goto unexpected;
|
|
|
|
ppd->host_link_state = HLS_UP_ARMED;
|
|
set_logical_state(dd, LSTATE_ARMED);
|
|
ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
|
|
if (ret) {
|
|
/* logical state didn't change, stay at init */
|
|
ppd->host_link_state = HLS_UP_INIT;
|
|
dd_dev_err(dd,
|
|
"%s: logical state did not change to ARMED\n",
|
|
__func__);
|
|
}
|
|
/*
|
|
* The simulator does not currently implement SMA messages,
|
|
* so neighbor_normal is not set. Set it here when we first
|
|
* move to Armed.
|
|
*/
|
|
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
|
|
ppd->neighbor_normal = 1;
|
|
break;
|
|
case HLS_UP_ACTIVE:
|
|
if (ppd->host_link_state != HLS_UP_ARMED)
|
|
goto unexpected;
|
|
|
|
ppd->host_link_state = HLS_UP_ACTIVE;
|
|
set_logical_state(dd, LSTATE_ACTIVE);
|
|
ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
|
|
if (ret) {
|
|
/* logical state didn't change, stay at armed */
|
|
ppd->host_link_state = HLS_UP_ARMED;
|
|
dd_dev_err(dd,
|
|
"%s: logical state did not change to ACTIVE\n",
|
|
__func__);
|
|
} else {
|
|
/* tell all engines to go running */
|
|
sdma_all_running(dd);
|
|
|
|
/* Signal the IB layer that the port has went active */
|
|
event.device = &dd->verbs_dev.rdi.ibdev;
|
|
event.element.port_num = ppd->port;
|
|
event.event = IB_EVENT_PORT_ACTIVE;
|
|
}
|
|
break;
|
|
case HLS_DN_POLL:
|
|
if ((ppd->host_link_state == HLS_DN_DISABLE ||
|
|
ppd->host_link_state == HLS_DN_OFFLINE) &&
|
|
dd->dc_shutdown)
|
|
dc_start(dd);
|
|
/* Hand LED control to the DC */
|
|
write_csr(dd, DCC_CFG_LED_CNTRL, 0);
|
|
|
|
if (ppd->host_link_state != HLS_DN_OFFLINE) {
|
|
u8 tmp = ppd->link_enabled;
|
|
|
|
ret = goto_offline(ppd, ppd->remote_link_down_reason);
|
|
if (ret) {
|
|
ppd->link_enabled = tmp;
|
|
break;
|
|
}
|
|
ppd->remote_link_down_reason = 0;
|
|
|
|
if (ppd->driver_link_ready)
|
|
ppd->link_enabled = 1;
|
|
}
|
|
|
|
set_all_slowpath(ppd->dd);
|
|
ret = set_local_link_attributes(ppd);
|
|
if (ret)
|
|
break;
|
|
|
|
ppd->port_error_action = 0;
|
|
ppd->host_link_state = HLS_DN_POLL;
|
|
|
|
if (quick_linkup) {
|
|
/* quick linkup does not go into polling */
|
|
ret = do_quick_linkup(dd);
|
|
} else {
|
|
ret1 = set_physical_link_state(dd, PLS_POLLING);
|
|
if (ret1 != HCMD_SUCCESS) {
|
|
dd_dev_err(dd,
|
|
"Failed to transition to Polling link state, return 0x%x\n",
|
|
ret1);
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
ppd->offline_disabled_reason =
|
|
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
|
|
/*
|
|
* If an error occurred above, go back to offline. The
|
|
* caller may reschedule another attempt.
|
|
*/
|
|
if (ret)
|
|
goto_offline(ppd, 0);
|
|
break;
|
|
case HLS_DN_DISABLE:
|
|
/* link is disabled */
|
|
ppd->link_enabled = 0;
|
|
|
|
/* allow any state to transition to disabled */
|
|
|
|
/* must transition to offline first */
|
|
if (ppd->host_link_state != HLS_DN_OFFLINE) {
|
|
ret = goto_offline(ppd, ppd->remote_link_down_reason);
|
|
if (ret)
|
|
break;
|
|
ppd->remote_link_down_reason = 0;
|
|
}
|
|
|
|
ret1 = set_physical_link_state(dd, PLS_DISABLED);
|
|
if (ret1 != HCMD_SUCCESS) {
|
|
dd_dev_err(dd,
|
|
"Failed to transition to Disabled link state, return 0x%x\n",
|
|
ret1);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
ppd->host_link_state = HLS_DN_DISABLE;
|
|
dc_shutdown(dd);
|
|
break;
|
|
case HLS_DN_OFFLINE:
|
|
if (ppd->host_link_state == HLS_DN_DISABLE)
|
|
dc_start(dd);
|
|
|
|
/* allow any state to transition to offline */
|
|
ret = goto_offline(ppd, ppd->remote_link_down_reason);
|
|
if (!ret)
|
|
ppd->remote_link_down_reason = 0;
|
|
break;
|
|
case HLS_VERIFY_CAP:
|
|
if (ppd->host_link_state != HLS_DN_POLL)
|
|
goto unexpected;
|
|
ppd->host_link_state = HLS_VERIFY_CAP;
|
|
break;
|
|
case HLS_GOING_UP:
|
|
if (ppd->host_link_state != HLS_VERIFY_CAP)
|
|
goto unexpected;
|
|
|
|
ret1 = set_physical_link_state(dd, PLS_LINKUP);
|
|
if (ret1 != HCMD_SUCCESS) {
|
|
dd_dev_err(dd,
|
|
"Failed to transition to link up state, return 0x%x\n",
|
|
ret1);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
ppd->host_link_state = HLS_GOING_UP;
|
|
break;
|
|
|
|
case HLS_GOING_OFFLINE: /* transient within goto_offline() */
|
|
case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
|
|
default:
|
|
dd_dev_info(dd, "%s: state 0x%x: not supported\n",
|
|
__func__, state);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
goto done;
|
|
|
|
unexpected:
|
|
dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
|
|
__func__, link_state_name(ppd->host_link_state),
|
|
link_state_name(state));
|
|
ret = -EINVAL;
|
|
|
|
done:
|
|
mutex_unlock(&ppd->hls_lock);
|
|
|
|
if (event.device)
|
|
ib_dispatch_event(&event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
|
|
{
|
|
u64 reg;
|
|
int ret = 0;
|
|
|
|
switch (which) {
|
|
case HFI1_IB_CFG_LIDLMC:
|
|
set_lidlmc(ppd);
|
|
break;
|
|
case HFI1_IB_CFG_VL_HIGH_LIMIT:
|
|
/*
|
|
* The VL Arbitrator high limit is sent in units of 4k
|
|
* bytes, while HFI stores it in units of 64 bytes.
|
|
*/
|
|
val *= 4096 / 64;
|
|
reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
|
|
<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
|
|
write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
|
|
break;
|
|
case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
|
|
/* HFI only supports POLL as the default link down state */
|
|
if (val != HLS_DN_POLL)
|
|
ret = -EINVAL;
|
|
break;
|
|
case HFI1_IB_CFG_OP_VLS:
|
|
if (ppd->vls_operational != val) {
|
|
ppd->vls_operational = val;
|
|
if (!ppd->port)
|
|
ret = -EINVAL;
|
|
}
|
|
break;
|
|
/*
|
|
* For link width, link width downgrade, and speed enable, always AND
|
|
* the setting with what is actually supported. This has two benefits.
|
|
* First, enabled can't have unsupported values, no matter what the
|
|
* SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
|
|
* "fill in with your supported value" have all the bits in the
|
|
* field set, so simply ANDing with supported has the desired result.
|
|
*/
|
|
case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
|
|
ppd->link_width_enabled = val & ppd->link_width_supported;
|
|
break;
|
|
case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
|
|
ppd->link_width_downgrade_enabled =
|
|
val & ppd->link_width_downgrade_supported;
|
|
break;
|
|
case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
|
|
ppd->link_speed_enabled = val & ppd->link_speed_supported;
|
|
break;
|
|
case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
|
|
/*
|
|
* HFI does not follow IB specs, save this value
|
|
* so we can report it, if asked.
|
|
*/
|
|
ppd->overrun_threshold = val;
|
|
break;
|
|
case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
|
|
/*
|
|
* HFI does not follow IB specs, save this value
|
|
* so we can report it, if asked.
|
|
*/
|
|
ppd->phy_error_threshold = val;
|
|
break;
|
|
|
|
case HFI1_IB_CFG_MTU:
|
|
set_send_length(ppd);
|
|
break;
|
|
|
|
case HFI1_IB_CFG_PKEYS:
|
|
if (HFI1_CAP_IS_KSET(PKEY_CHECK))
|
|
set_partition_keys(ppd);
|
|
break;
|
|
|
|
default:
|
|
if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
|
|
dd_dev_info(ppd->dd,
|
|
"%s: which %s, val 0x%x: not implemented\n",
|
|
__func__, ib_cfg_name(which), val);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* begin functions related to vl arbitration table caching */
|
|
static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
|
|
{
|
|
int i;
|
|
|
|
BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
|
|
VL_ARB_LOW_PRIO_TABLE_SIZE);
|
|
BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
|
|
VL_ARB_HIGH_PRIO_TABLE_SIZE);
|
|
|
|
/*
|
|
* Note that we always return values directly from the
|
|
* 'vl_arb_cache' (and do no CSR reads) in response to a
|
|
* 'Get(VLArbTable)'. This is obviously correct after a
|
|
* 'Set(VLArbTable)', since the cache will then be up to
|
|
* date. But it's also correct prior to any 'Set(VLArbTable)'
|
|
* since then both the cache, and the relevant h/w registers
|
|
* will be zeroed.
|
|
*/
|
|
|
|
for (i = 0; i < MAX_PRIO_TABLE; i++)
|
|
spin_lock_init(&ppd->vl_arb_cache[i].lock);
|
|
}
|
|
|
|
/*
|
|
* vl_arb_lock_cache
|
|
*
|
|
* All other vl_arb_* functions should be called only after locking
|
|
* the cache.
|
|
*/
|
|
static inline struct vl_arb_cache *
|
|
vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
|
|
{
|
|
if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
|
|
return NULL;
|
|
spin_lock(&ppd->vl_arb_cache[idx].lock);
|
|
return &ppd->vl_arb_cache[idx];
|
|
}
|
|
|
|
static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
|
|
{
|
|
spin_unlock(&ppd->vl_arb_cache[idx].lock);
|
|
}
|
|
|
|
static void vl_arb_get_cache(struct vl_arb_cache *cache,
|
|
struct ib_vl_weight_elem *vl)
|
|
{
|
|
memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
|
|
}
|
|
|
|
static void vl_arb_set_cache(struct vl_arb_cache *cache,
|
|
struct ib_vl_weight_elem *vl)
|
|
{
|
|
memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
|
|
}
|
|
|
|
static int vl_arb_match_cache(struct vl_arb_cache *cache,
|
|
struct ib_vl_weight_elem *vl)
|
|
{
|
|
return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
|
|
}
|
|
|
|
/* end functions related to vl arbitration table caching */
|
|
|
|
static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
|
|
u32 size, struct ib_vl_weight_elem *vl)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 reg;
|
|
unsigned int i, is_up = 0;
|
|
int drain, ret = 0;
|
|
|
|
mutex_lock(&ppd->hls_lock);
|
|
|
|
if (ppd->host_link_state & HLS_UP)
|
|
is_up = 1;
|
|
|
|
drain = !is_ax(dd) && is_up;
|
|
|
|
if (drain)
|
|
/*
|
|
* Before adjusting VL arbitration weights, empty per-VL
|
|
* FIFOs, otherwise a packet whose VL weight is being
|
|
* set to 0 could get stuck in a FIFO with no chance to
|
|
* egress.
|
|
*/
|
|
ret = stop_drain_data_vls(dd);
|
|
|
|
if (ret) {
|
|
dd_dev_err(
|
|
dd,
|
|
"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
|
|
__func__);
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < size; i++, vl++) {
|
|
/*
|
|
* NOTE: The low priority shift and mask are used here, but
|
|
* they are the same for both the low and high registers.
|
|
*/
|
|
reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
|
|
<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
|
|
| (((u64)vl->weight
|
|
& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
|
|
<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
|
|
write_csr(dd, target + (i * 8), reg);
|
|
}
|
|
pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
|
|
|
|
if (drain)
|
|
open_fill_data_vls(dd); /* reopen all VLs */
|
|
|
|
err:
|
|
mutex_unlock(&ppd->hls_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Read one credit merge VL register.
|
|
*/
|
|
static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
|
|
struct vl_limit *vll)
|
|
{
|
|
u64 reg = read_csr(dd, csr);
|
|
|
|
vll->dedicated = cpu_to_be16(
|
|
(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
|
|
& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
|
|
vll->shared = cpu_to_be16(
|
|
(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
|
|
& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
|
|
}
|
|
|
|
/*
|
|
* Read the current credit merge limits.
|
|
*/
|
|
static int get_buffer_control(struct hfi1_devdata *dd,
|
|
struct buffer_control *bc, u16 *overall_limit)
|
|
{
|
|
u64 reg;
|
|
int i;
|
|
|
|
/* not all entries are filled in */
|
|
memset(bc, 0, sizeof(*bc));
|
|
|
|
/* OPA and HFI have a 1-1 mapping */
|
|
for (i = 0; i < TXE_NUM_DATA_VL; i++)
|
|
read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
|
|
|
|
/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
|
|
read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
|
|
|
|
reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
|
|
bc->overall_shared_limit = cpu_to_be16(
|
|
(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
|
|
& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
|
|
if (overall_limit)
|
|
*overall_limit = (reg
|
|
>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
|
|
& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
|
|
return sizeof(struct buffer_control);
|
|
}
|
|
|
|
static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
|
|
{
|
|
u64 reg;
|
|
int i;
|
|
|
|
/* each register contains 16 SC->VLnt mappings, 4 bits each */
|
|
reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
|
|
for (i = 0; i < sizeof(u64); i++) {
|
|
u8 byte = *(((u8 *)®) + i);
|
|
|
|
dp->vlnt[2 * i] = byte & 0xf;
|
|
dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
|
|
}
|
|
|
|
reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
|
|
for (i = 0; i < sizeof(u64); i++) {
|
|
u8 byte = *(((u8 *)®) + i);
|
|
|
|
dp->vlnt[16 + (2 * i)] = byte & 0xf;
|
|
dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
|
|
}
|
|
return sizeof(struct sc2vlnt);
|
|
}
|
|
|
|
static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
|
|
struct ib_vl_weight_elem *vl)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < nelems; i++, vl++) {
|
|
vl->vl = 0xf;
|
|
vl->weight = 0;
|
|
}
|
|
}
|
|
|
|
static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
|
|
{
|
|
write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
|
|
DC_SC_VL_VAL(15_0,
|
|
0, dp->vlnt[0] & 0xf,
|
|
1, dp->vlnt[1] & 0xf,
|
|
2, dp->vlnt[2] & 0xf,
|
|
3, dp->vlnt[3] & 0xf,
|
|
4, dp->vlnt[4] & 0xf,
|
|
5, dp->vlnt[5] & 0xf,
|
|
6, dp->vlnt[6] & 0xf,
|
|
7, dp->vlnt[7] & 0xf,
|
|
8, dp->vlnt[8] & 0xf,
|
|
9, dp->vlnt[9] & 0xf,
|
|
10, dp->vlnt[10] & 0xf,
|
|
11, dp->vlnt[11] & 0xf,
|
|
12, dp->vlnt[12] & 0xf,
|
|
13, dp->vlnt[13] & 0xf,
|
|
14, dp->vlnt[14] & 0xf,
|
|
15, dp->vlnt[15] & 0xf));
|
|
write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
|
|
DC_SC_VL_VAL(31_16,
|
|
16, dp->vlnt[16] & 0xf,
|
|
17, dp->vlnt[17] & 0xf,
|
|
18, dp->vlnt[18] & 0xf,
|
|
19, dp->vlnt[19] & 0xf,
|
|
20, dp->vlnt[20] & 0xf,
|
|
21, dp->vlnt[21] & 0xf,
|
|
22, dp->vlnt[22] & 0xf,
|
|
23, dp->vlnt[23] & 0xf,
|
|
24, dp->vlnt[24] & 0xf,
|
|
25, dp->vlnt[25] & 0xf,
|
|
26, dp->vlnt[26] & 0xf,
|
|
27, dp->vlnt[27] & 0xf,
|
|
28, dp->vlnt[28] & 0xf,
|
|
29, dp->vlnt[29] & 0xf,
|
|
30, dp->vlnt[30] & 0xf,
|
|
31, dp->vlnt[31] & 0xf));
|
|
}
|
|
|
|
static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
|
|
u16 limit)
|
|
{
|
|
if (limit != 0)
|
|
dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
|
|
what, (int)limit, idx);
|
|
}
|
|
|
|
/* change only the shared limit portion of SendCmGLobalCredit */
|
|
static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
|
|
{
|
|
u64 reg;
|
|
|
|
reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
|
|
reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
|
|
reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
|
|
write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
|
|
}
|
|
|
|
/* change only the total credit limit portion of SendCmGLobalCredit */
|
|
static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
|
|
{
|
|
u64 reg;
|
|
|
|
reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
|
|
reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
|
|
reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
|
|
write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
|
|
}
|
|
|
|
/* set the given per-VL shared limit */
|
|
static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
|
|
{
|
|
u64 reg;
|
|
u32 addr;
|
|
|
|
if (vl < TXE_NUM_DATA_VL)
|
|
addr = SEND_CM_CREDIT_VL + (8 * vl);
|
|
else
|
|
addr = SEND_CM_CREDIT_VL15;
|
|
|
|
reg = read_csr(dd, addr);
|
|
reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
|
|
reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
|
|
write_csr(dd, addr, reg);
|
|
}
|
|
|
|
/* set the given per-VL dedicated limit */
|
|
static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
|
|
{
|
|
u64 reg;
|
|
u32 addr;
|
|
|
|
if (vl < TXE_NUM_DATA_VL)
|
|
addr = SEND_CM_CREDIT_VL + (8 * vl);
|
|
else
|
|
addr = SEND_CM_CREDIT_VL15;
|
|
|
|
reg = read_csr(dd, addr);
|
|
reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
|
|
reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
|
|
write_csr(dd, addr, reg);
|
|
}
|
|
|
|
/* spin until the given per-VL status mask bits clear */
|
|
static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
|
|
const char *which)
|
|
{
|
|
unsigned long timeout;
|
|
u64 reg;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
|
|
while (1) {
|
|
reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
|
|
|
|
if (reg == 0)
|
|
return; /* success */
|
|
if (time_after(jiffies, timeout))
|
|
break; /* timed out */
|
|
udelay(1);
|
|
}
|
|
|
|
dd_dev_err(dd,
|
|
"%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
|
|
which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
|
|
/*
|
|
* If this occurs, it is likely there was a credit loss on the link.
|
|
* The only recovery from that is a link bounce.
|
|
*/
|
|
dd_dev_err(dd,
|
|
"Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
|
|
}
|
|
|
|
/*
|
|
* The number of credits on the VLs may be changed while everything
|
|
* is "live", but the following algorithm must be followed due to
|
|
* how the hardware is actually implemented. In particular,
|
|
* Return_Credit_Status[] is the only correct status check.
|
|
*
|
|
* if (reducing Global_Shared_Credit_Limit or any shared limit changing)
|
|
* set Global_Shared_Credit_Limit = 0
|
|
* use_all_vl = 1
|
|
* mask0 = all VLs that are changing either dedicated or shared limits
|
|
* set Shared_Limit[mask0] = 0
|
|
* spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
|
|
* if (changing any dedicated limit)
|
|
* mask1 = all VLs that are lowering dedicated limits
|
|
* lower Dedicated_Limit[mask1]
|
|
* spin until Return_Credit_Status[mask1] == 0
|
|
* raise Dedicated_Limits
|
|
* raise Shared_Limits
|
|
* raise Global_Shared_Credit_Limit
|
|
*
|
|
* lower = if the new limit is lower, set the limit to the new value
|
|
* raise = if the new limit is higher than the current value (may be changed
|
|
* earlier in the algorithm), set the new limit to the new value
|
|
*/
|
|
int set_buffer_control(struct hfi1_pportdata *ppd,
|
|
struct buffer_control *new_bc)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 changing_mask, ld_mask, stat_mask;
|
|
int change_count;
|
|
int i, use_all_mask;
|
|
int this_shared_changing;
|
|
int vl_count = 0, ret;
|
|
/*
|
|
* A0: add the variable any_shared_limit_changing below and in the
|
|
* algorithm above. If removing A0 support, it can be removed.
|
|
*/
|
|
int any_shared_limit_changing;
|
|
struct buffer_control cur_bc;
|
|
u8 changing[OPA_MAX_VLS];
|
|
u8 lowering_dedicated[OPA_MAX_VLS];
|
|
u16 cur_total;
|
|
u32 new_total = 0;
|
|
const u64 all_mask =
|
|
SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
|
|
| SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
|
|
| SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
|
|
| SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
|
|
| SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
|
|
| SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
|
|
| SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
|
|
| SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
|
|
| SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
|
|
|
|
#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
|
|
#define NUM_USABLE_VLS 16 /* look at VL15 and less */
|
|
|
|
/* find the new total credits, do sanity check on unused VLs */
|
|
for (i = 0; i < OPA_MAX_VLS; i++) {
|
|
if (valid_vl(i)) {
|
|
new_total += be16_to_cpu(new_bc->vl[i].dedicated);
|
|
continue;
|
|
}
|
|
nonzero_msg(dd, i, "dedicated",
|
|
be16_to_cpu(new_bc->vl[i].dedicated));
|
|
nonzero_msg(dd, i, "shared",
|
|
be16_to_cpu(new_bc->vl[i].shared));
|
|
new_bc->vl[i].dedicated = 0;
|
|
new_bc->vl[i].shared = 0;
|
|
}
|
|
new_total += be16_to_cpu(new_bc->overall_shared_limit);
|
|
|
|
/* fetch the current values */
|
|
get_buffer_control(dd, &cur_bc, &cur_total);
|
|
|
|
/*
|
|
* Create the masks we will use.
|
|
*/
|
|
memset(changing, 0, sizeof(changing));
|
|
memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
|
|
/*
|
|
* NOTE: Assumes that the individual VL bits are adjacent and in
|
|
* increasing order
|
|
*/
|
|
stat_mask =
|
|
SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
|
|
changing_mask = 0;
|
|
ld_mask = 0;
|
|
change_count = 0;
|
|
any_shared_limit_changing = 0;
|
|
for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
|
|
if (!valid_vl(i))
|
|
continue;
|
|
this_shared_changing = new_bc->vl[i].shared
|
|
!= cur_bc.vl[i].shared;
|
|
if (this_shared_changing)
|
|
any_shared_limit_changing = 1;
|
|
if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
|
|
this_shared_changing) {
|
|
changing[i] = 1;
|
|
changing_mask |= stat_mask;
|
|
change_count++;
|
|
}
|
|
if (be16_to_cpu(new_bc->vl[i].dedicated) <
|
|
be16_to_cpu(cur_bc.vl[i].dedicated)) {
|
|
lowering_dedicated[i] = 1;
|
|
ld_mask |= stat_mask;
|
|
}
|
|
}
|
|
|
|
/* bracket the credit change with a total adjustment */
|
|
if (new_total > cur_total)
|
|
set_global_limit(dd, new_total);
|
|
|
|
/*
|
|
* Start the credit change algorithm.
|
|
*/
|
|
use_all_mask = 0;
|
|
if ((be16_to_cpu(new_bc->overall_shared_limit) <
|
|
be16_to_cpu(cur_bc.overall_shared_limit)) ||
|
|
(is_ax(dd) && any_shared_limit_changing)) {
|
|
set_global_shared(dd, 0);
|
|
cur_bc.overall_shared_limit = 0;
|
|
use_all_mask = 1;
|
|
}
|
|
|
|
for (i = 0; i < NUM_USABLE_VLS; i++) {
|
|
if (!valid_vl(i))
|
|
continue;
|
|
|
|
if (changing[i]) {
|
|
set_vl_shared(dd, i, 0);
|
|
cur_bc.vl[i].shared = 0;
|
|
}
|
|
}
|
|
|
|
wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
|
|
"shared");
|
|
|
|
if (change_count > 0) {
|
|
for (i = 0; i < NUM_USABLE_VLS; i++) {
|
|
if (!valid_vl(i))
|
|
continue;
|
|
|
|
if (lowering_dedicated[i]) {
|
|
set_vl_dedicated(dd, i,
|
|
be16_to_cpu(new_bc->
|
|
vl[i].dedicated));
|
|
cur_bc.vl[i].dedicated =
|
|
new_bc->vl[i].dedicated;
|
|
}
|
|
}
|
|
|
|
wait_for_vl_status_clear(dd, ld_mask, "dedicated");
|
|
|
|
/* now raise all dedicated that are going up */
|
|
for (i = 0; i < NUM_USABLE_VLS; i++) {
|
|
if (!valid_vl(i))
|
|
continue;
|
|
|
|
if (be16_to_cpu(new_bc->vl[i].dedicated) >
|
|
be16_to_cpu(cur_bc.vl[i].dedicated))
|
|
set_vl_dedicated(dd, i,
|
|
be16_to_cpu(new_bc->
|
|
vl[i].dedicated));
|
|
}
|
|
}
|
|
|
|
/* next raise all shared that are going up */
|
|
for (i = 0; i < NUM_USABLE_VLS; i++) {
|
|
if (!valid_vl(i))
|
|
continue;
|
|
|
|
if (be16_to_cpu(new_bc->vl[i].shared) >
|
|
be16_to_cpu(cur_bc.vl[i].shared))
|
|
set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
|
|
}
|
|
|
|
/* finally raise the global shared */
|
|
if (be16_to_cpu(new_bc->overall_shared_limit) >
|
|
be16_to_cpu(cur_bc.overall_shared_limit))
|
|
set_global_shared(dd,
|
|
be16_to_cpu(new_bc->overall_shared_limit));
|
|
|
|
/* bracket the credit change with a total adjustment */
|
|
if (new_total < cur_total)
|
|
set_global_limit(dd, new_total);
|
|
|
|
/*
|
|
* Determine the actual number of operational VLS using the number of
|
|
* dedicated and shared credits for each VL.
|
|
*/
|
|
if (change_count > 0) {
|
|
for (i = 0; i < TXE_NUM_DATA_VL; i++)
|
|
if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
|
|
be16_to_cpu(new_bc->vl[i].shared) > 0)
|
|
vl_count++;
|
|
ppd->actual_vls_operational = vl_count;
|
|
ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
|
|
ppd->actual_vls_operational :
|
|
ppd->vls_operational,
|
|
NULL);
|
|
if (ret == 0)
|
|
ret = pio_map_init(dd, ppd->port - 1, vl_count ?
|
|
ppd->actual_vls_operational :
|
|
ppd->vls_operational, NULL);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the given fabric manager table. Return the size of the
|
|
* table (in bytes) on success, and a negative error code on
|
|
* failure.
|
|
*/
|
|
int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
|
|
|
|
{
|
|
int size;
|
|
struct vl_arb_cache *vlc;
|
|
|
|
switch (which) {
|
|
case FM_TBL_VL_HIGH_ARB:
|
|
size = 256;
|
|
/*
|
|
* OPA specifies 128 elements (of 2 bytes each), though
|
|
* HFI supports only 16 elements in h/w.
|
|
*/
|
|
vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
|
|
vl_arb_get_cache(vlc, t);
|
|
vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
|
|
break;
|
|
case FM_TBL_VL_LOW_ARB:
|
|
size = 256;
|
|
/*
|
|
* OPA specifies 128 elements (of 2 bytes each), though
|
|
* HFI supports only 16 elements in h/w.
|
|
*/
|
|
vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
|
|
vl_arb_get_cache(vlc, t);
|
|
vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
|
|
break;
|
|
case FM_TBL_BUFFER_CONTROL:
|
|
size = get_buffer_control(ppd->dd, t, NULL);
|
|
break;
|
|
case FM_TBL_SC2VLNT:
|
|
size = get_sc2vlnt(ppd->dd, t);
|
|
break;
|
|
case FM_TBL_VL_PREEMPT_ELEMS:
|
|
size = 256;
|
|
/* OPA specifies 128 elements, of 2 bytes each */
|
|
get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
|
|
break;
|
|
case FM_TBL_VL_PREEMPT_MATRIX:
|
|
size = 256;
|
|
/*
|
|
* OPA specifies that this is the same size as the VL
|
|
* arbitration tables (i.e., 256 bytes).
|
|
*/
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Write the given fabric manager table.
|
|
*/
|
|
int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
|
|
{
|
|
int ret = 0;
|
|
struct vl_arb_cache *vlc;
|
|
|
|
switch (which) {
|
|
case FM_TBL_VL_HIGH_ARB:
|
|
vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
|
|
if (vl_arb_match_cache(vlc, t)) {
|
|
vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
|
|
break;
|
|
}
|
|
vl_arb_set_cache(vlc, t);
|
|
vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
|
|
ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
|
|
VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
|
|
break;
|
|
case FM_TBL_VL_LOW_ARB:
|
|
vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
|
|
if (vl_arb_match_cache(vlc, t)) {
|
|
vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
|
|
break;
|
|
}
|
|
vl_arb_set_cache(vlc, t);
|
|
vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
|
|
ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
|
|
VL_ARB_LOW_PRIO_TABLE_SIZE, t);
|
|
break;
|
|
case FM_TBL_BUFFER_CONTROL:
|
|
ret = set_buffer_control(ppd, t);
|
|
break;
|
|
case FM_TBL_SC2VLNT:
|
|
set_sc2vlnt(ppd->dd, t);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Disable all data VLs.
|
|
*
|
|
* Return 0 if disabled, non-zero if the VLs cannot be disabled.
|
|
*/
|
|
static int disable_data_vls(struct hfi1_devdata *dd)
|
|
{
|
|
if (is_ax(dd))
|
|
return 1;
|
|
|
|
pio_send_control(dd, PSC_DATA_VL_DISABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* open_fill_data_vls() - the counterpart to stop_drain_data_vls().
|
|
* Just re-enables all data VLs (the "fill" part happens
|
|
* automatically - the name was chosen for symmetry with
|
|
* stop_drain_data_vls()).
|
|
*
|
|
* Return 0 if successful, non-zero if the VLs cannot be enabled.
|
|
*/
|
|
int open_fill_data_vls(struct hfi1_devdata *dd)
|
|
{
|
|
if (is_ax(dd))
|
|
return 1;
|
|
|
|
pio_send_control(dd, PSC_DATA_VL_ENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* drain_data_vls() - assumes that disable_data_vls() has been called,
|
|
* wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
|
|
* engines to drop to 0.
|
|
*/
|
|
static void drain_data_vls(struct hfi1_devdata *dd)
|
|
{
|
|
sc_wait(dd);
|
|
sdma_wait(dd);
|
|
pause_for_credit_return(dd);
|
|
}
|
|
|
|
/*
|
|
* stop_drain_data_vls() - disable, then drain all per-VL fifos.
|
|
*
|
|
* Use open_fill_data_vls() to resume using data VLs. This pair is
|
|
* meant to be used like this:
|
|
*
|
|
* stop_drain_data_vls(dd);
|
|
* // do things with per-VL resources
|
|
* open_fill_data_vls(dd);
|
|
*/
|
|
int stop_drain_data_vls(struct hfi1_devdata *dd)
|
|
{
|
|
int ret;
|
|
|
|
ret = disable_data_vls(dd);
|
|
if (ret == 0)
|
|
drain_data_vls(dd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Convert a nanosecond time to a cclock count. No matter how slow
|
|
* the cclock, a non-zero ns will always have a non-zero result.
|
|
*/
|
|
u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
|
|
{
|
|
u32 cclocks;
|
|
|
|
if (dd->icode == ICODE_FPGA_EMULATION)
|
|
cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
|
|
else /* simulation pretends to be ASIC */
|
|
cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
|
|
if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
|
|
cclocks = 1;
|
|
return cclocks;
|
|
}
|
|
|
|
/*
|
|
* Convert a cclock count to nanoseconds. Not matter how slow
|
|
* the cclock, a non-zero cclocks will always have a non-zero result.
|
|
*/
|
|
u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
|
|
{
|
|
u32 ns;
|
|
|
|
if (dd->icode == ICODE_FPGA_EMULATION)
|
|
ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
|
|
else /* simulation pretends to be ASIC */
|
|
ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
|
|
if (cclocks && !ns)
|
|
ns = 1;
|
|
return ns;
|
|
}
|
|
|
|
/*
|
|
* Dynamically adjust the receive interrupt timeout for a context based on
|
|
* incoming packet rate.
|
|
*
|
|
* NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
|
|
*/
|
|
static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
|
|
{
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
u32 timeout = rcd->rcvavail_timeout;
|
|
|
|
/*
|
|
* This algorithm doubles or halves the timeout depending on whether
|
|
* the number of packets received in this interrupt were less than or
|
|
* greater equal the interrupt count.
|
|
*
|
|
* The calculations below do not allow a steady state to be achieved.
|
|
* Only at the endpoints it is possible to have an unchanging
|
|
* timeout.
|
|
*/
|
|
if (npkts < rcv_intr_count) {
|
|
/*
|
|
* Not enough packets arrived before the timeout, adjust
|
|
* timeout downward.
|
|
*/
|
|
if (timeout < 2) /* already at minimum? */
|
|
return;
|
|
timeout >>= 1;
|
|
} else {
|
|
/*
|
|
* More than enough packets arrived before the timeout, adjust
|
|
* timeout upward.
|
|
*/
|
|
if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
|
|
return;
|
|
timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
|
|
}
|
|
|
|
rcd->rcvavail_timeout = timeout;
|
|
/*
|
|
* timeout cannot be larger than rcv_intr_timeout_csr which has already
|
|
* been verified to be in range
|
|
*/
|
|
write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
|
|
(u64)timeout <<
|
|
RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
|
|
}
|
|
|
|
void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
|
|
u32 intr_adjust, u32 npkts)
|
|
{
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
u64 reg;
|
|
u32 ctxt = rcd->ctxt;
|
|
|
|
/*
|
|
* Need to write timeout register before updating RcvHdrHead to ensure
|
|
* that a new value is used when the HW decides to restart counting.
|
|
*/
|
|
if (intr_adjust)
|
|
adjust_rcv_timeout(rcd, npkts);
|
|
if (updegr) {
|
|
reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
|
|
<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
|
|
write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
|
|
}
|
|
mmiowb();
|
|
reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
|
|
(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
|
|
<< RCV_HDR_HEAD_HEAD_SHIFT);
|
|
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
|
|
mmiowb();
|
|
}
|
|
|
|
u32 hdrqempty(struct hfi1_ctxtdata *rcd)
|
|
{
|
|
u32 head, tail;
|
|
|
|
head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
|
|
& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
|
|
|
|
if (rcd->rcvhdrtail_kvaddr)
|
|
tail = get_rcvhdrtail(rcd);
|
|
else
|
|
tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
|
|
|
|
return head == tail;
|
|
}
|
|
|
|
/*
|
|
* Context Control and Receive Array encoding for buffer size:
|
|
* 0x0 invalid
|
|
* 0x1 4 KB
|
|
* 0x2 8 KB
|
|
* 0x3 16 KB
|
|
* 0x4 32 KB
|
|
* 0x5 64 KB
|
|
* 0x6 128 KB
|
|
* 0x7 256 KB
|
|
* 0x8 512 KB (Receive Array only)
|
|
* 0x9 1 MB (Receive Array only)
|
|
* 0xa 2 MB (Receive Array only)
|
|
*
|
|
* 0xB-0xF - reserved (Receive Array only)
|
|
*
|
|
*
|
|
* This routine assumes that the value has already been sanity checked.
|
|
*/
|
|
static u32 encoded_size(u32 size)
|
|
{
|
|
switch (size) {
|
|
case 4 * 1024: return 0x1;
|
|
case 8 * 1024: return 0x2;
|
|
case 16 * 1024: return 0x3;
|
|
case 32 * 1024: return 0x4;
|
|
case 64 * 1024: return 0x5;
|
|
case 128 * 1024: return 0x6;
|
|
case 256 * 1024: return 0x7;
|
|
case 512 * 1024: return 0x8;
|
|
case 1 * 1024 * 1024: return 0x9;
|
|
case 2 * 1024 * 1024: return 0xa;
|
|
}
|
|
return 0x1; /* if invalid, go with the minimum size */
|
|
}
|
|
|
|
void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
|
|
{
|
|
struct hfi1_ctxtdata *rcd;
|
|
u64 rcvctrl, reg;
|
|
int did_enable = 0;
|
|
|
|
rcd = dd->rcd[ctxt];
|
|
if (!rcd)
|
|
return;
|
|
|
|
hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
|
|
|
|
rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
|
|
/* if the context already enabled, don't do the extra steps */
|
|
if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
|
|
!(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
|
|
/* reset the tail and hdr addresses, and sequence count */
|
|
write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
|
|
rcd->rcvhdrq_phys);
|
|
if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
|
|
write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
|
|
rcd->rcvhdrqtailaddr_phys);
|
|
rcd->seq_cnt = 1;
|
|
|
|
/* reset the cached receive header queue head value */
|
|
rcd->head = 0;
|
|
|
|
/*
|
|
* Zero the receive header queue so we don't get false
|
|
* positives when checking the sequence number. The
|
|
* sequence numbers could land exactly on the same spot.
|
|
* E.g. a rcd restart before the receive header wrapped.
|
|
*/
|
|
memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
|
|
|
|
/* starting timeout */
|
|
rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
|
|
|
|
/* enable the context */
|
|
rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
|
|
|
|
/* clean the egr buffer size first */
|
|
rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
|
|
rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
|
|
& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
|
|
<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
|
|
|
|
/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
|
|
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
|
|
did_enable = 1;
|
|
|
|
/* zero RcvEgrIndexHead */
|
|
write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
|
|
|
|
/* set eager count and base index */
|
|
reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
|
|
& RCV_EGR_CTRL_EGR_CNT_MASK)
|
|
<< RCV_EGR_CTRL_EGR_CNT_SHIFT) |
|
|
(((rcd->eager_base >> RCV_SHIFT)
|
|
& RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
|
|
<< RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
|
|
write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
|
|
|
|
/*
|
|
* Set TID (expected) count and base index.
|
|
* rcd->expected_count is set to individual RcvArray entries,
|
|
* not pairs, and the CSR takes a pair-count in groups of
|
|
* four, so divide by 8.
|
|
*/
|
|
reg = (((rcd->expected_count >> RCV_SHIFT)
|
|
& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
|
|
<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
|
|
(((rcd->expected_base >> RCV_SHIFT)
|
|
& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
|
|
<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
|
|
write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
|
|
if (ctxt == HFI1_CTRL_CTXT)
|
|
write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
|
|
}
|
|
if (op & HFI1_RCVCTRL_CTXT_DIS) {
|
|
write_csr(dd, RCV_VL15, 0);
|
|
/*
|
|
* When receive context is being disabled turn on tail
|
|
* update with a dummy tail address and then disable
|
|
* receive context.
|
|
*/
|
|
if (dd->rcvhdrtail_dummy_physaddr) {
|
|
write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
|
|
dd->rcvhdrtail_dummy_physaddr);
|
|
/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
|
|
rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
|
|
}
|
|
|
|
rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
|
|
}
|
|
if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
|
|
rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
|
|
if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
|
|
rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
|
|
if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
|
|
rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
|
|
if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
|
|
/* See comment on RcvCtxtCtrl.TailUpd above */
|
|
if (!(op & HFI1_RCVCTRL_CTXT_DIS))
|
|
rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
|
|
}
|
|
if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
|
|
rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
|
|
if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
|
|
rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
|
|
if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
|
|
/*
|
|
* In one-packet-per-eager mode, the size comes from
|
|
* the RcvArray entry.
|
|
*/
|
|
rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
|
|
rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
|
|
}
|
|
if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
|
|
rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
|
|
if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
|
|
rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
|
|
if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
|
|
rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
|
|
if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
|
|
rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
|
|
if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
|
|
rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
|
|
rcd->rcvctrl = rcvctrl;
|
|
hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
|
|
write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
|
|
|
|
/* work around sticky RcvCtxtStatus.BlockedRHQFull */
|
|
if (did_enable &&
|
|
(rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
|
|
reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
|
|
if (reg != 0) {
|
|
dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
|
|
ctxt, reg);
|
|
read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
|
|
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
|
|
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
|
|
read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
|
|
reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
|
|
dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
|
|
ctxt, reg, reg == 0 ? "not" : "still");
|
|
}
|
|
}
|
|
|
|
if (did_enable) {
|
|
/*
|
|
* The interrupt timeout and count must be set after
|
|
* the context is enabled to take effect.
|
|
*/
|
|
/* set interrupt timeout */
|
|
write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
|
|
(u64)rcd->rcvavail_timeout <<
|
|
RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
|
|
|
|
/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
|
|
reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
|
|
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
|
|
}
|
|
|
|
if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
|
|
/*
|
|
* If the context has been disabled and the Tail Update has
|
|
* been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
|
|
* so it doesn't contain an address that is invalid.
|
|
*/
|
|
write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
|
|
dd->rcvhdrtail_dummy_physaddr);
|
|
}
|
|
|
|
u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
|
|
{
|
|
int ret;
|
|
u64 val = 0;
|
|
|
|
if (namep) {
|
|
ret = dd->cntrnameslen;
|
|
*namep = dd->cntrnames;
|
|
} else {
|
|
const struct cntr_entry *entry;
|
|
int i, j;
|
|
|
|
ret = (dd->ndevcntrs) * sizeof(u64);
|
|
|
|
/* Get the start of the block of counters */
|
|
*cntrp = dd->cntrs;
|
|
|
|
/*
|
|
* Now go and fill in each counter in the block.
|
|
*/
|
|
for (i = 0; i < DEV_CNTR_LAST; i++) {
|
|
entry = &dev_cntrs[i];
|
|
hfi1_cdbg(CNTR, "reading %s", entry->name);
|
|
if (entry->flags & CNTR_DISABLED) {
|
|
/* Nothing */
|
|
hfi1_cdbg(CNTR, "\tDisabled\n");
|
|
} else {
|
|
if (entry->flags & CNTR_VL) {
|
|
hfi1_cdbg(CNTR, "\tPer VL\n");
|
|
for (j = 0; j < C_VL_COUNT; j++) {
|
|
val = entry->rw_cntr(entry,
|
|
dd, j,
|
|
CNTR_MODE_R,
|
|
0);
|
|
hfi1_cdbg(
|
|
CNTR,
|
|
"\t\tRead 0x%llx for %d\n",
|
|
val, j);
|
|
dd->cntrs[entry->offset + j] =
|
|
val;
|
|
}
|
|
} else if (entry->flags & CNTR_SDMA) {
|
|
hfi1_cdbg(CNTR,
|
|
"\t Per SDMA Engine\n");
|
|
for (j = 0; j < dd->chip_sdma_engines;
|
|
j++) {
|
|
val =
|
|
entry->rw_cntr(entry, dd, j,
|
|
CNTR_MODE_R, 0);
|
|
hfi1_cdbg(CNTR,
|
|
"\t\tRead 0x%llx for %d\n",
|
|
val, j);
|
|
dd->cntrs[entry->offset + j] =
|
|
val;
|
|
}
|
|
} else {
|
|
val = entry->rw_cntr(entry, dd,
|
|
CNTR_INVALID_VL,
|
|
CNTR_MODE_R, 0);
|
|
dd->cntrs[entry->offset] = val;
|
|
hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Used by sysfs to create files for hfi stats to read
|
|
*/
|
|
u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
|
|
{
|
|
int ret;
|
|
u64 val = 0;
|
|
|
|
if (namep) {
|
|
ret = ppd->dd->portcntrnameslen;
|
|
*namep = ppd->dd->portcntrnames;
|
|
} else {
|
|
const struct cntr_entry *entry;
|
|
int i, j;
|
|
|
|
ret = ppd->dd->nportcntrs * sizeof(u64);
|
|
*cntrp = ppd->cntrs;
|
|
|
|
for (i = 0; i < PORT_CNTR_LAST; i++) {
|
|
entry = &port_cntrs[i];
|
|
hfi1_cdbg(CNTR, "reading %s", entry->name);
|
|
if (entry->flags & CNTR_DISABLED) {
|
|
/* Nothing */
|
|
hfi1_cdbg(CNTR, "\tDisabled\n");
|
|
continue;
|
|
}
|
|
|
|
if (entry->flags & CNTR_VL) {
|
|
hfi1_cdbg(CNTR, "\tPer VL");
|
|
for (j = 0; j < C_VL_COUNT; j++) {
|
|
val = entry->rw_cntr(entry, ppd, j,
|
|
CNTR_MODE_R,
|
|
0);
|
|
hfi1_cdbg(
|
|
CNTR,
|
|
"\t\tRead 0x%llx for %d",
|
|
val, j);
|
|
ppd->cntrs[entry->offset + j] = val;
|
|
}
|
|
} else {
|
|
val = entry->rw_cntr(entry, ppd,
|
|
CNTR_INVALID_VL,
|
|
CNTR_MODE_R,
|
|
0);
|
|
ppd->cntrs[entry->offset] = val;
|
|
hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void free_cntrs(struct hfi1_devdata *dd)
|
|
{
|
|
struct hfi1_pportdata *ppd;
|
|
int i;
|
|
|
|
if (dd->synth_stats_timer.data)
|
|
del_timer_sync(&dd->synth_stats_timer);
|
|
dd->synth_stats_timer.data = 0;
|
|
ppd = (struct hfi1_pportdata *)(dd + 1);
|
|
for (i = 0; i < dd->num_pports; i++, ppd++) {
|
|
kfree(ppd->cntrs);
|
|
kfree(ppd->scntrs);
|
|
free_percpu(ppd->ibport_data.rvp.rc_acks);
|
|
free_percpu(ppd->ibport_data.rvp.rc_qacks);
|
|
free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
|
|
ppd->cntrs = NULL;
|
|
ppd->scntrs = NULL;
|
|
ppd->ibport_data.rvp.rc_acks = NULL;
|
|
ppd->ibport_data.rvp.rc_qacks = NULL;
|
|
ppd->ibport_data.rvp.rc_delayed_comp = NULL;
|
|
}
|
|
kfree(dd->portcntrnames);
|
|
dd->portcntrnames = NULL;
|
|
kfree(dd->cntrs);
|
|
dd->cntrs = NULL;
|
|
kfree(dd->scntrs);
|
|
dd->scntrs = NULL;
|
|
kfree(dd->cntrnames);
|
|
dd->cntrnames = NULL;
|
|
}
|
|
|
|
#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
|
|
#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
|
|
|
|
static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
|
|
u64 *psval, void *context, int vl)
|
|
{
|
|
u64 val;
|
|
u64 sval = *psval;
|
|
|
|
if (entry->flags & CNTR_DISABLED) {
|
|
dd_dev_err(dd, "Counter %s not enabled", entry->name);
|
|
return 0;
|
|
}
|
|
|
|
hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
|
|
|
|
val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
|
|
|
|
/* If its a synthetic counter there is more work we need to do */
|
|
if (entry->flags & CNTR_SYNTH) {
|
|
if (sval == CNTR_MAX) {
|
|
/* No need to read already saturated */
|
|
return CNTR_MAX;
|
|
}
|
|
|
|
if (entry->flags & CNTR_32BIT) {
|
|
/* 32bit counters can wrap multiple times */
|
|
u64 upper = sval >> 32;
|
|
u64 lower = (sval << 32) >> 32;
|
|
|
|
if (lower > val) { /* hw wrapped */
|
|
if (upper == CNTR_32BIT_MAX)
|
|
val = CNTR_MAX;
|
|
else
|
|
upper++;
|
|
}
|
|
|
|
if (val != CNTR_MAX)
|
|
val = (upper << 32) | val;
|
|
|
|
} else {
|
|
/* If we rolled we are saturated */
|
|
if ((val < sval) || (val > CNTR_MAX))
|
|
val = CNTR_MAX;
|
|
}
|
|
}
|
|
|
|
*psval = val;
|
|
|
|
hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
|
|
struct cntr_entry *entry,
|
|
u64 *psval, void *context, int vl, u64 data)
|
|
{
|
|
u64 val;
|
|
|
|
if (entry->flags & CNTR_DISABLED) {
|
|
dd_dev_err(dd, "Counter %s not enabled", entry->name);
|
|
return 0;
|
|
}
|
|
|
|
hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
|
|
|
|
if (entry->flags & CNTR_SYNTH) {
|
|
*psval = data;
|
|
if (entry->flags & CNTR_32BIT) {
|
|
val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
|
|
(data << 32) >> 32);
|
|
val = data; /* return the full 64bit value */
|
|
} else {
|
|
val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
|
|
data);
|
|
}
|
|
} else {
|
|
val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
|
|
}
|
|
|
|
*psval = val;
|
|
|
|
hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
|
|
|
|
return val;
|
|
}
|
|
|
|
u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
|
|
{
|
|
struct cntr_entry *entry;
|
|
u64 *sval;
|
|
|
|
entry = &dev_cntrs[index];
|
|
sval = dd->scntrs + entry->offset;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
sval += vl;
|
|
|
|
return read_dev_port_cntr(dd, entry, sval, dd, vl);
|
|
}
|
|
|
|
u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
|
|
{
|
|
struct cntr_entry *entry;
|
|
u64 *sval;
|
|
|
|
entry = &dev_cntrs[index];
|
|
sval = dd->scntrs + entry->offset;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
sval += vl;
|
|
|
|
return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
|
|
}
|
|
|
|
u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
|
|
{
|
|
struct cntr_entry *entry;
|
|
u64 *sval;
|
|
|
|
entry = &port_cntrs[index];
|
|
sval = ppd->scntrs + entry->offset;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
sval += vl;
|
|
|
|
if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
|
|
(index <= C_RCV_HDR_OVF_LAST)) {
|
|
/* We do not want to bother for disabled contexts */
|
|
return 0;
|
|
}
|
|
|
|
return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
|
|
}
|
|
|
|
u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
|
|
{
|
|
struct cntr_entry *entry;
|
|
u64 *sval;
|
|
|
|
entry = &port_cntrs[index];
|
|
sval = ppd->scntrs + entry->offset;
|
|
|
|
if (vl != CNTR_INVALID_VL)
|
|
sval += vl;
|
|
|
|
if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
|
|
(index <= C_RCV_HDR_OVF_LAST)) {
|
|
/* We do not want to bother for disabled contexts */
|
|
return 0;
|
|
}
|
|
|
|
return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
|
|
}
|
|
|
|
static void update_synth_timer(unsigned long opaque)
|
|
{
|
|
u64 cur_tx;
|
|
u64 cur_rx;
|
|
u64 total_flits;
|
|
u8 update = 0;
|
|
int i, j, vl;
|
|
struct hfi1_pportdata *ppd;
|
|
struct cntr_entry *entry;
|
|
|
|
struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
|
|
|
|
/*
|
|
* Rather than keep beating on the CSRs pick a minimal set that we can
|
|
* check to watch for potential roll over. We can do this by looking at
|
|
* the number of flits sent/recv. If the total flits exceeds 32bits then
|
|
* we have to iterate all the counters and update.
|
|
*/
|
|
entry = &dev_cntrs[C_DC_RCV_FLITS];
|
|
cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
|
|
|
|
entry = &dev_cntrs[C_DC_XMIT_FLITS];
|
|
cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
|
|
|
|
hfi1_cdbg(
|
|
CNTR,
|
|
"[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
|
|
dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
|
|
|
|
if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
|
|
/*
|
|
* May not be strictly necessary to update but it won't hurt and
|
|
* simplifies the logic here.
|
|
*/
|
|
update = 1;
|
|
hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
|
|
dd->unit);
|
|
} else {
|
|
total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
|
|
hfi1_cdbg(CNTR,
|
|
"[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
|
|
total_flits, (u64)CNTR_32BIT_MAX);
|
|
if (total_flits >= CNTR_32BIT_MAX) {
|
|
hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
|
|
dd->unit);
|
|
update = 1;
|
|
}
|
|
}
|
|
|
|
if (update) {
|
|
hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
|
|
for (i = 0; i < DEV_CNTR_LAST; i++) {
|
|
entry = &dev_cntrs[i];
|
|
if (entry->flags & CNTR_VL) {
|
|
for (vl = 0; vl < C_VL_COUNT; vl++)
|
|
read_dev_cntr(dd, i, vl);
|
|
} else {
|
|
read_dev_cntr(dd, i, CNTR_INVALID_VL);
|
|
}
|
|
}
|
|
ppd = (struct hfi1_pportdata *)(dd + 1);
|
|
for (i = 0; i < dd->num_pports; i++, ppd++) {
|
|
for (j = 0; j < PORT_CNTR_LAST; j++) {
|
|
entry = &port_cntrs[j];
|
|
if (entry->flags & CNTR_VL) {
|
|
for (vl = 0; vl < C_VL_COUNT; vl++)
|
|
read_port_cntr(ppd, j, vl);
|
|
} else {
|
|
read_port_cntr(ppd, j, CNTR_INVALID_VL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We want the value in the register. The goal is to keep track
|
|
* of the number of "ticks" not the counter value. In other
|
|
* words if the register rolls we want to notice it and go ahead
|
|
* and force an update.
|
|
*/
|
|
entry = &dev_cntrs[C_DC_XMIT_FLITS];
|
|
dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
|
|
CNTR_MODE_R, 0);
|
|
|
|
entry = &dev_cntrs[C_DC_RCV_FLITS];
|
|
dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
|
|
CNTR_MODE_R, 0);
|
|
|
|
hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
|
|
dd->unit, dd->last_tx, dd->last_rx);
|
|
|
|
} else {
|
|
hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
|
|
}
|
|
|
|
mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
|
|
}
|
|
|
|
#define C_MAX_NAME 13 /* 12 chars + one for /0 */
|
|
static int init_cntrs(struct hfi1_devdata *dd)
|
|
{
|
|
int i, rcv_ctxts, j;
|
|
size_t sz;
|
|
char *p;
|
|
char name[C_MAX_NAME];
|
|
struct hfi1_pportdata *ppd;
|
|
const char *bit_type_32 = ",32";
|
|
const int bit_type_32_sz = strlen(bit_type_32);
|
|
|
|
/* set up the stats timer; the add_timer is done at the end */
|
|
setup_timer(&dd->synth_stats_timer, update_synth_timer,
|
|
(unsigned long)dd);
|
|
|
|
/***********************/
|
|
/* per device counters */
|
|
/***********************/
|
|
|
|
/* size names and determine how many we have*/
|
|
dd->ndevcntrs = 0;
|
|
sz = 0;
|
|
|
|
for (i = 0; i < DEV_CNTR_LAST; i++) {
|
|
if (dev_cntrs[i].flags & CNTR_DISABLED) {
|
|
hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
|
|
continue;
|
|
}
|
|
|
|
if (dev_cntrs[i].flags & CNTR_VL) {
|
|
dev_cntrs[i].offset = dd->ndevcntrs;
|
|
for (j = 0; j < C_VL_COUNT; j++) {
|
|
snprintf(name, C_MAX_NAME, "%s%d",
|
|
dev_cntrs[i].name, vl_from_idx(j));
|
|
sz += strlen(name);
|
|
/* Add ",32" for 32-bit counters */
|
|
if (dev_cntrs[i].flags & CNTR_32BIT)
|
|
sz += bit_type_32_sz;
|
|
sz++;
|
|
dd->ndevcntrs++;
|
|
}
|
|
} else if (dev_cntrs[i].flags & CNTR_SDMA) {
|
|
dev_cntrs[i].offset = dd->ndevcntrs;
|
|
for (j = 0; j < dd->chip_sdma_engines; j++) {
|
|
snprintf(name, C_MAX_NAME, "%s%d",
|
|
dev_cntrs[i].name, j);
|
|
sz += strlen(name);
|
|
/* Add ",32" for 32-bit counters */
|
|
if (dev_cntrs[i].flags & CNTR_32BIT)
|
|
sz += bit_type_32_sz;
|
|
sz++;
|
|
dd->ndevcntrs++;
|
|
}
|
|
} else {
|
|
/* +1 for newline. */
|
|
sz += strlen(dev_cntrs[i].name) + 1;
|
|
/* Add ",32" for 32-bit counters */
|
|
if (dev_cntrs[i].flags & CNTR_32BIT)
|
|
sz += bit_type_32_sz;
|
|
dev_cntrs[i].offset = dd->ndevcntrs;
|
|
dd->ndevcntrs++;
|
|
}
|
|
}
|
|
|
|
/* allocate space for the counter values */
|
|
dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
|
|
if (!dd->cntrs)
|
|
goto bail;
|
|
|
|
dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
|
|
if (!dd->scntrs)
|
|
goto bail;
|
|
|
|
/* allocate space for the counter names */
|
|
dd->cntrnameslen = sz;
|
|
dd->cntrnames = kmalloc(sz, GFP_KERNEL);
|
|
if (!dd->cntrnames)
|
|
goto bail;
|
|
|
|
/* fill in the names */
|
|
for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
|
|
if (dev_cntrs[i].flags & CNTR_DISABLED) {
|
|
/* Nothing */
|
|
} else if (dev_cntrs[i].flags & CNTR_VL) {
|
|
for (j = 0; j < C_VL_COUNT; j++) {
|
|
snprintf(name, C_MAX_NAME, "%s%d",
|
|
dev_cntrs[i].name,
|
|
vl_from_idx(j));
|
|
memcpy(p, name, strlen(name));
|
|
p += strlen(name);
|
|
|
|
/* Counter is 32 bits */
|
|
if (dev_cntrs[i].flags & CNTR_32BIT) {
|
|
memcpy(p, bit_type_32, bit_type_32_sz);
|
|
p += bit_type_32_sz;
|
|
}
|
|
|
|
*p++ = '\n';
|
|
}
|
|
} else if (dev_cntrs[i].flags & CNTR_SDMA) {
|
|
for (j = 0; j < dd->chip_sdma_engines; j++) {
|
|
snprintf(name, C_MAX_NAME, "%s%d",
|
|
dev_cntrs[i].name, j);
|
|
memcpy(p, name, strlen(name));
|
|
p += strlen(name);
|
|
|
|
/* Counter is 32 bits */
|
|
if (dev_cntrs[i].flags & CNTR_32BIT) {
|
|
memcpy(p, bit_type_32, bit_type_32_sz);
|
|
p += bit_type_32_sz;
|
|
}
|
|
|
|
*p++ = '\n';
|
|
}
|
|
} else {
|
|
memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
|
|
p += strlen(dev_cntrs[i].name);
|
|
|
|
/* Counter is 32 bits */
|
|
if (dev_cntrs[i].flags & CNTR_32BIT) {
|
|
memcpy(p, bit_type_32, bit_type_32_sz);
|
|
p += bit_type_32_sz;
|
|
}
|
|
|
|
*p++ = '\n';
|
|
}
|
|
}
|
|
|
|
/*********************/
|
|
/* per port counters */
|
|
/*********************/
|
|
|
|
/*
|
|
* Go through the counters for the overflows and disable the ones we
|
|
* don't need. This varies based on platform so we need to do it
|
|
* dynamically here.
|
|
*/
|
|
rcv_ctxts = dd->num_rcv_contexts;
|
|
for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
|
|
i <= C_RCV_HDR_OVF_LAST; i++) {
|
|
port_cntrs[i].flags |= CNTR_DISABLED;
|
|
}
|
|
|
|
/* size port counter names and determine how many we have*/
|
|
sz = 0;
|
|
dd->nportcntrs = 0;
|
|
for (i = 0; i < PORT_CNTR_LAST; i++) {
|
|
if (port_cntrs[i].flags & CNTR_DISABLED) {
|
|
hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
|
|
continue;
|
|
}
|
|
|
|
if (port_cntrs[i].flags & CNTR_VL) {
|
|
port_cntrs[i].offset = dd->nportcntrs;
|
|
for (j = 0; j < C_VL_COUNT; j++) {
|
|
snprintf(name, C_MAX_NAME, "%s%d",
|
|
port_cntrs[i].name, vl_from_idx(j));
|
|
sz += strlen(name);
|
|
/* Add ",32" for 32-bit counters */
|
|
if (port_cntrs[i].flags & CNTR_32BIT)
|
|
sz += bit_type_32_sz;
|
|
sz++;
|
|
dd->nportcntrs++;
|
|
}
|
|
} else {
|
|
/* +1 for newline */
|
|
sz += strlen(port_cntrs[i].name) + 1;
|
|
/* Add ",32" for 32-bit counters */
|
|
if (port_cntrs[i].flags & CNTR_32BIT)
|
|
sz += bit_type_32_sz;
|
|
port_cntrs[i].offset = dd->nportcntrs;
|
|
dd->nportcntrs++;
|
|
}
|
|
}
|
|
|
|
/* allocate space for the counter names */
|
|
dd->portcntrnameslen = sz;
|
|
dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
|
|
if (!dd->portcntrnames)
|
|
goto bail;
|
|
|
|
/* fill in port cntr names */
|
|
for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
|
|
if (port_cntrs[i].flags & CNTR_DISABLED)
|
|
continue;
|
|
|
|
if (port_cntrs[i].flags & CNTR_VL) {
|
|
for (j = 0; j < C_VL_COUNT; j++) {
|
|
snprintf(name, C_MAX_NAME, "%s%d",
|
|
port_cntrs[i].name, vl_from_idx(j));
|
|
memcpy(p, name, strlen(name));
|
|
p += strlen(name);
|
|
|
|
/* Counter is 32 bits */
|
|
if (port_cntrs[i].flags & CNTR_32BIT) {
|
|
memcpy(p, bit_type_32, bit_type_32_sz);
|
|
p += bit_type_32_sz;
|
|
}
|
|
|
|
*p++ = '\n';
|
|
}
|
|
} else {
|
|
memcpy(p, port_cntrs[i].name,
|
|
strlen(port_cntrs[i].name));
|
|
p += strlen(port_cntrs[i].name);
|
|
|
|
/* Counter is 32 bits */
|
|
if (port_cntrs[i].flags & CNTR_32BIT) {
|
|
memcpy(p, bit_type_32, bit_type_32_sz);
|
|
p += bit_type_32_sz;
|
|
}
|
|
|
|
*p++ = '\n';
|
|
}
|
|
}
|
|
|
|
/* allocate per port storage for counter values */
|
|
ppd = (struct hfi1_pportdata *)(dd + 1);
|
|
for (i = 0; i < dd->num_pports; i++, ppd++) {
|
|
ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
|
|
if (!ppd->cntrs)
|
|
goto bail;
|
|
|
|
ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
|
|
if (!ppd->scntrs)
|
|
goto bail;
|
|
}
|
|
|
|
/* CPU counters need to be allocated and zeroed */
|
|
if (init_cpu_counters(dd))
|
|
goto bail;
|
|
|
|
mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
|
|
return 0;
|
|
bail:
|
|
free_cntrs(dd);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
|
|
{
|
|
switch (chip_lstate) {
|
|
default:
|
|
dd_dev_err(dd,
|
|
"Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
|
|
chip_lstate);
|
|
/* fall through */
|
|
case LSTATE_DOWN:
|
|
return IB_PORT_DOWN;
|
|
case LSTATE_INIT:
|
|
return IB_PORT_INIT;
|
|
case LSTATE_ARMED:
|
|
return IB_PORT_ARMED;
|
|
case LSTATE_ACTIVE:
|
|
return IB_PORT_ACTIVE;
|
|
}
|
|
}
|
|
|
|
u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
|
|
{
|
|
/* look at the HFI meta-states only */
|
|
switch (chip_pstate & 0xf0) {
|
|
default:
|
|
dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
|
|
chip_pstate);
|
|
/* fall through */
|
|
case PLS_DISABLED:
|
|
return IB_PORTPHYSSTATE_DISABLED;
|
|
case PLS_OFFLINE:
|
|
return OPA_PORTPHYSSTATE_OFFLINE;
|
|
case PLS_POLLING:
|
|
return IB_PORTPHYSSTATE_POLLING;
|
|
case PLS_CONFIGPHY:
|
|
return IB_PORTPHYSSTATE_TRAINING;
|
|
case PLS_LINKUP:
|
|
return IB_PORTPHYSSTATE_LINKUP;
|
|
case PLS_PHYTEST:
|
|
return IB_PORTPHYSSTATE_PHY_TEST;
|
|
}
|
|
}
|
|
|
|
/* return the OPA port logical state name */
|
|
const char *opa_lstate_name(u32 lstate)
|
|
{
|
|
static const char * const port_logical_names[] = {
|
|
"PORT_NOP",
|
|
"PORT_DOWN",
|
|
"PORT_INIT",
|
|
"PORT_ARMED",
|
|
"PORT_ACTIVE",
|
|
"PORT_ACTIVE_DEFER",
|
|
};
|
|
if (lstate < ARRAY_SIZE(port_logical_names))
|
|
return port_logical_names[lstate];
|
|
return "unknown";
|
|
}
|
|
|
|
/* return the OPA port physical state name */
|
|
const char *opa_pstate_name(u32 pstate)
|
|
{
|
|
static const char * const port_physical_names[] = {
|
|
"PHYS_NOP",
|
|
"reserved1",
|
|
"PHYS_POLL",
|
|
"PHYS_DISABLED",
|
|
"PHYS_TRAINING",
|
|
"PHYS_LINKUP",
|
|
"PHYS_LINK_ERR_RECOVER",
|
|
"PHYS_PHY_TEST",
|
|
"reserved8",
|
|
"PHYS_OFFLINE",
|
|
"PHYS_GANGED",
|
|
"PHYS_TEST",
|
|
};
|
|
if (pstate < ARRAY_SIZE(port_physical_names))
|
|
return port_physical_names[pstate];
|
|
return "unknown";
|
|
}
|
|
|
|
/*
|
|
* Read the hardware link state and set the driver's cached value of it.
|
|
* Return the (new) current value.
|
|
*/
|
|
u32 get_logical_state(struct hfi1_pportdata *ppd)
|
|
{
|
|
u32 new_state;
|
|
|
|
new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
|
|
if (new_state != ppd->lstate) {
|
|
dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
|
|
opa_lstate_name(new_state), new_state);
|
|
ppd->lstate = new_state;
|
|
}
|
|
/*
|
|
* Set port status flags in the page mapped into userspace
|
|
* memory. Do it here to ensure a reliable state - this is
|
|
* the only function called by all state handling code.
|
|
* Always set the flags due to the fact that the cache value
|
|
* might have been changed explicitly outside of this
|
|
* function.
|
|
*/
|
|
if (ppd->statusp) {
|
|
switch (ppd->lstate) {
|
|
case IB_PORT_DOWN:
|
|
case IB_PORT_INIT:
|
|
*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
|
|
HFI1_STATUS_IB_READY);
|
|
break;
|
|
case IB_PORT_ARMED:
|
|
*ppd->statusp |= HFI1_STATUS_IB_CONF;
|
|
break;
|
|
case IB_PORT_ACTIVE:
|
|
*ppd->statusp |= HFI1_STATUS_IB_READY;
|
|
break;
|
|
}
|
|
}
|
|
return ppd->lstate;
|
|
}
|
|
|
|
/**
|
|
* wait_logical_linkstate - wait for an IB link state change to occur
|
|
* @ppd: port device
|
|
* @state: the state to wait for
|
|
* @msecs: the number of milliseconds to wait
|
|
*
|
|
* Wait up to msecs milliseconds for IB link state change to occur.
|
|
* For now, take the easy polling route.
|
|
* Returns 0 if state reached, otherwise -ETIMEDOUT.
|
|
*/
|
|
static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
|
|
int msecs)
|
|
{
|
|
unsigned long timeout;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(msecs);
|
|
while (1) {
|
|
if (get_logical_state(ppd) == state)
|
|
return 0;
|
|
if (time_after(jiffies, timeout))
|
|
break;
|
|
msleep(20);
|
|
}
|
|
dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
|
|
{
|
|
u32 pstate;
|
|
u32 ib_pstate;
|
|
|
|
pstate = read_physical_state(ppd->dd);
|
|
ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
|
|
if (ppd->last_pstate != ib_pstate) {
|
|
dd_dev_info(ppd->dd,
|
|
"%s: physical state changed to %s (0x%x), phy 0x%x\n",
|
|
__func__, opa_pstate_name(ib_pstate), ib_pstate,
|
|
pstate);
|
|
ppd->last_pstate = ib_pstate;
|
|
}
|
|
return ib_pstate;
|
|
}
|
|
|
|
/*
|
|
* Read/modify/write ASIC_QSFP register bits as selected by mask
|
|
* data: 0 or 1 in the positions depending on what needs to be written
|
|
* dir: 0 for read, 1 for write
|
|
* mask: select by setting
|
|
* I2CCLK (bit 0)
|
|
* I2CDATA (bit 1)
|
|
*/
|
|
u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
|
|
u32 mask)
|
|
{
|
|
u64 qsfp_oe, target_oe;
|
|
|
|
target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
|
|
if (mask) {
|
|
/* We are writing register bits, so lock access */
|
|
dir &= mask;
|
|
data &= mask;
|
|
|
|
qsfp_oe = read_csr(dd, target_oe);
|
|
qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
|
|
write_csr(dd, target_oe, qsfp_oe);
|
|
}
|
|
/* We are exclusively reading bits here, but it is unlikely
|
|
* we'll get valid data when we set the direction of the pin
|
|
* in the same call, so read should call this function again
|
|
* to get valid data
|
|
*/
|
|
return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
|
|
}
|
|
|
|
#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
|
|
(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
|
|
|
|
#define SET_STATIC_RATE_CONTROL_SMASK(r) \
|
|
(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
|
|
|
|
int hfi1_init_ctxt(struct send_context *sc)
|
|
{
|
|
if (sc) {
|
|
struct hfi1_devdata *dd = sc->dd;
|
|
u64 reg;
|
|
u8 set = (sc->type == SC_USER ?
|
|
HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
|
|
HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
|
|
reg = read_kctxt_csr(dd, sc->hw_context,
|
|
SEND_CTXT_CHECK_ENABLE);
|
|
if (set)
|
|
CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
|
|
else
|
|
SET_STATIC_RATE_CONTROL_SMASK(reg);
|
|
write_kctxt_csr(dd, sc->hw_context,
|
|
SEND_CTXT_CHECK_ENABLE, reg);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
|
|
{
|
|
int ret = 0;
|
|
u64 reg;
|
|
|
|
if (dd->icode != ICODE_RTL_SILICON) {
|
|
if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
|
|
dd_dev_info(dd, "%s: tempsense not supported by HW\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
reg = read_csr(dd, ASIC_STS_THERM);
|
|
temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
|
|
ASIC_STS_THERM_CURR_TEMP_MASK);
|
|
temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
|
|
ASIC_STS_THERM_LO_TEMP_MASK);
|
|
temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
|
|
ASIC_STS_THERM_HI_TEMP_MASK);
|
|
temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
|
|
ASIC_STS_THERM_CRIT_TEMP_MASK);
|
|
/* triggers is a 3-bit value - 1 bit per trigger. */
|
|
temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ========================================================================= */
|
|
|
|
/*
|
|
* Enable/disable chip from delivering interrupts.
|
|
*/
|
|
void set_intr_state(struct hfi1_devdata *dd, u32 enable)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* In HFI, the mask needs to be 1 to allow interrupts.
|
|
*/
|
|
if (enable) {
|
|
/* enable all interrupts */
|
|
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
|
|
write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
|
|
|
|
init_qsfp_int(dd);
|
|
} else {
|
|
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
|
|
write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear all interrupt sources on the chip.
|
|
*/
|
|
static void clear_all_interrupts(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
|
|
write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
|
|
|
|
write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
|
|
write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
|
|
write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
|
|
write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
|
|
write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
|
|
write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
|
|
write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
|
|
for (i = 0; i < dd->chip_send_contexts; i++)
|
|
write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
|
|
for (i = 0; i < dd->chip_sdma_engines; i++)
|
|
write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
|
|
|
|
write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
|
|
write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
|
|
write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
|
|
}
|
|
|
|
/* Move to pcie.c? */
|
|
static void disable_intx(struct pci_dev *pdev)
|
|
{
|
|
pci_intx(pdev, 0);
|
|
}
|
|
|
|
static void clean_up_interrupts(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/* remove irqs - must happen before disabling/turning off */
|
|
if (dd->num_msix_entries) {
|
|
/* MSI-X */
|
|
struct hfi1_msix_entry *me = dd->msix_entries;
|
|
|
|
for (i = 0; i < dd->num_msix_entries; i++, me++) {
|
|
if (!me->arg) /* => no irq, no affinity */
|
|
continue;
|
|
hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
|
|
free_irq(me->msix.vector, me->arg);
|
|
}
|
|
} else {
|
|
/* INTx */
|
|
if (dd->requested_intx_irq) {
|
|
free_irq(dd->pcidev->irq, dd);
|
|
dd->requested_intx_irq = 0;
|
|
}
|
|
}
|
|
|
|
/* turn off interrupts */
|
|
if (dd->num_msix_entries) {
|
|
/* MSI-X */
|
|
pci_disable_msix(dd->pcidev);
|
|
} else {
|
|
/* INTx */
|
|
disable_intx(dd->pcidev);
|
|
}
|
|
|
|
/* clean structures */
|
|
kfree(dd->msix_entries);
|
|
dd->msix_entries = NULL;
|
|
dd->num_msix_entries = 0;
|
|
}
|
|
|
|
/*
|
|
* Remap the interrupt source from the general handler to the given MSI-X
|
|
* interrupt.
|
|
*/
|
|
static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
|
|
{
|
|
u64 reg;
|
|
int m, n;
|
|
|
|
/* clear from the handled mask of the general interrupt */
|
|
m = isrc / 64;
|
|
n = isrc % 64;
|
|
dd->gi_mask[m] &= ~((u64)1 << n);
|
|
|
|
/* direct the chip source to the given MSI-X interrupt */
|
|
m = isrc / 8;
|
|
n = isrc % 8;
|
|
reg = read_csr(dd, CCE_INT_MAP + (8 * m));
|
|
reg &= ~((u64)0xff << (8 * n));
|
|
reg |= ((u64)msix_intr & 0xff) << (8 * n);
|
|
write_csr(dd, CCE_INT_MAP + (8 * m), reg);
|
|
}
|
|
|
|
static void remap_sdma_interrupts(struct hfi1_devdata *dd,
|
|
int engine, int msix_intr)
|
|
{
|
|
/*
|
|
* SDMA engine interrupt sources grouped by type, rather than
|
|
* engine. Per-engine interrupts are as follows:
|
|
* SDMA
|
|
* SDMAProgress
|
|
* SDMAIdle
|
|
*/
|
|
remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
|
|
msix_intr);
|
|
remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
|
|
msix_intr);
|
|
remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
|
|
msix_intr);
|
|
}
|
|
|
|
static int request_intx_irq(struct hfi1_devdata *dd)
|
|
{
|
|
int ret;
|
|
|
|
snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
|
|
dd->unit);
|
|
ret = request_irq(dd->pcidev->irq, general_interrupt,
|
|
IRQF_SHARED, dd->intx_name, dd);
|
|
if (ret)
|
|
dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
|
|
ret);
|
|
else
|
|
dd->requested_intx_irq = 1;
|
|
return ret;
|
|
}
|
|
|
|
static int request_msix_irqs(struct hfi1_devdata *dd)
|
|
{
|
|
int first_general, last_general;
|
|
int first_sdma, last_sdma;
|
|
int first_rx, last_rx;
|
|
int i, ret = 0;
|
|
|
|
/* calculate the ranges we are going to use */
|
|
first_general = 0;
|
|
last_general = first_general + 1;
|
|
first_sdma = last_general;
|
|
last_sdma = first_sdma + dd->num_sdma;
|
|
first_rx = last_sdma;
|
|
last_rx = first_rx + dd->n_krcv_queues;
|
|
|
|
/*
|
|
* Sanity check - the code expects all SDMA chip source
|
|
* interrupts to be in the same CSR, starting at bit 0. Verify
|
|
* that this is true by checking the bit location of the start.
|
|
*/
|
|
BUILD_BUG_ON(IS_SDMA_START % 64);
|
|
|
|
for (i = 0; i < dd->num_msix_entries; i++) {
|
|
struct hfi1_msix_entry *me = &dd->msix_entries[i];
|
|
const char *err_info;
|
|
irq_handler_t handler;
|
|
irq_handler_t thread = NULL;
|
|
void *arg;
|
|
int idx;
|
|
struct hfi1_ctxtdata *rcd = NULL;
|
|
struct sdma_engine *sde = NULL;
|
|
|
|
/* obtain the arguments to request_irq */
|
|
if (first_general <= i && i < last_general) {
|
|
idx = i - first_general;
|
|
handler = general_interrupt;
|
|
arg = dd;
|
|
snprintf(me->name, sizeof(me->name),
|
|
DRIVER_NAME "_%d", dd->unit);
|
|
err_info = "general";
|
|
me->type = IRQ_GENERAL;
|
|
} else if (first_sdma <= i && i < last_sdma) {
|
|
idx = i - first_sdma;
|
|
sde = &dd->per_sdma[idx];
|
|
handler = sdma_interrupt;
|
|
arg = sde;
|
|
snprintf(me->name, sizeof(me->name),
|
|
DRIVER_NAME "_%d sdma%d", dd->unit, idx);
|
|
err_info = "sdma";
|
|
remap_sdma_interrupts(dd, idx, i);
|
|
me->type = IRQ_SDMA;
|
|
} else if (first_rx <= i && i < last_rx) {
|
|
idx = i - first_rx;
|
|
rcd = dd->rcd[idx];
|
|
/* no interrupt if no rcd */
|
|
if (!rcd)
|
|
continue;
|
|
/*
|
|
* Set the interrupt register and mask for this
|
|
* context's interrupt.
|
|
*/
|
|
rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
|
|
rcd->imask = ((u64)1) <<
|
|
((IS_RCVAVAIL_START + idx) % 64);
|
|
handler = receive_context_interrupt;
|
|
thread = receive_context_thread;
|
|
arg = rcd;
|
|
snprintf(me->name, sizeof(me->name),
|
|
DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
|
|
err_info = "receive context";
|
|
remap_intr(dd, IS_RCVAVAIL_START + idx, i);
|
|
me->type = IRQ_RCVCTXT;
|
|
} else {
|
|
/* not in our expected range - complain, then
|
|
* ignore it
|
|
*/
|
|
dd_dev_err(dd,
|
|
"Unexpected extra MSI-X interrupt %d\n", i);
|
|
continue;
|
|
}
|
|
/* no argument, no interrupt */
|
|
if (!arg)
|
|
continue;
|
|
/* make sure the name is terminated */
|
|
me->name[sizeof(me->name) - 1] = 0;
|
|
|
|
ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
|
|
me->name, arg);
|
|
if (ret) {
|
|
dd_dev_err(dd,
|
|
"unable to allocate %s interrupt, vector %d, index %d, err %d\n",
|
|
err_info, me->msix.vector, idx, ret);
|
|
return ret;
|
|
}
|
|
/*
|
|
* assign arg after request_irq call, so it will be
|
|
* cleaned up
|
|
*/
|
|
me->arg = arg;
|
|
|
|
ret = hfi1_get_irq_affinity(dd, me);
|
|
if (ret)
|
|
dd_dev_err(dd,
|
|
"unable to pin IRQ %d\n", ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set the general handler to accept all interrupts, remap all
|
|
* chip interrupts back to MSI-X 0.
|
|
*/
|
|
static void reset_interrupts(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/* all interrupts handled by the general handler */
|
|
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
|
|
dd->gi_mask[i] = ~(u64)0;
|
|
|
|
/* all chip interrupts map to MSI-X 0 */
|
|
for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
|
|
write_csr(dd, CCE_INT_MAP + (8 * i), 0);
|
|
}
|
|
|
|
static int set_up_interrupts(struct hfi1_devdata *dd)
|
|
{
|
|
struct hfi1_msix_entry *entries;
|
|
u32 total, request;
|
|
int i, ret;
|
|
int single_interrupt = 0; /* we expect to have all the interrupts */
|
|
|
|
/*
|
|
* Interrupt count:
|
|
* 1 general, "slow path" interrupt (includes the SDMA engines
|
|
* slow source, SDMACleanupDone)
|
|
* N interrupts - one per used SDMA engine
|
|
* M interrupt - one per kernel receive context
|
|
*/
|
|
total = 1 + dd->num_sdma + dd->n_krcv_queues;
|
|
|
|
entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
|
|
if (!entries) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
/* 1-1 MSI-X entry assignment */
|
|
for (i = 0; i < total; i++)
|
|
entries[i].msix.entry = i;
|
|
|
|
/* ask for MSI-X interrupts */
|
|
request = total;
|
|
request_msix(dd, &request, entries);
|
|
|
|
if (request == 0) {
|
|
/* using INTx */
|
|
/* dd->num_msix_entries already zero */
|
|
kfree(entries);
|
|
single_interrupt = 1;
|
|
dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
|
|
} else {
|
|
/* using MSI-X */
|
|
dd->num_msix_entries = request;
|
|
dd->msix_entries = entries;
|
|
|
|
if (request != total) {
|
|
/* using MSI-X, with reduced interrupts */
|
|
dd_dev_err(
|
|
dd,
|
|
"cannot handle reduced interrupt case, want %u, got %u\n",
|
|
total, request);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
|
|
}
|
|
|
|
/* mask all interrupts */
|
|
set_intr_state(dd, 0);
|
|
/* clear all pending interrupts */
|
|
clear_all_interrupts(dd);
|
|
|
|
/* reset general handler mask, chip MSI-X mappings */
|
|
reset_interrupts(dd);
|
|
|
|
if (single_interrupt)
|
|
ret = request_intx_irq(dd);
|
|
else
|
|
ret = request_msix_irqs(dd);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
clean_up_interrupts(dd);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set up context values in dd. Sets:
|
|
*
|
|
* num_rcv_contexts - number of contexts being used
|
|
* n_krcv_queues - number of kernel contexts
|
|
* first_user_ctxt - first non-kernel context in array of contexts
|
|
* freectxts - number of free user contexts
|
|
* num_send_contexts - number of PIO send contexts being used
|
|
*/
|
|
static int set_up_context_variables(struct hfi1_devdata *dd)
|
|
{
|
|
int num_kernel_contexts;
|
|
int total_contexts;
|
|
int ret;
|
|
unsigned ngroups;
|
|
int qos_rmt_count;
|
|
int user_rmt_reduced;
|
|
|
|
/*
|
|
* Kernel receive contexts:
|
|
* - min of 2 or 1 context/numa (excluding control context)
|
|
* - Context 0 - control context (VL15/multicast/error)
|
|
* - Context 1 - first kernel context
|
|
* - Context 2 - second kernel context
|
|
* ...
|
|
*/
|
|
if (n_krcvqs)
|
|
/*
|
|
* n_krcvqs is the sum of module parameter kernel receive
|
|
* contexts, krcvqs[]. It does not include the control
|
|
* context, so add that.
|
|
*/
|
|
num_kernel_contexts = n_krcvqs + 1;
|
|
else
|
|
num_kernel_contexts = num_online_nodes() + 1;
|
|
num_kernel_contexts =
|
|
max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
|
|
/*
|
|
* Every kernel receive context needs an ACK send context.
|
|
* one send context is allocated for each VL{0-7} and VL15
|
|
*/
|
|
if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
|
|
dd_dev_err(dd,
|
|
"Reducing # kernel rcv contexts to: %d, from %d\n",
|
|
(int)(dd->chip_send_contexts - num_vls - 1),
|
|
(int)num_kernel_contexts);
|
|
num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
|
|
}
|
|
/*
|
|
* User contexts:
|
|
* - default to 1 user context per real (non-HT) CPU core if
|
|
* num_user_contexts is negative
|
|
*/
|
|
if (num_user_contexts < 0)
|
|
num_user_contexts =
|
|
cpumask_weight(&dd->affinity->real_cpu_mask);
|
|
|
|
total_contexts = num_kernel_contexts + num_user_contexts;
|
|
|
|
/*
|
|
* Adjust the counts given a global max.
|
|
*/
|
|
if (total_contexts > dd->chip_rcv_contexts) {
|
|
dd_dev_err(dd,
|
|
"Reducing # user receive contexts to: %d, from %d\n",
|
|
(int)(dd->chip_rcv_contexts - num_kernel_contexts),
|
|
(int)num_user_contexts);
|
|
num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
|
|
/* recalculate */
|
|
total_contexts = num_kernel_contexts + num_user_contexts;
|
|
}
|
|
|
|
/* each user context requires an entry in the RMT */
|
|
qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
|
|
if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
|
|
user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
|
|
dd_dev_err(dd,
|
|
"RMT size is reducing the number of user receive contexts from %d to %d\n",
|
|
(int)num_user_contexts,
|
|
user_rmt_reduced);
|
|
/* recalculate */
|
|
num_user_contexts = user_rmt_reduced;
|
|
total_contexts = num_kernel_contexts + num_user_contexts;
|
|
}
|
|
|
|
/* the first N are kernel contexts, the rest are user contexts */
|
|
dd->num_rcv_contexts = total_contexts;
|
|
dd->n_krcv_queues = num_kernel_contexts;
|
|
dd->first_user_ctxt = num_kernel_contexts;
|
|
dd->num_user_contexts = num_user_contexts;
|
|
dd->freectxts = num_user_contexts;
|
|
dd_dev_info(dd,
|
|
"rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
|
|
(int)dd->chip_rcv_contexts,
|
|
(int)dd->num_rcv_contexts,
|
|
(int)dd->n_krcv_queues,
|
|
(int)dd->num_rcv_contexts - dd->n_krcv_queues);
|
|
|
|
/*
|
|
* Receive array allocation:
|
|
* All RcvArray entries are divided into groups of 8. This
|
|
* is required by the hardware and will speed up writes to
|
|
* consecutive entries by using write-combining of the entire
|
|
* cacheline.
|
|
*
|
|
* The number of groups are evenly divided among all contexts.
|
|
* any left over groups will be given to the first N user
|
|
* contexts.
|
|
*/
|
|
dd->rcv_entries.group_size = RCV_INCREMENT;
|
|
ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
|
|
dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
|
|
dd->rcv_entries.nctxt_extra = ngroups -
|
|
(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
|
|
dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
|
|
dd->rcv_entries.ngroups,
|
|
dd->rcv_entries.nctxt_extra);
|
|
if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
|
|
MAX_EAGER_ENTRIES * 2) {
|
|
dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
|
|
dd->rcv_entries.group_size;
|
|
dd_dev_info(dd,
|
|
"RcvArray group count too high, change to %u\n",
|
|
dd->rcv_entries.ngroups);
|
|
dd->rcv_entries.nctxt_extra = 0;
|
|
}
|
|
/*
|
|
* PIO send contexts
|
|
*/
|
|
ret = init_sc_pools_and_sizes(dd);
|
|
if (ret >= 0) { /* success */
|
|
dd->num_send_contexts = ret;
|
|
dd_dev_info(
|
|
dd,
|
|
"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
|
|
dd->chip_send_contexts,
|
|
dd->num_send_contexts,
|
|
dd->sc_sizes[SC_KERNEL].count,
|
|
dd->sc_sizes[SC_ACK].count,
|
|
dd->sc_sizes[SC_USER].count,
|
|
dd->sc_sizes[SC_VL15].count);
|
|
ret = 0; /* success */
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set the device/port partition key table. The MAD code
|
|
* will ensure that, at least, the partial management
|
|
* partition key is present in the table.
|
|
*/
|
|
static void set_partition_keys(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u64 reg = 0;
|
|
int i;
|
|
|
|
dd_dev_info(dd, "Setting partition keys\n");
|
|
for (i = 0; i < hfi1_get_npkeys(dd); i++) {
|
|
reg |= (ppd->pkeys[i] &
|
|
RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
|
|
((i % 4) *
|
|
RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
|
|
/* Each register holds 4 PKey values. */
|
|
if ((i % 4) == 3) {
|
|
write_csr(dd, RCV_PARTITION_KEY +
|
|
((i - 3) * 2), reg);
|
|
reg = 0;
|
|
}
|
|
}
|
|
|
|
/* Always enable HW pkeys check when pkeys table is set */
|
|
add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
|
|
}
|
|
|
|
/*
|
|
* These CSRs and memories are uninitialized on reset and must be
|
|
* written before reading to set the ECC/parity bits.
|
|
*
|
|
* NOTE: All user context CSRs that are not mmaped write-only
|
|
* (e.g. the TID flows) must be initialized even if the driver never
|
|
* reads them.
|
|
*/
|
|
static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
|
|
{
|
|
int i, j;
|
|
|
|
/* CceIntMap */
|
|
for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
|
|
write_csr(dd, CCE_INT_MAP + (8 * i), 0);
|
|
|
|
/* SendCtxtCreditReturnAddr */
|
|
for (i = 0; i < dd->chip_send_contexts; i++)
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
|
|
|
|
/* PIO Send buffers */
|
|
/* SDMA Send buffers */
|
|
/*
|
|
* These are not normally read, and (presently) have no method
|
|
* to be read, so are not pre-initialized
|
|
*/
|
|
|
|
/* RcvHdrAddr */
|
|
/* RcvHdrTailAddr */
|
|
/* RcvTidFlowTable */
|
|
for (i = 0; i < dd->chip_rcv_contexts; i++) {
|
|
write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
|
|
write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
|
|
for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
|
|
write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
|
|
}
|
|
|
|
/* RcvArray */
|
|
for (i = 0; i < dd->chip_rcv_array_count; i++)
|
|
write_csr(dd, RCV_ARRAY + (8 * i),
|
|
RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
|
|
|
|
/* RcvQPMapTable */
|
|
for (i = 0; i < 32; i++)
|
|
write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
|
|
}
|
|
|
|
/*
|
|
* Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
|
|
*/
|
|
static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
|
|
u64 ctrl_bits)
|
|
{
|
|
unsigned long timeout;
|
|
u64 reg;
|
|
|
|
/* is the condition present? */
|
|
reg = read_csr(dd, CCE_STATUS);
|
|
if ((reg & status_bits) == 0)
|
|
return;
|
|
|
|
/* clear the condition */
|
|
write_csr(dd, CCE_CTRL, ctrl_bits);
|
|
|
|
/* wait for the condition to clear */
|
|
timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
|
|
while (1) {
|
|
reg = read_csr(dd, CCE_STATUS);
|
|
if ((reg & status_bits) == 0)
|
|
return;
|
|
if (time_after(jiffies, timeout)) {
|
|
dd_dev_err(dd,
|
|
"Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
|
|
status_bits, reg & status_bits);
|
|
return;
|
|
}
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
/* set CCE CSRs to chip reset defaults */
|
|
static void reset_cce_csrs(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/* CCE_REVISION read-only */
|
|
/* CCE_REVISION2 read-only */
|
|
/* CCE_CTRL - bits clear automatically */
|
|
/* CCE_STATUS read-only, use CceCtrl to clear */
|
|
clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
|
|
clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
|
|
clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
|
|
for (i = 0; i < CCE_NUM_SCRATCH; i++)
|
|
write_csr(dd, CCE_SCRATCH + (8 * i), 0);
|
|
/* CCE_ERR_STATUS read-only */
|
|
write_csr(dd, CCE_ERR_MASK, 0);
|
|
write_csr(dd, CCE_ERR_CLEAR, ~0ull);
|
|
/* CCE_ERR_FORCE leave alone */
|
|
for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
|
|
write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
|
|
write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
|
|
/* CCE_PCIE_CTRL leave alone */
|
|
for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
|
|
write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
|
|
write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
|
|
CCE_MSIX_TABLE_UPPER_RESETCSR);
|
|
}
|
|
for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
|
|
/* CCE_MSIX_PBA read-only */
|
|
write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
|
|
write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
|
|
}
|
|
for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
|
|
write_csr(dd, CCE_INT_MAP, 0);
|
|
for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
|
|
/* CCE_INT_STATUS read-only */
|
|
write_csr(dd, CCE_INT_MASK + (8 * i), 0);
|
|
write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
|
|
/* CCE_INT_FORCE leave alone */
|
|
/* CCE_INT_BLOCKED read-only */
|
|
}
|
|
for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
|
|
write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
|
|
}
|
|
|
|
/* set MISC CSRs to chip reset defaults */
|
|
static void reset_misc_csrs(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
|
|
write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
|
|
write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
|
|
}
|
|
/*
|
|
* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
|
|
* only be written 128-byte chunks
|
|
*/
|
|
/* init RSA engine to clear lingering errors */
|
|
write_csr(dd, MISC_CFG_RSA_CMD, 1);
|
|
write_csr(dd, MISC_CFG_RSA_MU, 0);
|
|
write_csr(dd, MISC_CFG_FW_CTRL, 0);
|
|
/* MISC_STS_8051_DIGEST read-only */
|
|
/* MISC_STS_SBM_DIGEST read-only */
|
|
/* MISC_STS_PCIE_DIGEST read-only */
|
|
/* MISC_STS_FAB_DIGEST read-only */
|
|
/* MISC_ERR_STATUS read-only */
|
|
write_csr(dd, MISC_ERR_MASK, 0);
|
|
write_csr(dd, MISC_ERR_CLEAR, ~0ull);
|
|
/* MISC_ERR_FORCE leave alone */
|
|
}
|
|
|
|
/* set TXE CSRs to chip reset defaults */
|
|
static void reset_txe_csrs(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* TXE Kernel CSRs
|
|
*/
|
|
write_csr(dd, SEND_CTRL, 0);
|
|
__cm_reset(dd, 0); /* reset CM internal state */
|
|
/* SEND_CONTEXTS read-only */
|
|
/* SEND_DMA_ENGINES read-only */
|
|
/* SEND_PIO_MEM_SIZE read-only */
|
|
/* SEND_DMA_MEM_SIZE read-only */
|
|
write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
|
|
pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
|
|
/* SEND_PIO_ERR_STATUS read-only */
|
|
write_csr(dd, SEND_PIO_ERR_MASK, 0);
|
|
write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
|
|
/* SEND_PIO_ERR_FORCE leave alone */
|
|
/* SEND_DMA_ERR_STATUS read-only */
|
|
write_csr(dd, SEND_DMA_ERR_MASK, 0);
|
|
write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
|
|
/* SEND_DMA_ERR_FORCE leave alone */
|
|
/* SEND_EGRESS_ERR_STATUS read-only */
|
|
write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
|
|
write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
|
|
/* SEND_EGRESS_ERR_FORCE leave alone */
|
|
write_csr(dd, SEND_BTH_QP, 0);
|
|
write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
|
|
write_csr(dd, SEND_SC2VLT0, 0);
|
|
write_csr(dd, SEND_SC2VLT1, 0);
|
|
write_csr(dd, SEND_SC2VLT2, 0);
|
|
write_csr(dd, SEND_SC2VLT3, 0);
|
|
write_csr(dd, SEND_LEN_CHECK0, 0);
|
|
write_csr(dd, SEND_LEN_CHECK1, 0);
|
|
/* SEND_ERR_STATUS read-only */
|
|
write_csr(dd, SEND_ERR_MASK, 0);
|
|
write_csr(dd, SEND_ERR_CLEAR, ~0ull);
|
|
/* SEND_ERR_FORCE read-only */
|
|
for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
|
|
write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
|
|
for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
|
|
write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
|
|
for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
|
|
write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
|
|
for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
|
|
write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
|
|
for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
|
|
write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
|
|
write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
|
|
write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
|
|
/* SEND_CM_CREDIT_USED_STATUS read-only */
|
|
write_csr(dd, SEND_CM_TIMER_CTRL, 0);
|
|
write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
|
|
write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
|
|
write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
|
|
write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
|
|
for (i = 0; i < TXE_NUM_DATA_VL; i++)
|
|
write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
|
|
write_csr(dd, SEND_CM_CREDIT_VL15, 0);
|
|
/* SEND_CM_CREDIT_USED_VL read-only */
|
|
/* SEND_CM_CREDIT_USED_VL15 read-only */
|
|
/* SEND_EGRESS_CTXT_STATUS read-only */
|
|
/* SEND_EGRESS_SEND_DMA_STATUS read-only */
|
|
write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
|
|
/* SEND_EGRESS_ERR_INFO read-only */
|
|
/* SEND_EGRESS_ERR_SOURCE read-only */
|
|
|
|
/*
|
|
* TXE Per-Context CSRs
|
|
*/
|
|
for (i = 0; i < dd->chip_send_contexts; i++) {
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
|
|
}
|
|
|
|
/*
|
|
* TXE Per-SDMA CSRs
|
|
*/
|
|
for (i = 0; i < dd->chip_sdma_engines; i++) {
|
|
write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
|
|
/* SEND_DMA_STATUS read-only */
|
|
write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
|
|
/* SEND_DMA_HEAD read-only */
|
|
write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
|
|
/* SEND_DMA_IDLE_CNT read-only */
|
|
write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
|
|
/* SEND_DMA_DESC_FETCHED_CNT read-only */
|
|
/* SEND_DMA_ENG_ERR_STATUS read-only */
|
|
write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
|
|
/* SEND_DMA_ENG_ERR_FORCE leave alone */
|
|
write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
|
|
write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Expect on entry:
|
|
* o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
|
|
*/
|
|
static void init_rbufs(struct hfi1_devdata *dd)
|
|
{
|
|
u64 reg;
|
|
int count;
|
|
|
|
/*
|
|
* Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
|
|
* clear.
|
|
*/
|
|
count = 0;
|
|
while (1) {
|
|
reg = read_csr(dd, RCV_STATUS);
|
|
if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
|
|
| RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
|
|
break;
|
|
/*
|
|
* Give up after 1ms - maximum wait time.
|
|
*
|
|
* RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
|
|
* 250MB/s bandwidth. Lower rate to 66% for overhead to get:
|
|
* 148 KB / (66% * 250MB/s) = 920us
|
|
*/
|
|
if (count++ > 500) {
|
|
dd_dev_err(dd,
|
|
"%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
|
|
__func__, reg);
|
|
break;
|
|
}
|
|
udelay(2); /* do not busy-wait the CSR */
|
|
}
|
|
|
|
/* start the init - expect RcvCtrl to be 0 */
|
|
write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
|
|
|
|
/*
|
|
* Read to force the write of Rcvtrl.RxRbufInit. There is a brief
|
|
* period after the write before RcvStatus.RxRbufInitDone is valid.
|
|
* The delay in the first run through the loop below is sufficient and
|
|
* required before the first read of RcvStatus.RxRbufInintDone.
|
|
*/
|
|
read_csr(dd, RCV_CTRL);
|
|
|
|
/* wait for the init to finish */
|
|
count = 0;
|
|
while (1) {
|
|
/* delay is required first time through - see above */
|
|
udelay(2); /* do not busy-wait the CSR */
|
|
reg = read_csr(dd, RCV_STATUS);
|
|
if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
|
|
break;
|
|
|
|
/* give up after 100us - slowest possible at 33MHz is 73us */
|
|
if (count++ > 50) {
|
|
dd_dev_err(dd,
|
|
"%s: RcvStatus.RxRbufInit not set, continuing\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* set RXE CSRs to chip reset defaults */
|
|
static void reset_rxe_csrs(struct hfi1_devdata *dd)
|
|
{
|
|
int i, j;
|
|
|
|
/*
|
|
* RXE Kernel CSRs
|
|
*/
|
|
write_csr(dd, RCV_CTRL, 0);
|
|
init_rbufs(dd);
|
|
/* RCV_STATUS read-only */
|
|
/* RCV_CONTEXTS read-only */
|
|
/* RCV_ARRAY_CNT read-only */
|
|
/* RCV_BUF_SIZE read-only */
|
|
write_csr(dd, RCV_BTH_QP, 0);
|
|
write_csr(dd, RCV_MULTICAST, 0);
|
|
write_csr(dd, RCV_BYPASS, 0);
|
|
write_csr(dd, RCV_VL15, 0);
|
|
/* this is a clear-down */
|
|
write_csr(dd, RCV_ERR_INFO,
|
|
RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
|
|
/* RCV_ERR_STATUS read-only */
|
|
write_csr(dd, RCV_ERR_MASK, 0);
|
|
write_csr(dd, RCV_ERR_CLEAR, ~0ull);
|
|
/* RCV_ERR_FORCE leave alone */
|
|
for (i = 0; i < 32; i++)
|
|
write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
|
|
for (i = 0; i < 4; i++)
|
|
write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
|
|
for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
|
|
write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
|
|
for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
|
|
write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
|
|
for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
|
|
write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
|
|
write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
|
|
write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
|
|
}
|
|
for (i = 0; i < 32; i++)
|
|
write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
|
|
|
|
/*
|
|
* RXE Kernel and User Per-Context CSRs
|
|
*/
|
|
for (i = 0; i < dd->chip_rcv_contexts; i++) {
|
|
/* kernel */
|
|
write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
|
|
/* RCV_CTXT_STATUS read-only */
|
|
write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
|
|
write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
|
|
write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
|
|
write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
|
|
write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
|
|
write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
|
|
write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
|
|
write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
|
|
write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
|
|
write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
|
|
|
|
/* user */
|
|
/* RCV_HDR_TAIL read-only */
|
|
write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
|
|
/* RCV_EGR_INDEX_TAIL read-only */
|
|
write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
|
|
/* RCV_EGR_OFFSET_TAIL read-only */
|
|
for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
|
|
write_uctxt_csr(dd, i,
|
|
RCV_TID_FLOW_TABLE + (8 * j), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set sc2vl tables.
|
|
*
|
|
* They power on to zeros, so to avoid send context errors
|
|
* they need to be set:
|
|
*
|
|
* SC 0-7 -> VL 0-7 (respectively)
|
|
* SC 15 -> VL 15
|
|
* otherwise
|
|
* -> VL 0
|
|
*/
|
|
static void init_sc2vl_tables(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
/* init per architecture spec, constrained by hardware capability */
|
|
|
|
/* HFI maps sent packets */
|
|
write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
|
|
0,
|
|
0, 0, 1, 1,
|
|
2, 2, 3, 3,
|
|
4, 4, 5, 5,
|
|
6, 6, 7, 7));
|
|
write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
|
|
1,
|
|
8, 0, 9, 0,
|
|
10, 0, 11, 0,
|
|
12, 0, 13, 0,
|
|
14, 0, 15, 15));
|
|
write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
|
|
2,
|
|
16, 0, 17, 0,
|
|
18, 0, 19, 0,
|
|
20, 0, 21, 0,
|
|
22, 0, 23, 0));
|
|
write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
|
|
3,
|
|
24, 0, 25, 0,
|
|
26, 0, 27, 0,
|
|
28, 0, 29, 0,
|
|
30, 0, 31, 0));
|
|
|
|
/* DC maps received packets */
|
|
write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
|
|
15_0,
|
|
0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
|
|
8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
|
|
write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
|
|
31_16,
|
|
16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
|
|
24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
|
|
|
|
/* initialize the cached sc2vl values consistently with h/w */
|
|
for (i = 0; i < 32; i++) {
|
|
if (i < 8 || i == 15)
|
|
*((u8 *)(dd->sc2vl) + i) = (u8)i;
|
|
else
|
|
*((u8 *)(dd->sc2vl) + i) = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read chip sizes and then reset parts to sane, disabled, values. We cannot
|
|
* depend on the chip going through a power-on reset - a driver may be loaded
|
|
* and unloaded many times.
|
|
*
|
|
* Do not write any CSR values to the chip in this routine - there may be
|
|
* a reset following the (possible) FLR in this routine.
|
|
*
|
|
*/
|
|
static void init_chip(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Put the HFI CSRs in a known state.
|
|
* Combine this with a DC reset.
|
|
*
|
|
* Stop the device from doing anything while we do a
|
|
* reset. We know there are no other active users of
|
|
* the device since we are now in charge. Turn off
|
|
* off all outbound and inbound traffic and make sure
|
|
* the device does not generate any interrupts.
|
|
*/
|
|
|
|
/* disable send contexts and SDMA engines */
|
|
write_csr(dd, SEND_CTRL, 0);
|
|
for (i = 0; i < dd->chip_send_contexts; i++)
|
|
write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
|
|
for (i = 0; i < dd->chip_sdma_engines; i++)
|
|
write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
|
|
/* disable port (turn off RXE inbound traffic) and contexts */
|
|
write_csr(dd, RCV_CTRL, 0);
|
|
for (i = 0; i < dd->chip_rcv_contexts; i++)
|
|
write_csr(dd, RCV_CTXT_CTRL, 0);
|
|
/* mask all interrupt sources */
|
|
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
|
|
write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
|
|
|
|
/*
|
|
* DC Reset: do a full DC reset before the register clear.
|
|
* A recommended length of time to hold is one CSR read,
|
|
* so reread the CceDcCtrl. Then, hold the DC in reset
|
|
* across the clear.
|
|
*/
|
|
write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
|
|
(void)read_csr(dd, CCE_DC_CTRL);
|
|
|
|
if (use_flr) {
|
|
/*
|
|
* A FLR will reset the SPC core and part of the PCIe.
|
|
* The parts that need to be restored have already been
|
|
* saved.
|
|
*/
|
|
dd_dev_info(dd, "Resetting CSRs with FLR\n");
|
|
|
|
/* do the FLR, the DC reset will remain */
|
|
hfi1_pcie_flr(dd);
|
|
|
|
/* restore command and BARs */
|
|
restore_pci_variables(dd);
|
|
|
|
if (is_ax(dd)) {
|
|
dd_dev_info(dd, "Resetting CSRs with FLR\n");
|
|
hfi1_pcie_flr(dd);
|
|
restore_pci_variables(dd);
|
|
}
|
|
} else {
|
|
dd_dev_info(dd, "Resetting CSRs with writes\n");
|
|
reset_cce_csrs(dd);
|
|
reset_txe_csrs(dd);
|
|
reset_rxe_csrs(dd);
|
|
reset_misc_csrs(dd);
|
|
}
|
|
/* clear the DC reset */
|
|
write_csr(dd, CCE_DC_CTRL, 0);
|
|
|
|
/* Set the LED off */
|
|
setextled(dd, 0);
|
|
|
|
/*
|
|
* Clear the QSFP reset.
|
|
* An FLR enforces a 0 on all out pins. The driver does not touch
|
|
* ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
|
|
* anything plugged constantly in reset, if it pays attention
|
|
* to RESET_N.
|
|
* Prime examples of this are optical cables. Set all pins high.
|
|
* I2CCLK and I2CDAT will change per direction, and INT_N and
|
|
* MODPRS_N are input only and their value is ignored.
|
|
*/
|
|
write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
|
|
write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
|
|
init_chip_resources(dd);
|
|
}
|
|
|
|
static void init_early_variables(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/* assign link credit variables */
|
|
dd->vau = CM_VAU;
|
|
dd->link_credits = CM_GLOBAL_CREDITS;
|
|
if (is_ax(dd))
|
|
dd->link_credits--;
|
|
dd->vcu = cu_to_vcu(hfi1_cu);
|
|
/* enough room for 8 MAD packets plus header - 17K */
|
|
dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
|
|
if (dd->vl15_init > dd->link_credits)
|
|
dd->vl15_init = dd->link_credits;
|
|
|
|
write_uninitialized_csrs_and_memories(dd);
|
|
|
|
if (HFI1_CAP_IS_KSET(PKEY_CHECK))
|
|
for (i = 0; i < dd->num_pports; i++) {
|
|
struct hfi1_pportdata *ppd = &dd->pport[i];
|
|
|
|
set_partition_keys(ppd);
|
|
}
|
|
init_sc2vl_tables(dd);
|
|
}
|
|
|
|
static void init_kdeth_qp(struct hfi1_devdata *dd)
|
|
{
|
|
/* user changed the KDETH_QP */
|
|
if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
|
|
/* out of range or illegal value */
|
|
dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
|
|
kdeth_qp = 0;
|
|
}
|
|
if (kdeth_qp == 0) /* not set, or failed range check */
|
|
kdeth_qp = DEFAULT_KDETH_QP;
|
|
|
|
write_csr(dd, SEND_BTH_QP,
|
|
(kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
|
|
SEND_BTH_QP_KDETH_QP_SHIFT);
|
|
|
|
write_csr(dd, RCV_BTH_QP,
|
|
(kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
|
|
RCV_BTH_QP_KDETH_QP_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* init_qpmap_table
|
|
* @dd - device data
|
|
* @first_ctxt - first context
|
|
* @last_ctxt - first context
|
|
*
|
|
* This return sets the qpn mapping table that
|
|
* is indexed by qpn[8:1].
|
|
*
|
|
* The routine will round robin the 256 settings
|
|
* from first_ctxt to last_ctxt.
|
|
*
|
|
* The first/last looks ahead to having specialized
|
|
* receive contexts for mgmt and bypass. Normal
|
|
* verbs traffic will assumed to be on a range
|
|
* of receive contexts.
|
|
*/
|
|
static void init_qpmap_table(struct hfi1_devdata *dd,
|
|
u32 first_ctxt,
|
|
u32 last_ctxt)
|
|
{
|
|
u64 reg = 0;
|
|
u64 regno = RCV_QP_MAP_TABLE;
|
|
int i;
|
|
u64 ctxt = first_ctxt;
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
reg |= ctxt << (8 * (i % 8));
|
|
ctxt++;
|
|
if (ctxt > last_ctxt)
|
|
ctxt = first_ctxt;
|
|
if (i % 8 == 7) {
|
|
write_csr(dd, regno, reg);
|
|
reg = 0;
|
|
regno += 8;
|
|
}
|
|
}
|
|
|
|
add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
|
|
| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
|
|
}
|
|
|
|
struct rsm_map_table {
|
|
u64 map[NUM_MAP_REGS];
|
|
unsigned int used;
|
|
};
|
|
|
|
struct rsm_rule_data {
|
|
u8 offset;
|
|
u8 pkt_type;
|
|
u32 field1_off;
|
|
u32 field2_off;
|
|
u32 index1_off;
|
|
u32 index1_width;
|
|
u32 index2_off;
|
|
u32 index2_width;
|
|
u32 mask1;
|
|
u32 value1;
|
|
u32 mask2;
|
|
u32 value2;
|
|
};
|
|
|
|
/*
|
|
* Return an initialized RMT map table for users to fill in. OK if it
|
|
* returns NULL, indicating no table.
|
|
*/
|
|
static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
|
|
{
|
|
struct rsm_map_table *rmt;
|
|
u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
|
|
|
|
rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
|
|
if (rmt) {
|
|
memset(rmt->map, rxcontext, sizeof(rmt->map));
|
|
rmt->used = 0;
|
|
}
|
|
|
|
return rmt;
|
|
}
|
|
|
|
/*
|
|
* Write the final RMT map table to the chip and free the table. OK if
|
|
* table is NULL.
|
|
*/
|
|
static void complete_rsm_map_table(struct hfi1_devdata *dd,
|
|
struct rsm_map_table *rmt)
|
|
{
|
|
int i;
|
|
|
|
if (rmt) {
|
|
/* write table to chip */
|
|
for (i = 0; i < NUM_MAP_REGS; i++)
|
|
write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
|
|
|
|
/* enable RSM */
|
|
add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a receive side mapping rule.
|
|
*/
|
|
static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
|
|
struct rsm_rule_data *rrd)
|
|
{
|
|
write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
|
|
(u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
|
|
1ull << rule_index | /* enable bit */
|
|
(u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
|
|
write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
|
|
(u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
|
|
(u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
|
|
(u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
|
|
(u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
|
|
(u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
|
|
(u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
|
|
write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
|
|
(u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
|
|
(u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
|
|
(u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
|
|
(u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
|
|
}
|
|
|
|
/* return the number of RSM map table entries that will be used for QOS */
|
|
static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
|
|
unsigned int *np)
|
|
{
|
|
int i;
|
|
unsigned int m, n;
|
|
u8 max_by_vl = 0;
|
|
|
|
/* is QOS active at all? */
|
|
if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
|
|
num_vls == 1 ||
|
|
krcvqsset <= 1)
|
|
goto no_qos;
|
|
|
|
/* determine bits for qpn */
|
|
for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
|
|
if (krcvqs[i] > max_by_vl)
|
|
max_by_vl = krcvqs[i];
|
|
if (max_by_vl > 32)
|
|
goto no_qos;
|
|
m = ilog2(__roundup_pow_of_two(max_by_vl));
|
|
|
|
/* determine bits for vl */
|
|
n = ilog2(__roundup_pow_of_two(num_vls));
|
|
|
|
/* reject if too much is used */
|
|
if ((m + n) > 7)
|
|
goto no_qos;
|
|
|
|
if (mp)
|
|
*mp = m;
|
|
if (np)
|
|
*np = n;
|
|
|
|
return 1 << (m + n);
|
|
|
|
no_qos:
|
|
if (mp)
|
|
*mp = 0;
|
|
if (np)
|
|
*np = 0;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* init_qos - init RX qos
|
|
* @dd - device data
|
|
* @rmt - RSM map table
|
|
*
|
|
* This routine initializes Rule 0 and the RSM map table to implement
|
|
* quality of service (qos).
|
|
*
|
|
* If all of the limit tests succeed, qos is applied based on the array
|
|
* interpretation of krcvqs where entry 0 is VL0.
|
|
*
|
|
* The number of vl bits (n) and the number of qpn bits (m) are computed to
|
|
* feed both the RSM map table and the single rule.
|
|
*/
|
|
static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
|
|
{
|
|
struct rsm_rule_data rrd;
|
|
unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
|
|
unsigned int rmt_entries;
|
|
u64 reg;
|
|
|
|
if (!rmt)
|
|
goto bail;
|
|
rmt_entries = qos_rmt_entries(dd, &m, &n);
|
|
if (rmt_entries == 0)
|
|
goto bail;
|
|
qpns_per_vl = 1 << m;
|
|
|
|
/* enough room in the map table? */
|
|
rmt_entries = 1 << (m + n);
|
|
if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
|
|
goto bail;
|
|
|
|
/* add qos entries to the the RSM map table */
|
|
for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
|
|
unsigned tctxt;
|
|
|
|
for (qpn = 0, tctxt = ctxt;
|
|
krcvqs[i] && qpn < qpns_per_vl; qpn++) {
|
|
unsigned idx, regoff, regidx;
|
|
|
|
/* generate the index the hardware will produce */
|
|
idx = rmt->used + ((qpn << n) ^ i);
|
|
regoff = (idx % 8) * 8;
|
|
regidx = idx / 8;
|
|
/* replace default with context number */
|
|
reg = rmt->map[regidx];
|
|
reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
|
|
<< regoff);
|
|
reg |= (u64)(tctxt++) << regoff;
|
|
rmt->map[regidx] = reg;
|
|
if (tctxt == ctxt + krcvqs[i])
|
|
tctxt = ctxt;
|
|
}
|
|
ctxt += krcvqs[i];
|
|
}
|
|
|
|
rrd.offset = rmt->used;
|
|
rrd.pkt_type = 2;
|
|
rrd.field1_off = LRH_BTH_MATCH_OFFSET;
|
|
rrd.field2_off = LRH_SC_MATCH_OFFSET;
|
|
rrd.index1_off = LRH_SC_SELECT_OFFSET;
|
|
rrd.index1_width = n;
|
|
rrd.index2_off = QPN_SELECT_OFFSET;
|
|
rrd.index2_width = m + n;
|
|
rrd.mask1 = LRH_BTH_MASK;
|
|
rrd.value1 = LRH_BTH_VALUE;
|
|
rrd.mask2 = LRH_SC_MASK;
|
|
rrd.value2 = LRH_SC_VALUE;
|
|
|
|
/* add rule 0 */
|
|
add_rsm_rule(dd, 0, &rrd);
|
|
|
|
/* mark RSM map entries as used */
|
|
rmt->used += rmt_entries;
|
|
/* map everything else to the mcast/err/vl15 context */
|
|
init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
|
|
dd->qos_shift = n + 1;
|
|
return;
|
|
bail:
|
|
dd->qos_shift = 1;
|
|
init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
|
|
}
|
|
|
|
static void init_user_fecn_handling(struct hfi1_devdata *dd,
|
|
struct rsm_map_table *rmt)
|
|
{
|
|
struct rsm_rule_data rrd;
|
|
u64 reg;
|
|
int i, idx, regoff, regidx;
|
|
u8 offset;
|
|
|
|
/* there needs to be enough room in the map table */
|
|
if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
|
|
dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* RSM will extract the destination context as an index into the
|
|
* map table. The destination contexts are a sequential block
|
|
* in the range first_user_ctxt...num_rcv_contexts-1 (inclusive).
|
|
* Map entries are accessed as offset + extracted value. Adjust
|
|
* the added offset so this sequence can be placed anywhere in
|
|
* the table - as long as the entries themselves do not wrap.
|
|
* There are only enough bits in offset for the table size, so
|
|
* start with that to allow for a "negative" offset.
|
|
*/
|
|
offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
|
|
(int)dd->first_user_ctxt);
|
|
|
|
for (i = dd->first_user_ctxt, idx = rmt->used;
|
|
i < dd->num_rcv_contexts; i++, idx++) {
|
|
/* replace with identity mapping */
|
|
regoff = (idx % 8) * 8;
|
|
regidx = idx / 8;
|
|
reg = rmt->map[regidx];
|
|
reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
|
|
reg |= (u64)i << regoff;
|
|
rmt->map[regidx] = reg;
|
|
}
|
|
|
|
/*
|
|
* For RSM intercept of Expected FECN packets:
|
|
* o packet type 0 - expected
|
|
* o match on F (bit 95), using select/match 1, and
|
|
* o match on SH (bit 133), using select/match 2.
|
|
*
|
|
* Use index 1 to extract the 8-bit receive context from DestQP
|
|
* (start at bit 64). Use that as the RSM map table index.
|
|
*/
|
|
rrd.offset = offset;
|
|
rrd.pkt_type = 0;
|
|
rrd.field1_off = 95;
|
|
rrd.field2_off = 133;
|
|
rrd.index1_off = 64;
|
|
rrd.index1_width = 8;
|
|
rrd.index2_off = 0;
|
|
rrd.index2_width = 0;
|
|
rrd.mask1 = 1;
|
|
rrd.value1 = 1;
|
|
rrd.mask2 = 1;
|
|
rrd.value2 = 1;
|
|
|
|
/* add rule 1 */
|
|
add_rsm_rule(dd, 1, &rrd);
|
|
|
|
rmt->used += dd->num_user_contexts;
|
|
}
|
|
|
|
static void init_rxe(struct hfi1_devdata *dd)
|
|
{
|
|
struct rsm_map_table *rmt;
|
|
|
|
/* enable all receive errors */
|
|
write_csr(dd, RCV_ERR_MASK, ~0ull);
|
|
|
|
rmt = alloc_rsm_map_table(dd);
|
|
/* set up QOS, including the QPN map table */
|
|
init_qos(dd, rmt);
|
|
init_user_fecn_handling(dd, rmt);
|
|
complete_rsm_map_table(dd, rmt);
|
|
kfree(rmt);
|
|
|
|
/*
|
|
* make sure RcvCtrl.RcvWcb <= PCIe Device Control
|
|
* Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
|
|
* space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
|
|
* invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
|
|
* Max_PayLoad_Size set to its minimum of 128.
|
|
*
|
|
* Presently, RcvCtrl.RcvWcb is not modified from its default of 0
|
|
* (64 bytes). Max_Payload_Size is possibly modified upward in
|
|
* tune_pcie_caps() which is called after this routine.
|
|
*/
|
|
}
|
|
|
|
static void init_other(struct hfi1_devdata *dd)
|
|
{
|
|
/* enable all CCE errors */
|
|
write_csr(dd, CCE_ERR_MASK, ~0ull);
|
|
/* enable *some* Misc errors */
|
|
write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
|
|
/* enable all DC errors, except LCB */
|
|
write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
|
|
write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
|
|
}
|
|
|
|
/*
|
|
* Fill out the given AU table using the given CU. A CU is defined in terms
|
|
* AUs. The table is a an encoding: given the index, how many AUs does that
|
|
* represent?
|
|
*
|
|
* NOTE: Assumes that the register layout is the same for the
|
|
* local and remote tables.
|
|
*/
|
|
static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
|
|
u32 csr0to3, u32 csr4to7)
|
|
{
|
|
write_csr(dd, csr0to3,
|
|
0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
|
|
1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
|
|
2ull * cu <<
|
|
SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
|
|
4ull * cu <<
|
|
SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
|
|
write_csr(dd, csr4to7,
|
|
8ull * cu <<
|
|
SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
|
|
16ull * cu <<
|
|
SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
|
|
32ull * cu <<
|
|
SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
|
|
64ull * cu <<
|
|
SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
|
|
}
|
|
|
|
static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
|
|
{
|
|
assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
|
|
SEND_CM_LOCAL_AU_TABLE4_TO7);
|
|
}
|
|
|
|
void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
|
|
{
|
|
assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
|
|
SEND_CM_REMOTE_AU_TABLE4_TO7);
|
|
}
|
|
|
|
static void init_txe(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/* enable all PIO, SDMA, general, and Egress errors */
|
|
write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
|
|
write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
|
|
write_csr(dd, SEND_ERR_MASK, ~0ull);
|
|
write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
|
|
|
|
/* enable all per-context and per-SDMA engine errors */
|
|
for (i = 0; i < dd->chip_send_contexts; i++)
|
|
write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
|
|
for (i = 0; i < dd->chip_sdma_engines; i++)
|
|
write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
|
|
|
|
/* set the local CU to AU mapping */
|
|
assign_local_cm_au_table(dd, dd->vcu);
|
|
|
|
/*
|
|
* Set reasonable default for Credit Return Timer
|
|
* Don't set on Simulator - causes it to choke.
|
|
*/
|
|
if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
|
|
write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
|
|
}
|
|
|
|
int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
|
|
unsigned sctxt;
|
|
int ret = 0;
|
|
u64 reg;
|
|
|
|
if (!rcd || !rcd->sc) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
sctxt = rcd->sc->hw_context;
|
|
reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
|
|
((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
|
|
SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
|
|
/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
|
|
if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
|
|
reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
|
|
write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
|
|
/*
|
|
* Enable send-side J_KEY integrity check, unless this is A0 h/w
|
|
*/
|
|
if (!is_ax(dd)) {
|
|
reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
|
|
reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
|
|
write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
|
|
}
|
|
|
|
/* Enable J_KEY check on receive context. */
|
|
reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
|
|
((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
|
|
RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
|
|
write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
|
|
unsigned sctxt;
|
|
int ret = 0;
|
|
u64 reg;
|
|
|
|
if (!rcd || !rcd->sc) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
sctxt = rcd->sc->hw_context;
|
|
write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
|
|
/*
|
|
* Disable send-side J_KEY integrity check, unless this is A0 h/w.
|
|
* This check would not have been enabled for A0 h/w, see
|
|
* set_ctxt_jkey().
|
|
*/
|
|
if (!is_ax(dd)) {
|
|
reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
|
|
reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
|
|
write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
|
|
}
|
|
/* Turn off the J_KEY on the receive side */
|
|
write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
|
|
{
|
|
struct hfi1_ctxtdata *rcd;
|
|
unsigned sctxt;
|
|
int ret = 0;
|
|
u64 reg;
|
|
|
|
if (ctxt < dd->num_rcv_contexts) {
|
|
rcd = dd->rcd[ctxt];
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
if (!rcd || !rcd->sc) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
sctxt = rcd->sc->hw_context;
|
|
reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
|
|
SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
|
|
write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
|
|
reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
|
|
reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
|
|
reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
|
|
write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
|
|
{
|
|
struct hfi1_ctxtdata *rcd;
|
|
unsigned sctxt;
|
|
int ret = 0;
|
|
u64 reg;
|
|
|
|
if (ctxt < dd->num_rcv_contexts) {
|
|
rcd = dd->rcd[ctxt];
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
if (!rcd || !rcd->sc) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
sctxt = rcd->sc->hw_context;
|
|
reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
|
|
reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
|
|
write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
|
|
write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Start doing the clean up the the chip. Our clean up happens in multiple
|
|
* stages and this is just the first.
|
|
*/
|
|
void hfi1_start_cleanup(struct hfi1_devdata *dd)
|
|
{
|
|
aspm_exit(dd);
|
|
free_cntrs(dd);
|
|
free_rcverr(dd);
|
|
clean_up_interrupts(dd);
|
|
finish_chip_resources(dd);
|
|
}
|
|
|
|
#define HFI_BASE_GUID(dev) \
|
|
((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
|
|
|
|
/*
|
|
* Information can be shared between the two HFIs on the same ASIC
|
|
* in the same OS. This function finds the peer device and sets
|
|
* up a shared structure.
|
|
*/
|
|
static int init_asic_data(struct hfi1_devdata *dd)
|
|
{
|
|
unsigned long flags;
|
|
struct hfi1_devdata *tmp, *peer = NULL;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&hfi1_devs_lock, flags);
|
|
/* Find our peer device */
|
|
list_for_each_entry(tmp, &hfi1_dev_list, list) {
|
|
if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
|
|
dd->unit != tmp->unit) {
|
|
peer = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (peer) {
|
|
dd->asic_data = peer->asic_data;
|
|
} else {
|
|
dd->asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
|
|
if (!dd->asic_data) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
mutex_init(&dd->asic_data->asic_resource_mutex);
|
|
}
|
|
dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
|
|
|
|
done:
|
|
spin_unlock_irqrestore(&hfi1_devs_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set dd->boardname. Use a generic name if a name is not returned from
|
|
* EFI variable space.
|
|
*
|
|
* Return 0 on success, -ENOMEM if space could not be allocated.
|
|
*/
|
|
static int obtain_boardname(struct hfi1_devdata *dd)
|
|
{
|
|
/* generic board description */
|
|
const char generic[] =
|
|
"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
|
|
unsigned long size;
|
|
int ret;
|
|
|
|
ret = read_hfi1_efi_var(dd, "description", &size,
|
|
(void **)&dd->boardname);
|
|
if (ret) {
|
|
dd_dev_info(dd, "Board description not found\n");
|
|
/* use generic description */
|
|
dd->boardname = kstrdup(generic, GFP_KERNEL);
|
|
if (!dd->boardname)
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check the interrupt registers to make sure that they are mapped correctly.
|
|
* It is intended to help user identify any mismapping by VMM when the driver
|
|
* is running in a VM. This function should only be called before interrupt
|
|
* is set up properly.
|
|
*
|
|
* Return 0 on success, -EINVAL on failure.
|
|
*/
|
|
static int check_int_registers(struct hfi1_devdata *dd)
|
|
{
|
|
u64 reg;
|
|
u64 all_bits = ~(u64)0;
|
|
u64 mask;
|
|
|
|
/* Clear CceIntMask[0] to avoid raising any interrupts */
|
|
mask = read_csr(dd, CCE_INT_MASK);
|
|
write_csr(dd, CCE_INT_MASK, 0ull);
|
|
reg = read_csr(dd, CCE_INT_MASK);
|
|
if (reg)
|
|
goto err_exit;
|
|
|
|
/* Clear all interrupt status bits */
|
|
write_csr(dd, CCE_INT_CLEAR, all_bits);
|
|
reg = read_csr(dd, CCE_INT_STATUS);
|
|
if (reg)
|
|
goto err_exit;
|
|
|
|
/* Set all interrupt status bits */
|
|
write_csr(dd, CCE_INT_FORCE, all_bits);
|
|
reg = read_csr(dd, CCE_INT_STATUS);
|
|
if (reg != all_bits)
|
|
goto err_exit;
|
|
|
|
/* Restore the interrupt mask */
|
|
write_csr(dd, CCE_INT_CLEAR, all_bits);
|
|
write_csr(dd, CCE_INT_MASK, mask);
|
|
|
|
return 0;
|
|
err_exit:
|
|
write_csr(dd, CCE_INT_MASK, mask);
|
|
dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* Allocate and initialize the device structure for the hfi.
|
|
* @dev: the pci_dev for hfi1_ib device
|
|
* @ent: pci_device_id struct for this dev
|
|
*
|
|
* Also allocates, initializes, and returns the devdata struct for this
|
|
* device instance
|
|
*
|
|
* This is global, and is called directly at init to set up the
|
|
* chip-specific function pointers for later use.
|
|
*/
|
|
struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct hfi1_devdata *dd;
|
|
struct hfi1_pportdata *ppd;
|
|
u64 reg;
|
|
int i, ret;
|
|
static const char * const inames[] = { /* implementation names */
|
|
"RTL silicon",
|
|
"RTL VCS simulation",
|
|
"RTL FPGA emulation",
|
|
"Functional simulator"
|
|
};
|
|
struct pci_dev *parent = pdev->bus->self;
|
|
|
|
dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
|
|
sizeof(struct hfi1_pportdata));
|
|
if (IS_ERR(dd))
|
|
goto bail;
|
|
ppd = dd->pport;
|
|
for (i = 0; i < dd->num_pports; i++, ppd++) {
|
|
int vl;
|
|
/* init common fields */
|
|
hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
|
|
/* DC supports 4 link widths */
|
|
ppd->link_width_supported =
|
|
OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
|
|
OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
|
|
ppd->link_width_downgrade_supported =
|
|
ppd->link_width_supported;
|
|
/* start out enabling only 4X */
|
|
ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
|
|
ppd->link_width_downgrade_enabled =
|
|
ppd->link_width_downgrade_supported;
|
|
/* link width active is 0 when link is down */
|
|
/* link width downgrade active is 0 when link is down */
|
|
|
|
if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
|
|
num_vls > HFI1_MAX_VLS_SUPPORTED) {
|
|
hfi1_early_err(&pdev->dev,
|
|
"Invalid num_vls %u, using %u VLs\n",
|
|
num_vls, HFI1_MAX_VLS_SUPPORTED);
|
|
num_vls = HFI1_MAX_VLS_SUPPORTED;
|
|
}
|
|
ppd->vls_supported = num_vls;
|
|
ppd->vls_operational = ppd->vls_supported;
|
|
ppd->actual_vls_operational = ppd->vls_supported;
|
|
/* Set the default MTU. */
|
|
for (vl = 0; vl < num_vls; vl++)
|
|
dd->vld[vl].mtu = hfi1_max_mtu;
|
|
dd->vld[15].mtu = MAX_MAD_PACKET;
|
|
/*
|
|
* Set the initial values to reasonable default, will be set
|
|
* for real when link is up.
|
|
*/
|
|
ppd->lstate = IB_PORT_DOWN;
|
|
ppd->overrun_threshold = 0x4;
|
|
ppd->phy_error_threshold = 0xf;
|
|
ppd->port_crc_mode_enabled = link_crc_mask;
|
|
/* initialize supported LTP CRC mode */
|
|
ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
|
|
/* initialize enabled LTP CRC mode */
|
|
ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
|
|
/* start in offline */
|
|
ppd->host_link_state = HLS_DN_OFFLINE;
|
|
init_vl_arb_caches(ppd);
|
|
ppd->last_pstate = 0xff; /* invalid value */
|
|
}
|
|
|
|
dd->link_default = HLS_DN_POLL;
|
|
|
|
/*
|
|
* Do remaining PCIe setup and save PCIe values in dd.
|
|
* Any error printing is already done by the init code.
|
|
* On return, we have the chip mapped.
|
|
*/
|
|
ret = hfi1_pcie_ddinit(dd, pdev, ent);
|
|
if (ret < 0)
|
|
goto bail_free;
|
|
|
|
/* verify that reads actually work, save revision for reset check */
|
|
dd->revision = read_csr(dd, CCE_REVISION);
|
|
if (dd->revision == ~(u64)0) {
|
|
dd_dev_err(dd, "cannot read chip CSRs\n");
|
|
ret = -EINVAL;
|
|
goto bail_cleanup;
|
|
}
|
|
dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
|
|
& CCE_REVISION_CHIP_REV_MAJOR_MASK;
|
|
dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
|
|
& CCE_REVISION_CHIP_REV_MINOR_MASK;
|
|
|
|
/*
|
|
* Check interrupt registers mapping if the driver has no access to
|
|
* the upstream component. In this case, it is likely that the driver
|
|
* is running in a VM.
|
|
*/
|
|
if (!parent) {
|
|
ret = check_int_registers(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
}
|
|
|
|
/*
|
|
* obtain the hardware ID - NOT related to unit, which is a
|
|
* software enumeration
|
|
*/
|
|
reg = read_csr(dd, CCE_REVISION2);
|
|
dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
|
|
& CCE_REVISION2_HFI_ID_MASK;
|
|
/* the variable size will remove unwanted bits */
|
|
dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
|
|
dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
|
|
dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
|
|
dd->icode < ARRAY_SIZE(inames) ?
|
|
inames[dd->icode] : "unknown", (int)dd->irev);
|
|
|
|
/* speeds the hardware can support */
|
|
dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
|
|
/* speeds allowed to run at */
|
|
dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
|
|
/* give a reasonable active value, will be set on link up */
|
|
dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
|
|
|
|
dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
|
|
dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
|
|
dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
|
|
dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
|
|
dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
|
|
/* fix up link widths for emulation _p */
|
|
ppd = dd->pport;
|
|
if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
|
|
ppd->link_width_supported =
|
|
ppd->link_width_enabled =
|
|
ppd->link_width_downgrade_supported =
|
|
ppd->link_width_downgrade_enabled =
|
|
OPA_LINK_WIDTH_1X;
|
|
}
|
|
/* insure num_vls isn't larger than number of sdma engines */
|
|
if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
|
|
dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
|
|
num_vls, dd->chip_sdma_engines);
|
|
num_vls = dd->chip_sdma_engines;
|
|
ppd->vls_supported = dd->chip_sdma_engines;
|
|
ppd->vls_operational = ppd->vls_supported;
|
|
}
|
|
|
|
/*
|
|
* Convert the ns parameter to the 64 * cclocks used in the CSR.
|
|
* Limit the max if larger than the field holds. If timeout is
|
|
* non-zero, then the calculated field will be at least 1.
|
|
*
|
|
* Must be after icode is set up - the cclock rate depends
|
|
* on knowing the hardware being used.
|
|
*/
|
|
dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
|
|
if (dd->rcv_intr_timeout_csr >
|
|
RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
|
|
dd->rcv_intr_timeout_csr =
|
|
RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
|
|
else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
|
|
dd->rcv_intr_timeout_csr = 1;
|
|
|
|
/* needs to be done before we look for the peer device */
|
|
read_guid(dd);
|
|
|
|
/* set up shared ASIC data with peer device */
|
|
ret = init_asic_data(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
/* obtain chip sizes, reset chip CSRs */
|
|
init_chip(dd);
|
|
|
|
/* read in the PCIe link speed information */
|
|
ret = pcie_speeds(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
/* Needs to be called before hfi1_firmware_init */
|
|
get_platform_config(dd);
|
|
|
|
/* read in firmware */
|
|
ret = hfi1_firmware_init(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
/*
|
|
* In general, the PCIe Gen3 transition must occur after the
|
|
* chip has been idled (so it won't initiate any PCIe transactions
|
|
* e.g. an interrupt) and before the driver changes any registers
|
|
* (the transition will reset the registers).
|
|
*
|
|
* In particular, place this call after:
|
|
* - init_chip() - the chip will not initiate any PCIe transactions
|
|
* - pcie_speeds() - reads the current link speed
|
|
* - hfi1_firmware_init() - the needed firmware is ready to be
|
|
* downloaded
|
|
*/
|
|
ret = do_pcie_gen3_transition(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
/* start setting dd values and adjusting CSRs */
|
|
init_early_variables(dd);
|
|
|
|
parse_platform_config(dd);
|
|
|
|
ret = obtain_boardname(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
snprintf(dd->boardversion, BOARD_VERS_MAX,
|
|
"ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
|
|
HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
|
|
(u32)dd->majrev,
|
|
(u32)dd->minrev,
|
|
(dd->revision >> CCE_REVISION_SW_SHIFT)
|
|
& CCE_REVISION_SW_MASK);
|
|
|
|
/*
|
|
* The real cpu mask is part of the affinity struct but has to be
|
|
* initialized earlier than the rest of the affinity struct because it
|
|
* is needed to calculate the number of user contexts in
|
|
* set_up_context_variables(). However, hfi1_dev_affinity_init(),
|
|
* which initializes the rest of the affinity struct members,
|
|
* depends on set_up_context_variables() for the number of kernel
|
|
* contexts, so it cannot be called before set_up_context_variables().
|
|
*/
|
|
ret = init_real_cpu_mask(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
ret = set_up_context_variables(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
/* set initial RXE CSRs */
|
|
init_rxe(dd);
|
|
/* set initial TXE CSRs */
|
|
init_txe(dd);
|
|
/* set initial non-RXE, non-TXE CSRs */
|
|
init_other(dd);
|
|
/* set up KDETH QP prefix in both RX and TX CSRs */
|
|
init_kdeth_qp(dd);
|
|
|
|
hfi1_dev_affinity_init(dd);
|
|
|
|
/* send contexts must be set up before receive contexts */
|
|
ret = init_send_contexts(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
ret = hfi1_create_ctxts(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
|
|
/*
|
|
* rcd[0] is guaranteed to be valid by this point. Also, all
|
|
* context are using the same value, as per the module parameter.
|
|
*/
|
|
dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
|
|
|
|
ret = init_pervl_scs(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
/* sdma init */
|
|
for (i = 0; i < dd->num_pports; ++i) {
|
|
ret = sdma_init(dd, i);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
}
|
|
|
|
/* use contexts created by hfi1_create_ctxts */
|
|
ret = set_up_interrupts(dd);
|
|
if (ret)
|
|
goto bail_cleanup;
|
|
|
|
/* set up LCB access - must be after set_up_interrupts() */
|
|
init_lcb_access(dd);
|
|
|
|
snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
|
|
dd->base_guid & 0xFFFFFF);
|
|
|
|
dd->oui1 = dd->base_guid >> 56 & 0xFF;
|
|
dd->oui2 = dd->base_guid >> 48 & 0xFF;
|
|
dd->oui3 = dd->base_guid >> 40 & 0xFF;
|
|
|
|
ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
|
|
if (ret)
|
|
goto bail_clear_intr;
|
|
check_fabric_firmware_versions(dd);
|
|
|
|
thermal_init(dd);
|
|
|
|
ret = init_cntrs(dd);
|
|
if (ret)
|
|
goto bail_clear_intr;
|
|
|
|
ret = init_rcverr(dd);
|
|
if (ret)
|
|
goto bail_free_cntrs;
|
|
|
|
ret = eprom_init(dd);
|
|
if (ret)
|
|
goto bail_free_rcverr;
|
|
|
|
goto bail;
|
|
|
|
bail_free_rcverr:
|
|
free_rcverr(dd);
|
|
bail_free_cntrs:
|
|
free_cntrs(dd);
|
|
bail_clear_intr:
|
|
clean_up_interrupts(dd);
|
|
bail_cleanup:
|
|
hfi1_pcie_ddcleanup(dd);
|
|
bail_free:
|
|
hfi1_free_devdata(dd);
|
|
dd = ERR_PTR(ret);
|
|
bail:
|
|
return dd;
|
|
}
|
|
|
|
static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
|
|
u32 dw_len)
|
|
{
|
|
u32 delta_cycles;
|
|
u32 current_egress_rate = ppd->current_egress_rate;
|
|
/* rates here are in units of 10^6 bits/sec */
|
|
|
|
if (desired_egress_rate == -1)
|
|
return 0; /* shouldn't happen */
|
|
|
|
if (desired_egress_rate >= current_egress_rate)
|
|
return 0; /* we can't help go faster, only slower */
|
|
|
|
delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
|
|
egress_cycles(dw_len * 4, current_egress_rate);
|
|
|
|
return (u16)delta_cycles;
|
|
}
|
|
|
|
/**
|
|
* create_pbc - build a pbc for transmission
|
|
* @flags: special case flags or-ed in built pbc
|
|
* @srate: static rate
|
|
* @vl: vl
|
|
* @dwlen: dword length (header words + data words + pbc words)
|
|
*
|
|
* Create a PBC with the given flags, rate, VL, and length.
|
|
*
|
|
* NOTE: The PBC created will not insert any HCRC - all callers but one are
|
|
* for verbs, which does not use this PSM feature. The lone other caller
|
|
* is for the diagnostic interface which calls this if the user does not
|
|
* supply their own PBC.
|
|
*/
|
|
u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
|
|
u32 dw_len)
|
|
{
|
|
u64 pbc, delay = 0;
|
|
|
|
if (unlikely(srate_mbs))
|
|
delay = delay_cycles(ppd, srate_mbs, dw_len);
|
|
|
|
pbc = flags
|
|
| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
|
|
| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
|
|
| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
|
|
| (dw_len & PBC_LENGTH_DWS_MASK)
|
|
<< PBC_LENGTH_DWS_SHIFT;
|
|
|
|
return pbc;
|
|
}
|
|
|
|
#define SBUS_THERMAL 0x4f
|
|
#define SBUS_THERM_MONITOR_MODE 0x1
|
|
|
|
#define THERM_FAILURE(dev, ret, reason) \
|
|
dd_dev_err((dd), \
|
|
"Thermal sensor initialization failed: %s (%d)\n", \
|
|
(reason), (ret))
|
|
|
|
/*
|
|
* Initialize the thermal sensor.
|
|
*
|
|
* After initialization, enable polling of thermal sensor through
|
|
* SBus interface. In order for this to work, the SBus Master
|
|
* firmware has to be loaded due to the fact that the HW polling
|
|
* logic uses SBus interrupts, which are not supported with
|
|
* default firmware. Otherwise, no data will be returned through
|
|
* the ASIC_STS_THERM CSR.
|
|
*/
|
|
static int thermal_init(struct hfi1_devdata *dd)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (dd->icode != ICODE_RTL_SILICON ||
|
|
check_chip_resource(dd, CR_THERM_INIT, NULL))
|
|
return ret;
|
|
|
|
ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
|
|
if (ret) {
|
|
THERM_FAILURE(dd, ret, "Acquire SBus");
|
|
return ret;
|
|
}
|
|
|
|
dd_dev_info(dd, "Initializing thermal sensor\n");
|
|
/* Disable polling of thermal readings */
|
|
write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
|
|
msleep(100);
|
|
/* Thermal Sensor Initialization */
|
|
/* Step 1: Reset the Thermal SBus Receiver */
|
|
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
|
|
RESET_SBUS_RECEIVER, 0);
|
|
if (ret) {
|
|
THERM_FAILURE(dd, ret, "Bus Reset");
|
|
goto done;
|
|
}
|
|
/* Step 2: Set Reset bit in Thermal block */
|
|
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
|
|
WRITE_SBUS_RECEIVER, 0x1);
|
|
if (ret) {
|
|
THERM_FAILURE(dd, ret, "Therm Block Reset");
|
|
goto done;
|
|
}
|
|
/* Step 3: Write clock divider value (100MHz -> 2MHz) */
|
|
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
|
|
WRITE_SBUS_RECEIVER, 0x32);
|
|
if (ret) {
|
|
THERM_FAILURE(dd, ret, "Write Clock Div");
|
|
goto done;
|
|
}
|
|
/* Step 4: Select temperature mode */
|
|
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
|
|
WRITE_SBUS_RECEIVER,
|
|
SBUS_THERM_MONITOR_MODE);
|
|
if (ret) {
|
|
THERM_FAILURE(dd, ret, "Write Mode Sel");
|
|
goto done;
|
|
}
|
|
/* Step 5: De-assert block reset and start conversion */
|
|
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
|
|
WRITE_SBUS_RECEIVER, 0x2);
|
|
if (ret) {
|
|
THERM_FAILURE(dd, ret, "Write Reset Deassert");
|
|
goto done;
|
|
}
|
|
/* Step 5.1: Wait for first conversion (21.5ms per spec) */
|
|
msleep(22);
|
|
|
|
/* Enable polling of thermal readings */
|
|
write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
|
|
|
|
/* Set initialized flag */
|
|
ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
|
|
if (ret)
|
|
THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
|
|
|
|
done:
|
|
release_chip_resource(dd, CR_SBUS);
|
|
return ret;
|
|
}
|
|
|
|
static void handle_temp_err(struct hfi1_devdata *dd)
|
|
{
|
|
struct hfi1_pportdata *ppd = &dd->pport[0];
|
|
/*
|
|
* Thermal Critical Interrupt
|
|
* Put the device into forced freeze mode, take link down to
|
|
* offline, and put DC into reset.
|
|
*/
|
|
dd_dev_emerg(dd,
|
|
"Critical temperature reached! Forcing device into freeze mode!\n");
|
|
dd->flags |= HFI1_FORCED_FREEZE;
|
|
start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
|
|
/*
|
|
* Shut DC down as much and as quickly as possible.
|
|
*
|
|
* Step 1: Take the link down to OFFLINE. This will cause the
|
|
* 8051 to put the Serdes in reset. However, we don't want to
|
|
* go through the entire link state machine since we want to
|
|
* shutdown ASAP. Furthermore, this is not a graceful shutdown
|
|
* but rather an attempt to save the chip.
|
|
* Code below is almost the same as quiet_serdes() but avoids
|
|
* all the extra work and the sleeps.
|
|
*/
|
|
ppd->driver_link_ready = 0;
|
|
ppd->link_enabled = 0;
|
|
set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
|
|
PLS_OFFLINE);
|
|
/*
|
|
* Step 2: Shutdown LCB and 8051
|
|
* After shutdown, do not restore DC_CFG_RESET value.
|
|
*/
|
|
dc_shutdown(dd);
|
|
}
|