linux-sg2042/arch/arm/kernel/setup.c

1314 lines
31 KiB
C

/*
* linux/arch/arm/kernel/setup.c
*
* Copyright (C) 1995-2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/efi.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/initrd.h>
#include <linux/console.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/screen_info.h>
#include <linux/of_platform.h>
#include <linux/init.h>
#include <linux/kexec.h>
#include <linux/of_fdt.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/proc_fs.h>
#include <linux/memblock.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/sort.h>
#include <linux/psci.h>
#include <asm/unified.h>
#include <asm/cp15.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/efi.h>
#include <asm/elf.h>
#include <asm/early_ioremap.h>
#include <asm/fixmap.h>
#include <asm/procinfo.h>
#include <asm/psci.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp_plat.h>
#include <asm/mach-types.h>
#include <asm/cacheflush.h>
#include <asm/cachetype.h>
#include <asm/tlbflush.h>
#include <asm/xen/hypervisor.h>
#include <asm/prom.h>
#include <asm/mach/arch.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#include <asm/system_info.h>
#include <asm/system_misc.h>
#include <asm/traps.h>
#include <asm/unwind.h>
#include <asm/memblock.h>
#include <asm/virt.h>
#include "atags.h"
#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
char fpe_type[8];
static int __init fpe_setup(char *line)
{
memcpy(fpe_type, line, 8);
return 1;
}
__setup("fpe=", fpe_setup);
#endif
extern void init_default_cache_policy(unsigned long);
extern void paging_init(const struct machine_desc *desc);
extern void early_mm_init(const struct machine_desc *);
extern void adjust_lowmem_bounds(void);
extern enum reboot_mode reboot_mode;
extern void setup_dma_zone(const struct machine_desc *desc);
unsigned int processor_id;
EXPORT_SYMBOL(processor_id);
unsigned int __machine_arch_type __read_mostly;
EXPORT_SYMBOL(__machine_arch_type);
unsigned int cacheid __read_mostly;
EXPORT_SYMBOL(cacheid);
unsigned int __atags_pointer __initdata;
unsigned int system_rev;
EXPORT_SYMBOL(system_rev);
const char *system_serial;
EXPORT_SYMBOL(system_serial);
unsigned int system_serial_low;
EXPORT_SYMBOL(system_serial_low);
unsigned int system_serial_high;
EXPORT_SYMBOL(system_serial_high);
unsigned int elf_hwcap __read_mostly;
EXPORT_SYMBOL(elf_hwcap);
unsigned int elf_hwcap2 __read_mostly;
EXPORT_SYMBOL(elf_hwcap2);
#ifdef MULTI_CPU
struct processor processor __ro_after_init;
#endif
#ifdef MULTI_TLB
struct cpu_tlb_fns cpu_tlb __ro_after_init;
#endif
#ifdef MULTI_USER
struct cpu_user_fns cpu_user __ro_after_init;
#endif
#ifdef MULTI_CACHE
struct cpu_cache_fns cpu_cache __ro_after_init;
#endif
#ifdef CONFIG_OUTER_CACHE
struct outer_cache_fns outer_cache __ro_after_init;
EXPORT_SYMBOL(outer_cache);
#endif
/*
* Cached cpu_architecture() result for use by assembler code.
* C code should use the cpu_architecture() function instead of accessing this
* variable directly.
*/
int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
struct stack {
u32 irq[3];
u32 abt[3];
u32 und[3];
u32 fiq[3];
} ____cacheline_aligned;
#ifndef CONFIG_CPU_V7M
static struct stack stacks[NR_CPUS];
#endif
char elf_platform[ELF_PLATFORM_SIZE];
EXPORT_SYMBOL(elf_platform);
static const char *cpu_name;
static const char *machine_name;
static char __initdata cmd_line[COMMAND_LINE_SIZE];
const struct machine_desc *machine_desc __initdata;
static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
#define ENDIANNESS ((char)endian_test.l)
DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
/*
* Standard memory resources
*/
static struct resource mem_res[] = {
{
.name = "Video RAM",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
},
{
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_SYSTEM_RAM
},
{
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_SYSTEM_RAM
}
};
#define video_ram mem_res[0]
#define kernel_code mem_res[1]
#define kernel_data mem_res[2]
static struct resource io_res[] = {
{
.name = "reserved",
.start = 0x3bc,
.end = 0x3be,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
},
{
.name = "reserved",
.start = 0x378,
.end = 0x37f,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
},
{
.name = "reserved",
.start = 0x278,
.end = 0x27f,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
}
};
#define lp0 io_res[0]
#define lp1 io_res[1]
#define lp2 io_res[2]
static const char *proc_arch[] = {
"undefined/unknown",
"3",
"4",
"4T",
"5",
"5T",
"5TE",
"5TEJ",
"6TEJ",
"7",
"7M",
"?(12)",
"?(13)",
"?(14)",
"?(15)",
"?(16)",
"?(17)",
};
#ifdef CONFIG_CPU_V7M
static int __get_cpu_architecture(void)
{
return CPU_ARCH_ARMv7M;
}
#else
static int __get_cpu_architecture(void)
{
int cpu_arch;
if ((read_cpuid_id() & 0x0008f000) == 0) {
cpu_arch = CPU_ARCH_UNKNOWN;
} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
cpu_arch = (read_cpuid_id() >> 16) & 7;
if (cpu_arch)
cpu_arch += CPU_ARCH_ARMv3;
} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
/* Revised CPUID format. Read the Memory Model Feature
* Register 0 and check for VMSAv7 or PMSAv7 */
unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
(mmfr0 & 0x000000f0) >= 0x00000030)
cpu_arch = CPU_ARCH_ARMv7;
else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
(mmfr0 & 0x000000f0) == 0x00000020)
cpu_arch = CPU_ARCH_ARMv6;
else
cpu_arch = CPU_ARCH_UNKNOWN;
} else
cpu_arch = CPU_ARCH_UNKNOWN;
return cpu_arch;
}
#endif
int __pure cpu_architecture(void)
{
BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
return __cpu_architecture;
}
static int cpu_has_aliasing_icache(unsigned int arch)
{
int aliasing_icache;
unsigned int id_reg, num_sets, line_size;
/* PIPT caches never alias. */
if (icache_is_pipt())
return 0;
/* arch specifies the register format */
switch (arch) {
case CPU_ARCH_ARMv7:
set_csselr(CSSELR_ICACHE | CSSELR_L1);
isb();
id_reg = read_ccsidr();
line_size = 4 << ((id_reg & 0x7) + 2);
num_sets = ((id_reg >> 13) & 0x7fff) + 1;
aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
break;
case CPU_ARCH_ARMv6:
aliasing_icache = read_cpuid_cachetype() & (1 << 11);
break;
default:
/* I-cache aliases will be handled by D-cache aliasing code */
aliasing_icache = 0;
}
return aliasing_icache;
}
static void __init cacheid_init(void)
{
unsigned int arch = cpu_architecture();
if (arch >= CPU_ARCH_ARMv6) {
unsigned int cachetype = read_cpuid_cachetype();
if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
cacheid = 0;
} else if ((cachetype & (7 << 29)) == 4 << 29) {
/* ARMv7 register format */
arch = CPU_ARCH_ARMv7;
cacheid = CACHEID_VIPT_NONALIASING;
switch (cachetype & (3 << 14)) {
case (1 << 14):
cacheid |= CACHEID_ASID_TAGGED;
break;
case (3 << 14):
cacheid |= CACHEID_PIPT;
break;
}
} else {
arch = CPU_ARCH_ARMv6;
if (cachetype & (1 << 23))
cacheid = CACHEID_VIPT_ALIASING;
else
cacheid = CACHEID_VIPT_NONALIASING;
}
if (cpu_has_aliasing_icache(arch))
cacheid |= CACHEID_VIPT_I_ALIASING;
} else {
cacheid = CACHEID_VIVT;
}
pr_info("CPU: %s data cache, %s instruction cache\n",
cache_is_vivt() ? "VIVT" :
cache_is_vipt_aliasing() ? "VIPT aliasing" :
cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
cache_is_vivt() ? "VIVT" :
icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
icache_is_vipt_aliasing() ? "VIPT aliasing" :
icache_is_pipt() ? "PIPT" :
cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
}
/*
* These functions re-use the assembly code in head.S, which
* already provide the required functionality.
*/
extern struct proc_info_list *lookup_processor_type(unsigned int);
void __init early_print(const char *str, ...)
{
extern void printascii(const char *);
char buf[256];
va_list ap;
va_start(ap, str);
vsnprintf(buf, sizeof(buf), str, ap);
va_end(ap);
#ifdef CONFIG_DEBUG_LL
printascii(buf);
#endif
printk("%s", buf);
}
#ifdef CONFIG_ARM_PATCH_IDIV
static inline u32 __attribute_const__ sdiv_instruction(void)
{
if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
/* "sdiv r0, r0, r1" */
u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
return __opcode_to_mem_thumb32(insn);
}
/* "sdiv r0, r0, r1" */
return __opcode_to_mem_arm(0xe710f110);
}
static inline u32 __attribute_const__ udiv_instruction(void)
{
if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
/* "udiv r0, r0, r1" */
u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
return __opcode_to_mem_thumb32(insn);
}
/* "udiv r0, r0, r1" */
return __opcode_to_mem_arm(0xe730f110);
}
static inline u32 __attribute_const__ bx_lr_instruction(void)
{
if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
/* "bx lr; nop" */
u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
return __opcode_to_mem_thumb32(insn);
}
/* "bx lr" */
return __opcode_to_mem_arm(0xe12fff1e);
}
static void __init patch_aeabi_idiv(void)
{
extern void __aeabi_uidiv(void);
extern void __aeabi_idiv(void);
uintptr_t fn_addr;
unsigned int mask;
mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
if (!(elf_hwcap & mask))
return;
pr_info("CPU: div instructions available: patching division code\n");
fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
asm ("" : "+g" (fn_addr));
((u32 *)fn_addr)[0] = udiv_instruction();
((u32 *)fn_addr)[1] = bx_lr_instruction();
flush_icache_range(fn_addr, fn_addr + 8);
fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
asm ("" : "+g" (fn_addr));
((u32 *)fn_addr)[0] = sdiv_instruction();
((u32 *)fn_addr)[1] = bx_lr_instruction();
flush_icache_range(fn_addr, fn_addr + 8);
}
#else
static inline void patch_aeabi_idiv(void) { }
#endif
static void __init cpuid_init_hwcaps(void)
{
int block;
u32 isar5;
if (cpu_architecture() < CPU_ARCH_ARMv7)
return;
block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
if (block >= 2)
elf_hwcap |= HWCAP_IDIVA;
if (block >= 1)
elf_hwcap |= HWCAP_IDIVT;
/* LPAE implies atomic ldrd/strd instructions */
block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
if (block >= 5)
elf_hwcap |= HWCAP_LPAE;
/* check for supported v8 Crypto instructions */
isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
block = cpuid_feature_extract_field(isar5, 4);
if (block >= 2)
elf_hwcap2 |= HWCAP2_PMULL;
if (block >= 1)
elf_hwcap2 |= HWCAP2_AES;
block = cpuid_feature_extract_field(isar5, 8);
if (block >= 1)
elf_hwcap2 |= HWCAP2_SHA1;
block = cpuid_feature_extract_field(isar5, 12);
if (block >= 1)
elf_hwcap2 |= HWCAP2_SHA2;
block = cpuid_feature_extract_field(isar5, 16);
if (block >= 1)
elf_hwcap2 |= HWCAP2_CRC32;
}
static void __init elf_hwcap_fixup(void)
{
unsigned id = read_cpuid_id();
/*
* HWCAP_TLS is available only on 1136 r1p0 and later,
* see also kuser_get_tls_init.
*/
if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
((id >> 20) & 3) == 0) {
elf_hwcap &= ~HWCAP_TLS;
return;
}
/* Verify if CPUID scheme is implemented */
if ((id & 0x000f0000) != 0x000f0000)
return;
/*
* If the CPU supports LDREX/STREX and LDREXB/STREXB,
* avoid advertising SWP; it may not be atomic with
* multiprocessing cores.
*/
if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
(cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
elf_hwcap &= ~HWCAP_SWP;
}
/*
* cpu_init - initialise one CPU.
*
* cpu_init sets up the per-CPU stacks.
*/
void notrace cpu_init(void)
{
#ifndef CONFIG_CPU_V7M
unsigned int cpu = smp_processor_id();
struct stack *stk = &stacks[cpu];
if (cpu >= NR_CPUS) {
pr_crit("CPU%u: bad primary CPU number\n", cpu);
BUG();
}
/*
* This only works on resume and secondary cores. For booting on the
* boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
*/
set_my_cpu_offset(per_cpu_offset(cpu));
cpu_proc_init();
/*
* Define the placement constraint for the inline asm directive below.
* In Thumb-2, msr with an immediate value is not allowed.
*/
#ifdef CONFIG_THUMB2_KERNEL
#define PLC "r"
#else
#define PLC "I"
#endif
/*
* setup stacks for re-entrant exception handlers
*/
__asm__ (
"msr cpsr_c, %1\n\t"
"add r14, %0, %2\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %3\n\t"
"add r14, %0, %4\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %5\n\t"
"add r14, %0, %6\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %7\n\t"
"add r14, %0, %8\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %9"
:
: "r" (stk),
PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
"I" (offsetof(struct stack, irq[0])),
PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
"I" (offsetof(struct stack, abt[0])),
PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
"I" (offsetof(struct stack, und[0])),
PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
"I" (offsetof(struct stack, fiq[0])),
PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
: "r14");
#endif
}
u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
void __init smp_setup_processor_id(void)
{
int i;
u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpu_logical_map(0) = cpu;
for (i = 1; i < nr_cpu_ids; ++i)
cpu_logical_map(i) = i == cpu ? 0 : i;
/*
* clear __my_cpu_offset on boot CPU to avoid hang caused by
* using percpu variable early, for example, lockdep will
* access percpu variable inside lock_release
*/
set_my_cpu_offset(0);
pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
}
struct mpidr_hash mpidr_hash;
#ifdef CONFIG_SMP
/**
* smp_build_mpidr_hash - Pre-compute shifts required at each affinity
* level in order to build a linear index from an
* MPIDR value. Resulting algorithm is a collision
* free hash carried out through shifting and ORing
*/
static void __init smp_build_mpidr_hash(void)
{
u32 i, affinity;
u32 fs[3], bits[3], ls, mask = 0;
/*
* Pre-scan the list of MPIDRS and filter out bits that do
* not contribute to affinity levels, ie they never toggle.
*/
for_each_possible_cpu(i)
mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
pr_debug("mask of set bits 0x%x\n", mask);
/*
* Find and stash the last and first bit set at all affinity levels to
* check how many bits are required to represent them.
*/
for (i = 0; i < 3; i++) {
affinity = MPIDR_AFFINITY_LEVEL(mask, i);
/*
* Find the MSB bit and LSB bits position
* to determine how many bits are required
* to express the affinity level.
*/
ls = fls(affinity);
fs[i] = affinity ? ffs(affinity) - 1 : 0;
bits[i] = ls - fs[i];
}
/*
* An index can be created from the MPIDR by isolating the
* significant bits at each affinity level and by shifting
* them in order to compress the 24 bits values space to a
* compressed set of values. This is equivalent to hashing
* the MPIDR through shifting and ORing. It is a collision free
* hash though not minimal since some levels might contain a number
* of CPUs that is not an exact power of 2 and their bit
* representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
*/
mpidr_hash.shift_aff[0] = fs[0];
mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
(bits[1] + bits[0]);
mpidr_hash.mask = mask;
mpidr_hash.bits = bits[2] + bits[1] + bits[0];
pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
mpidr_hash.shift_aff[0],
mpidr_hash.shift_aff[1],
mpidr_hash.shift_aff[2],
mpidr_hash.mask,
mpidr_hash.bits);
/*
* 4x is an arbitrary value used to warn on a hash table much bigger
* than expected on most systems.
*/
if (mpidr_hash_size() > 4 * num_possible_cpus())
pr_warn("Large number of MPIDR hash buckets detected\n");
sync_cache_w(&mpidr_hash);
}
#endif
static void __init setup_processor(void)
{
struct proc_info_list *list;
/*
* locate processor in the list of supported processor
* types. The linker builds this table for us from the
* entries in arch/arm/mm/proc-*.S
*/
list = lookup_processor_type(read_cpuid_id());
if (!list) {
pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
read_cpuid_id());
while (1);
}
cpu_name = list->cpu_name;
__cpu_architecture = __get_cpu_architecture();
#ifdef MULTI_CPU
processor = *list->proc;
#endif
#ifdef MULTI_TLB
cpu_tlb = *list->tlb;
#endif
#ifdef MULTI_USER
cpu_user = *list->user;
#endif
#ifdef MULTI_CACHE
cpu_cache = *list->cache;
#endif
pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
proc_arch[cpu_architecture()], get_cr());
snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
list->arch_name, ENDIANNESS);
snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
list->elf_name, ENDIANNESS);
elf_hwcap = list->elf_hwcap;
cpuid_init_hwcaps();
patch_aeabi_idiv();
#ifndef CONFIG_ARM_THUMB
elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
#endif
#ifdef CONFIG_MMU
init_default_cache_policy(list->__cpu_mm_mmu_flags);
#endif
erratum_a15_798181_init();
elf_hwcap_fixup();
cacheid_init();
cpu_init();
}
void __init dump_machine_table(void)
{
const struct machine_desc *p;
early_print("Available machine support:\n\nID (hex)\tNAME\n");
for_each_machine_desc(p)
early_print("%08x\t%s\n", p->nr, p->name);
early_print("\nPlease check your kernel config and/or bootloader.\n");
while (true)
/* can't use cpu_relax() here as it may require MMU setup */;
}
int __init arm_add_memory(u64 start, u64 size)
{
u64 aligned_start;
/*
* Ensure that start/size are aligned to a page boundary.
* Size is rounded down, start is rounded up.
*/
aligned_start = PAGE_ALIGN(start);
if (aligned_start > start + size)
size = 0;
else
size -= aligned_start - start;
#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
if (aligned_start > ULONG_MAX) {
pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
(long long)start);
return -EINVAL;
}
if (aligned_start + size > ULONG_MAX) {
pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
(long long)start);
/*
* To ensure bank->start + bank->size is representable in
* 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
* This means we lose a page after masking.
*/
size = ULONG_MAX - aligned_start;
}
#endif
if (aligned_start < PHYS_OFFSET) {
if (aligned_start + size <= PHYS_OFFSET) {
pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
aligned_start, aligned_start + size);
return -EINVAL;
}
pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
aligned_start, (u64)PHYS_OFFSET);
size -= PHYS_OFFSET - aligned_start;
aligned_start = PHYS_OFFSET;
}
start = aligned_start;
size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
/*
* Check whether this memory region has non-zero size or
* invalid node number.
*/
if (size == 0)
return -EINVAL;
memblock_add(start, size);
return 0;
}
/*
* Pick out the memory size. We look for mem=size@start,
* where start and size are "size[KkMm]"
*/
static int __init early_mem(char *p)
{
static int usermem __initdata = 0;
u64 size;
u64 start;
char *endp;
/*
* If the user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
usermem = 1;
memblock_remove(memblock_start_of_DRAM(),
memblock_end_of_DRAM() - memblock_start_of_DRAM());
}
start = PHYS_OFFSET;
size = memparse(p, &endp);
if (*endp == '@')
start = memparse(endp + 1, NULL);
arm_add_memory(start, size);
return 0;
}
early_param("mem", early_mem);
static void __init request_standard_resources(const struct machine_desc *mdesc)
{
struct memblock_region *region;
struct resource *res;
kernel_code.start = virt_to_phys(_text);
kernel_code.end = virt_to_phys(__init_begin - 1);
kernel_data.start = virt_to_phys(_sdata);
kernel_data.end = virt_to_phys(_end - 1);
for_each_memblock(memory, region) {
phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
unsigned long boot_alias_start;
/*
* Some systems have a special memory alias which is only
* used for booting. We need to advertise this region to
* kexec-tools so they know where bootable RAM is located.
*/
boot_alias_start = phys_to_idmap(start);
if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
res = memblock_virt_alloc(sizeof(*res), 0);
res->name = "System RAM (boot alias)";
res->start = boot_alias_start;
res->end = phys_to_idmap(end);
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
}
res = memblock_virt_alloc(sizeof(*res), 0);
res->name = "System RAM";
res->start = start;
res->end = end;
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
if (kernel_code.start >= res->start &&
kernel_code.end <= res->end)
request_resource(res, &kernel_code);
if (kernel_data.start >= res->start &&
kernel_data.end <= res->end)
request_resource(res, &kernel_data);
}
if (mdesc->video_start) {
video_ram.start = mdesc->video_start;
video_ram.end = mdesc->video_end;
request_resource(&iomem_resource, &video_ram);
}
/*
* Some machines don't have the possibility of ever
* possessing lp0, lp1 or lp2
*/
if (mdesc->reserve_lp0)
request_resource(&ioport_resource, &lp0);
if (mdesc->reserve_lp1)
request_resource(&ioport_resource, &lp1);
if (mdesc->reserve_lp2)
request_resource(&ioport_resource, &lp2);
}
#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
defined(CONFIG_EFI)
struct screen_info screen_info = {
.orig_video_lines = 30,
.orig_video_cols = 80,
.orig_video_mode = 0,
.orig_video_ega_bx = 0,
.orig_video_isVGA = 1,
.orig_video_points = 8
};
#endif
static int __init customize_machine(void)
{
/*
* customizes platform devices, or adds new ones
* On DT based machines, we fall back to populating the
* machine from the device tree, if no callback is provided,
* otherwise we would always need an init_machine callback.
*/
if (machine_desc->init_machine)
machine_desc->init_machine();
return 0;
}
arch_initcall(customize_machine);
static int __init init_machine_late(void)
{
struct device_node *root;
int ret;
if (machine_desc->init_late)
machine_desc->init_late();
root = of_find_node_by_path("/");
if (root) {
ret = of_property_read_string(root, "serial-number",
&system_serial);
if (ret)
system_serial = NULL;
}
if (!system_serial)
system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
system_serial_high,
system_serial_low);
return 0;
}
late_initcall(init_machine_late);
#ifdef CONFIG_KEXEC
/*
* The crash region must be aligned to 128MB to avoid
* zImage relocating below the reserved region.
*/
#define CRASH_ALIGN (128 << 20)
static inline unsigned long long get_total_mem(void)
{
unsigned long total;
total = max_low_pfn - min_low_pfn;
return total << PAGE_SHIFT;
}
/**
* reserve_crashkernel() - reserves memory are for crash kernel
*
* This function reserves memory area given in "crashkernel=" kernel command
* line parameter. The memory reserved is used by a dump capture kernel when
* primary kernel is crashing.
*/
static void __init reserve_crashkernel(void)
{
unsigned long long crash_size, crash_base;
unsigned long long total_mem;
int ret;
total_mem = get_total_mem();
ret = parse_crashkernel(boot_command_line, total_mem,
&crash_size, &crash_base);
if (ret)
return;
if (crash_base <= 0) {
unsigned long long crash_max = idmap_to_phys((u32)~0);
unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
if (crash_max > lowmem_max)
crash_max = lowmem_max;
crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
crash_size, CRASH_ALIGN);
if (!crash_base) {
pr_err("crashkernel reservation failed - No suitable area found.\n");
return;
}
} else {
unsigned long long start;
start = memblock_find_in_range(crash_base,
crash_base + crash_size,
crash_size, SECTION_SIZE);
if (start != crash_base) {
pr_err("crashkernel reservation failed - memory is in use.\n");
return;
}
}
ret = memblock_reserve(crash_base, crash_size);
if (ret < 0) {
pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
(unsigned long)crash_base);
return;
}
pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(total_mem >> 20));
/* The crashk resource must always be located in normal mem */
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
insert_resource(&iomem_resource, &crashk_res);
if (arm_has_idmap_alias()) {
/*
* If we have a special RAM alias for use at boot, we
* need to advertise to kexec tools where the alias is.
*/
static struct resource crashk_boot_res = {
.name = "Crash kernel (boot alias)",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
crashk_boot_res.start = phys_to_idmap(crash_base);
crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
insert_resource(&iomem_resource, &crashk_boot_res);
}
}
#else
static inline void reserve_crashkernel(void) {}
#endif /* CONFIG_KEXEC */
void __init hyp_mode_check(void)
{
#ifdef CONFIG_ARM_VIRT_EXT
sync_boot_mode();
if (is_hyp_mode_available()) {
pr_info("CPU: All CPU(s) started in HYP mode.\n");
pr_info("CPU: Virtualization extensions available.\n");
} else if (is_hyp_mode_mismatched()) {
pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
__boot_cpu_mode & MODE_MASK);
pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
} else
pr_info("CPU: All CPU(s) started in SVC mode.\n");
#endif
}
void __init setup_arch(char **cmdline_p)
{
const struct machine_desc *mdesc;
setup_processor();
mdesc = setup_machine_fdt(__atags_pointer);
if (!mdesc)
mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
if (!mdesc) {
early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
__atags_pointer);
if (__atags_pointer)
early_print(" r2[]=%*ph\n", 16,
phys_to_virt(__atags_pointer));
dump_machine_table();
}
machine_desc = mdesc;
machine_name = mdesc->name;
dump_stack_set_arch_desc("%s", mdesc->name);
if (mdesc->reboot_mode != REBOOT_HARD)
reboot_mode = mdesc->reboot_mode;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
/* populate cmd_line too for later use, preserving boot_command_line */
strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = cmd_line;
early_fixmap_init();
early_ioremap_init();
parse_early_param();
#ifdef CONFIG_MMU
early_mm_init(mdesc);
#endif
setup_dma_zone(mdesc);
xen_early_init();
efi_init();
/*
* Make sure the calculation for lowmem/highmem is set appropriately
* before reserving/allocating any mmeory
*/
adjust_lowmem_bounds();
arm_memblock_init(mdesc);
/* Memory may have been removed so recalculate the bounds. */
adjust_lowmem_bounds();
early_ioremap_reset();
paging_init(mdesc);
request_standard_resources(mdesc);
if (mdesc->restart)
arm_pm_restart = mdesc->restart;
unflatten_device_tree();
arm_dt_init_cpu_maps();
psci_dt_init();
#ifdef CONFIG_SMP
if (is_smp()) {
if (!mdesc->smp_init || !mdesc->smp_init()) {
if (psci_smp_available())
smp_set_ops(&psci_smp_ops);
else if (mdesc->smp)
smp_set_ops(mdesc->smp);
}
smp_init_cpus();
smp_build_mpidr_hash();
}
#endif
if (!is_smp())
hyp_mode_check();
reserve_crashkernel();
#ifdef CONFIG_MULTI_IRQ_HANDLER
handle_arch_irq = mdesc->handle_irq;
#endif
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
if (mdesc->init_early)
mdesc->init_early();
}
static int __init topology_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
register_cpu(&cpuinfo->cpu, cpu);
}
return 0;
}
subsys_initcall(topology_init);
#ifdef CONFIG_HAVE_PROC_CPU
static int __init proc_cpu_init(void)
{
struct proc_dir_entry *res;
res = proc_mkdir("cpu", NULL);
if (!res)
return -ENOMEM;
return 0;
}
fs_initcall(proc_cpu_init);
#endif
static const char *hwcap_str[] = {
"swp",
"half",
"thumb",
"26bit",
"fastmult",
"fpa",
"vfp",
"edsp",
"java",
"iwmmxt",
"crunch",
"thumbee",
"neon",
"vfpv3",
"vfpv3d16",
"tls",
"vfpv4",
"idiva",
"idivt",
"vfpd32",
"lpae",
"evtstrm",
NULL
};
static const char *hwcap2_str[] = {
"aes",
"pmull",
"sha1",
"sha2",
"crc32",
NULL
};
static int c_show(struct seq_file *m, void *v)
{
int i, j;
u32 cpuid;
for_each_online_cpu(i) {
/*
* glibc reads /proc/cpuinfo to determine the number of
* online processors, looking for lines beginning with
* "processor". Give glibc what it expects.
*/
seq_printf(m, "processor\t: %d\n", i);
cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
seq_printf(m, "model name\t: %s rev %d (%s)\n",
cpu_name, cpuid & 15, elf_platform);
#if defined(CONFIG_SMP)
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
(per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
#else
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100);
#endif
/* dump out the processor features */
seq_puts(m, "Features\t: ");
for (j = 0; hwcap_str[j]; j++)
if (elf_hwcap & (1 << j))
seq_printf(m, "%s ", hwcap_str[j]);
for (j = 0; hwcap2_str[j]; j++)
if (elf_hwcap2 & (1 << j))
seq_printf(m, "%s ", hwcap2_str[j]);
seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
seq_printf(m, "CPU architecture: %s\n",
proc_arch[cpu_architecture()]);
if ((cpuid & 0x0008f000) == 0x00000000) {
/* pre-ARM7 */
seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
} else {
if ((cpuid & 0x0008f000) == 0x00007000) {
/* ARM7 */
seq_printf(m, "CPU variant\t: 0x%02x\n",
(cpuid >> 16) & 127);
} else {
/* post-ARM7 */
seq_printf(m, "CPU variant\t: 0x%x\n",
(cpuid >> 20) & 15);
}
seq_printf(m, "CPU part\t: 0x%03x\n",
(cpuid >> 4) & 0xfff);
}
seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
}
seq_printf(m, "Hardware\t: %s\n", machine_name);
seq_printf(m, "Revision\t: %04x\n", system_rev);
seq_printf(m, "Serial\t\t: %s\n", system_serial);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < 1 ? (void *)1 : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = c_show
};