linux-sg2042/fs/nilfs2/recovery.c

951 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* recovery.c - NILFS recovery logic
*
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
*
* Written by Ryusuke Konishi.
*/
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/crc32.h>
#include "nilfs.h"
#include "segment.h"
#include "sufile.h"
#include "page.h"
#include "segbuf.h"
/*
* Segment check result
*/
enum {
NILFS_SEG_VALID,
NILFS_SEG_NO_SUPER_ROOT,
NILFS_SEG_FAIL_IO,
NILFS_SEG_FAIL_MAGIC,
NILFS_SEG_FAIL_SEQ,
NILFS_SEG_FAIL_CHECKSUM_SUPER_ROOT,
NILFS_SEG_FAIL_CHECKSUM_FULL,
NILFS_SEG_FAIL_CONSISTENCY,
};
/* work structure for recovery */
struct nilfs_recovery_block {
ino_t ino; /*
* Inode number of the file that this block
* belongs to
*/
sector_t blocknr; /* block number */
__u64 vblocknr; /* virtual block number */
unsigned long blkoff; /* File offset of the data block (per block) */
struct list_head list;
};
static int nilfs_warn_segment_error(struct super_block *sb, int err)
{
const char *msg = NULL;
switch (err) {
case NILFS_SEG_FAIL_IO:
nilfs_err(sb, "I/O error reading segment");
return -EIO;
case NILFS_SEG_FAIL_MAGIC:
msg = "Magic number mismatch";
break;
case NILFS_SEG_FAIL_SEQ:
msg = "Sequence number mismatch";
break;
case NILFS_SEG_FAIL_CHECKSUM_SUPER_ROOT:
msg = "Checksum error in super root";
break;
case NILFS_SEG_FAIL_CHECKSUM_FULL:
msg = "Checksum error in segment payload";
break;
case NILFS_SEG_FAIL_CONSISTENCY:
msg = "Inconsistency found";
break;
case NILFS_SEG_NO_SUPER_ROOT:
msg = "No super root in the last segment";
break;
default:
nilfs_err(sb, "unrecognized segment error %d", err);
return -EINVAL;
}
nilfs_warn(sb, "invalid segment: %s", msg);
return -EINVAL;
}
/**
* nilfs_compute_checksum - compute checksum of blocks continuously
* @nilfs: nilfs object
* @bhs: buffer head of start block
* @sum: place to store result
* @offset: offset bytes in the first block
* @check_bytes: number of bytes to be checked
* @start: DBN of start block
* @nblock: number of blocks to be checked
*/
static int nilfs_compute_checksum(struct the_nilfs *nilfs,
struct buffer_head *bhs, u32 *sum,
unsigned long offset, u64 check_bytes,
sector_t start, unsigned long nblock)
{
unsigned int blocksize = nilfs->ns_blocksize;
unsigned long size;
u32 crc;
BUG_ON(offset >= blocksize);
check_bytes -= offset;
size = min_t(u64, check_bytes, blocksize - offset);
crc = crc32_le(nilfs->ns_crc_seed,
(unsigned char *)bhs->b_data + offset, size);
if (--nblock > 0) {
do {
struct buffer_head *bh;
bh = __bread(nilfs->ns_bdev, ++start, blocksize);
if (!bh)
return -EIO;
check_bytes -= size;
size = min_t(u64, check_bytes, blocksize);
crc = crc32_le(crc, bh->b_data, size);
brelse(bh);
} while (--nblock > 0);
}
*sum = crc;
return 0;
}
/**
* nilfs_read_super_root_block - read super root block
* @nilfs: nilfs object
* @sr_block: disk block number of the super root block
* @pbh: address of a buffer_head pointer to return super root buffer
* @check: CRC check flag
*/
int nilfs_read_super_root_block(struct the_nilfs *nilfs, sector_t sr_block,
struct buffer_head **pbh, int check)
{
struct buffer_head *bh_sr;
struct nilfs_super_root *sr;
u32 crc;
int ret;
*pbh = NULL;
bh_sr = __bread(nilfs->ns_bdev, sr_block, nilfs->ns_blocksize);
if (unlikely(!bh_sr)) {
ret = NILFS_SEG_FAIL_IO;
goto failed;
}
sr = (struct nilfs_super_root *)bh_sr->b_data;
if (check) {
unsigned int bytes = le16_to_cpu(sr->sr_bytes);
if (bytes == 0 || bytes > nilfs->ns_blocksize) {
ret = NILFS_SEG_FAIL_CHECKSUM_SUPER_ROOT;
goto failed_bh;
}
if (nilfs_compute_checksum(
nilfs, bh_sr, &crc, sizeof(sr->sr_sum), bytes,
sr_block, 1)) {
ret = NILFS_SEG_FAIL_IO;
goto failed_bh;
}
if (crc != le32_to_cpu(sr->sr_sum)) {
ret = NILFS_SEG_FAIL_CHECKSUM_SUPER_ROOT;
goto failed_bh;
}
}
*pbh = bh_sr;
return 0;
failed_bh:
brelse(bh_sr);
failed:
return nilfs_warn_segment_error(nilfs->ns_sb, ret);
}
/**
* nilfs_read_log_header - read summary header of the specified log
* @nilfs: nilfs object
* @start_blocknr: start block number of the log
* @sum: pointer to return segment summary structure
*/
static struct buffer_head *
nilfs_read_log_header(struct the_nilfs *nilfs, sector_t start_blocknr,
struct nilfs_segment_summary **sum)
{
struct buffer_head *bh_sum;
bh_sum = __bread(nilfs->ns_bdev, start_blocknr, nilfs->ns_blocksize);
if (bh_sum)
*sum = (struct nilfs_segment_summary *)bh_sum->b_data;
return bh_sum;
}
/**
* nilfs_validate_log - verify consistency of log
* @nilfs: nilfs object
* @seg_seq: sequence number of segment
* @bh_sum: buffer head of summary block
* @sum: segment summary struct
*/
static int nilfs_validate_log(struct the_nilfs *nilfs, u64 seg_seq,
struct buffer_head *bh_sum,
struct nilfs_segment_summary *sum)
{
unsigned long nblock;
u32 crc;
int ret;
ret = NILFS_SEG_FAIL_MAGIC;
if (le32_to_cpu(sum->ss_magic) != NILFS_SEGSUM_MAGIC)
goto out;
ret = NILFS_SEG_FAIL_SEQ;
if (le64_to_cpu(sum->ss_seq) != seg_seq)
goto out;
nblock = le32_to_cpu(sum->ss_nblocks);
ret = NILFS_SEG_FAIL_CONSISTENCY;
if (unlikely(nblock == 0 || nblock > nilfs->ns_blocks_per_segment))
/* This limits the number of blocks read in the CRC check */
goto out;
ret = NILFS_SEG_FAIL_IO;
if (nilfs_compute_checksum(nilfs, bh_sum, &crc, sizeof(sum->ss_datasum),
((u64)nblock << nilfs->ns_blocksize_bits),
bh_sum->b_blocknr, nblock))
goto out;
ret = NILFS_SEG_FAIL_CHECKSUM_FULL;
if (crc != le32_to_cpu(sum->ss_datasum))
goto out;
ret = 0;
out:
return ret;
}
/**
* nilfs_read_summary_info - read an item on summary blocks of a log
* @nilfs: nilfs object
* @pbh: the current buffer head on summary blocks [in, out]
* @offset: the current byte offset on summary blocks [in, out]
* @bytes: byte size of the item to be read
*/
static void *nilfs_read_summary_info(struct the_nilfs *nilfs,
struct buffer_head **pbh,
unsigned int *offset, unsigned int bytes)
{
void *ptr;
sector_t blocknr;
BUG_ON((*pbh)->b_size < *offset);
if (bytes > (*pbh)->b_size - *offset) {
blocknr = (*pbh)->b_blocknr;
brelse(*pbh);
*pbh = __bread(nilfs->ns_bdev, blocknr + 1,
nilfs->ns_blocksize);
if (unlikely(!*pbh))
return NULL;
*offset = 0;
}
ptr = (*pbh)->b_data + *offset;
*offset += bytes;
return ptr;
}
/**
* nilfs_skip_summary_info - skip items on summary blocks of a log
* @nilfs: nilfs object
* @pbh: the current buffer head on summary blocks [in, out]
* @offset: the current byte offset on summary blocks [in, out]
* @bytes: byte size of the item to be skipped
* @count: number of items to be skipped
*/
static void nilfs_skip_summary_info(struct the_nilfs *nilfs,
struct buffer_head **pbh,
unsigned int *offset, unsigned int bytes,
unsigned long count)
{
unsigned int rest_item_in_current_block
= ((*pbh)->b_size - *offset) / bytes;
if (count <= rest_item_in_current_block) {
*offset += bytes * count;
} else {
sector_t blocknr = (*pbh)->b_blocknr;
unsigned int nitem_per_block = (*pbh)->b_size / bytes;
unsigned int bcnt;
count -= rest_item_in_current_block;
bcnt = DIV_ROUND_UP(count, nitem_per_block);
*offset = bytes * (count - (bcnt - 1) * nitem_per_block);
brelse(*pbh);
*pbh = __bread(nilfs->ns_bdev, blocknr + bcnt,
nilfs->ns_blocksize);
}
}
/**
* nilfs_scan_dsync_log - get block information of a log written for data sync
* @nilfs: nilfs object
* @start_blocknr: start block number of the log
* @sum: log summary information
* @head: list head to add nilfs_recovery_block struct
*/
static int nilfs_scan_dsync_log(struct the_nilfs *nilfs, sector_t start_blocknr,
struct nilfs_segment_summary *sum,
struct list_head *head)
{
struct buffer_head *bh;
unsigned int offset;
u32 nfinfo, sumbytes;
sector_t blocknr;
ino_t ino;
int err = -EIO;
nfinfo = le32_to_cpu(sum->ss_nfinfo);
if (!nfinfo)
return 0;
sumbytes = le32_to_cpu(sum->ss_sumbytes);
blocknr = start_blocknr + DIV_ROUND_UP(sumbytes, nilfs->ns_blocksize);
bh = __bread(nilfs->ns_bdev, start_blocknr, nilfs->ns_blocksize);
if (unlikely(!bh))
goto out;
offset = le16_to_cpu(sum->ss_bytes);
for (;;) {
unsigned long nblocks, ndatablk, nnodeblk;
struct nilfs_finfo *finfo;
finfo = nilfs_read_summary_info(nilfs, &bh, &offset,
sizeof(*finfo));
if (unlikely(!finfo))
goto out;
ino = le64_to_cpu(finfo->fi_ino);
nblocks = le32_to_cpu(finfo->fi_nblocks);
ndatablk = le32_to_cpu(finfo->fi_ndatablk);
nnodeblk = nblocks - ndatablk;
while (ndatablk-- > 0) {
struct nilfs_recovery_block *rb;
struct nilfs_binfo_v *binfo;
binfo = nilfs_read_summary_info(nilfs, &bh, &offset,
sizeof(*binfo));
if (unlikely(!binfo))
goto out;
rb = kmalloc(sizeof(*rb), GFP_NOFS);
if (unlikely(!rb)) {
err = -ENOMEM;
goto out;
}
rb->ino = ino;
rb->blocknr = blocknr++;
rb->vblocknr = le64_to_cpu(binfo->bi_vblocknr);
rb->blkoff = le64_to_cpu(binfo->bi_blkoff);
/* INIT_LIST_HEAD(&rb->list); */
list_add_tail(&rb->list, head);
}
if (--nfinfo == 0)
break;
blocknr += nnodeblk; /* always 0 for data sync logs */
nilfs_skip_summary_info(nilfs, &bh, &offset, sizeof(__le64),
nnodeblk);
if (unlikely(!bh))
goto out;
}
err = 0;
out:
brelse(bh); /* brelse(NULL) is just ignored */
return err;
}
static void dispose_recovery_list(struct list_head *head)
{
while (!list_empty(head)) {
struct nilfs_recovery_block *rb;
rb = list_first_entry(head, struct nilfs_recovery_block, list);
list_del(&rb->list);
kfree(rb);
}
}
struct nilfs_segment_entry {
struct list_head list;
__u64 segnum;
};
static int nilfs_segment_list_add(struct list_head *head, __u64 segnum)
{
struct nilfs_segment_entry *ent = kmalloc(sizeof(*ent), GFP_NOFS);
if (unlikely(!ent))
return -ENOMEM;
ent->segnum = segnum;
INIT_LIST_HEAD(&ent->list);
list_add_tail(&ent->list, head);
return 0;
}
void nilfs_dispose_segment_list(struct list_head *head)
{
while (!list_empty(head)) {
struct nilfs_segment_entry *ent;
ent = list_first_entry(head, struct nilfs_segment_entry, list);
list_del(&ent->list);
kfree(ent);
}
}
static int nilfs_prepare_segment_for_recovery(struct the_nilfs *nilfs,
struct super_block *sb,
struct nilfs_recovery_info *ri)
{
struct list_head *head = &ri->ri_used_segments;
struct nilfs_segment_entry *ent, *n;
struct inode *sufile = nilfs->ns_sufile;
__u64 segnum[4];
int err;
int i;
segnum[0] = nilfs->ns_segnum;
segnum[1] = nilfs->ns_nextnum;
segnum[2] = ri->ri_segnum;
segnum[3] = ri->ri_nextnum;
/*
* Releasing the next segment of the latest super root.
* The next segment is invalidated by this recovery.
*/
err = nilfs_sufile_free(sufile, segnum[1]);
if (unlikely(err))
goto failed;
for (i = 1; i < 4; i++) {
err = nilfs_segment_list_add(head, segnum[i]);
if (unlikely(err))
goto failed;
}
/*
* Collecting segments written after the latest super root.
* These are marked dirty to avoid being reallocated in the next write.
*/
list_for_each_entry_safe(ent, n, head, list) {
if (ent->segnum != segnum[0]) {
err = nilfs_sufile_scrap(sufile, ent->segnum);
if (unlikely(err))
goto failed;
}
list_del(&ent->list);
kfree(ent);
}
/* Allocate new segments for recovery */
err = nilfs_sufile_alloc(sufile, &segnum[0]);
if (unlikely(err))
goto failed;
nilfs->ns_pseg_offset = 0;
nilfs->ns_seg_seq = ri->ri_seq + 2;
nilfs->ns_nextnum = nilfs->ns_segnum = segnum[0];
failed:
/* No need to recover sufile because it will be destroyed on error */
return err;
}
static int nilfs_recovery_copy_block(struct the_nilfs *nilfs,
struct nilfs_recovery_block *rb,
struct page *page)
{
struct buffer_head *bh_org;
void *kaddr;
bh_org = __bread(nilfs->ns_bdev, rb->blocknr, nilfs->ns_blocksize);
if (unlikely(!bh_org))
return -EIO;
kaddr = kmap_atomic(page);
memcpy(kaddr + bh_offset(bh_org), bh_org->b_data, bh_org->b_size);
kunmap_atomic(kaddr);
brelse(bh_org);
return 0;
}
static int nilfs_recover_dsync_blocks(struct the_nilfs *nilfs,
struct super_block *sb,
struct nilfs_root *root,
struct list_head *head,
unsigned long *nr_salvaged_blocks)
{
struct inode *inode;
struct nilfs_recovery_block *rb, *n;
unsigned int blocksize = nilfs->ns_blocksize;
struct page *page;
loff_t pos;
int err = 0, err2 = 0;
list_for_each_entry_safe(rb, n, head, list) {
inode = nilfs_iget(sb, root, rb->ino);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
inode = NULL;
goto failed_inode;
}
pos = rb->blkoff << inode->i_blkbits;
err = block_write_begin(inode->i_mapping, pos, blocksize,
0, &page, nilfs_get_block);
if (unlikely(err)) {
loff_t isize = inode->i_size;
if (pos + blocksize > isize)
nilfs_write_failed(inode->i_mapping,
pos + blocksize);
goto failed_inode;
}
err = nilfs_recovery_copy_block(nilfs, rb, page);
if (unlikely(err))
goto failed_page;
err = nilfs_set_file_dirty(inode, 1);
if (unlikely(err))
goto failed_page;
block_write_end(NULL, inode->i_mapping, pos, blocksize,
blocksize, page, NULL);
unlock_page(page);
put_page(page);
(*nr_salvaged_blocks)++;
goto next;
failed_page:
unlock_page(page);
put_page(page);
failed_inode:
nilfs_warn(sb,
"error %d recovering data block (ino=%lu, block-offset=%llu)",
err, (unsigned long)rb->ino,
(unsigned long long)rb->blkoff);
if (!err2)
err2 = err;
next:
iput(inode); /* iput(NULL) is just ignored */
list_del_init(&rb->list);
kfree(rb);
}
return err2;
}
/**
* nilfs_do_roll_forward - salvage logical segments newer than the latest
* checkpoint
* @nilfs: nilfs object
* @sb: super block instance
* @ri: pointer to a nilfs_recovery_info
*/
static int nilfs_do_roll_forward(struct the_nilfs *nilfs,
struct super_block *sb,
struct nilfs_root *root,
struct nilfs_recovery_info *ri)
{
struct buffer_head *bh_sum = NULL;
struct nilfs_segment_summary *sum = NULL;
sector_t pseg_start;
sector_t seg_start, seg_end; /* Starting/ending DBN of full segment */
unsigned long nsalvaged_blocks = 0;
unsigned int flags;
u64 seg_seq;
__u64 segnum, nextnum = 0;
int empty_seg = 0;
int err = 0, ret;
LIST_HEAD(dsync_blocks); /* list of data blocks to be recovered */
enum {
RF_INIT_ST,
RF_DSYNC_ST, /* scanning data-sync segments */
};
int state = RF_INIT_ST;
pseg_start = ri->ri_lsegs_start;
seg_seq = ri->ri_lsegs_start_seq;
segnum = nilfs_get_segnum_of_block(nilfs, pseg_start);
nilfs_get_segment_range(nilfs, segnum, &seg_start, &seg_end);
while (segnum != ri->ri_segnum || pseg_start <= ri->ri_pseg_start) {
brelse(bh_sum);
bh_sum = nilfs_read_log_header(nilfs, pseg_start, &sum);
if (!bh_sum) {
err = -EIO;
goto failed;
}
ret = nilfs_validate_log(nilfs, seg_seq, bh_sum, sum);
if (ret) {
if (ret == NILFS_SEG_FAIL_IO) {
err = -EIO;
goto failed;
}
goto strayed;
}
flags = le16_to_cpu(sum->ss_flags);
if (flags & NILFS_SS_SR)
goto confused;
/* Found a valid partial segment; do recovery actions */
nextnum = nilfs_get_segnum_of_block(nilfs,
le64_to_cpu(sum->ss_next));
empty_seg = 0;
nilfs->ns_ctime = le64_to_cpu(sum->ss_create);
if (!(flags & NILFS_SS_GC))
nilfs->ns_nongc_ctime = nilfs->ns_ctime;
switch (state) {
case RF_INIT_ST:
if (!(flags & NILFS_SS_LOGBGN) ||
!(flags & NILFS_SS_SYNDT))
goto try_next_pseg;
state = RF_DSYNC_ST;
fallthrough;
case RF_DSYNC_ST:
if (!(flags & NILFS_SS_SYNDT))
goto confused;
err = nilfs_scan_dsync_log(nilfs, pseg_start, sum,
&dsync_blocks);
if (unlikely(err))
goto failed;
if (flags & NILFS_SS_LOGEND) {
err = nilfs_recover_dsync_blocks(
nilfs, sb, root, &dsync_blocks,
&nsalvaged_blocks);
if (unlikely(err))
goto failed;
state = RF_INIT_ST;
}
break; /* Fall through to try_next_pseg */
}
try_next_pseg:
if (pseg_start == ri->ri_lsegs_end)
break;
pseg_start += le32_to_cpu(sum->ss_nblocks);
if (pseg_start < seg_end)
continue;
goto feed_segment;
strayed:
if (pseg_start == ri->ri_lsegs_end)
break;
feed_segment:
/* Looking to the next full segment */
if (empty_seg++)
break;
seg_seq++;
segnum = nextnum;
nilfs_get_segment_range(nilfs, segnum, &seg_start, &seg_end);
pseg_start = seg_start;
}
if (nsalvaged_blocks) {
nilfs_info(sb, "salvaged %lu blocks", nsalvaged_blocks);
ri->ri_need_recovery = NILFS_RECOVERY_ROLLFORWARD_DONE;
}
out:
brelse(bh_sum);
dispose_recovery_list(&dsync_blocks);
return err;
confused:
err = -EINVAL;
failed:
nilfs_err(sb,
"error %d roll-forwarding partial segment at blocknr = %llu",
err, (unsigned long long)pseg_start);
goto out;
}
static void nilfs_finish_roll_forward(struct the_nilfs *nilfs,
struct nilfs_recovery_info *ri)
{
struct buffer_head *bh;
int err;
if (nilfs_get_segnum_of_block(nilfs, ri->ri_lsegs_start) !=
nilfs_get_segnum_of_block(nilfs, ri->ri_super_root))
return;
bh = __getblk(nilfs->ns_bdev, ri->ri_lsegs_start, nilfs->ns_blocksize);
BUG_ON(!bh);
memset(bh->b_data, 0, bh->b_size);
set_buffer_dirty(bh);
err = sync_dirty_buffer(bh);
if (unlikely(err))
nilfs_warn(nilfs->ns_sb,
"buffer sync write failed during post-cleaning of recovery.");
brelse(bh);
}
/**
* nilfs_salvage_orphan_logs - salvage logs written after the latest checkpoint
* @nilfs: nilfs object
* @sb: super block instance
* @ri: pointer to a nilfs_recovery_info struct to store search results.
*
* Return Value: On success, 0 is returned. On error, one of the following
* negative error code is returned.
*
* %-EINVAL - Inconsistent filesystem state.
*
* %-EIO - I/O error
*
* %-ENOSPC - No space left on device (only in a panic state).
*
* %-ERESTARTSYS - Interrupted.
*
* %-ENOMEM - Insufficient memory available.
*/
int nilfs_salvage_orphan_logs(struct the_nilfs *nilfs,
struct super_block *sb,
struct nilfs_recovery_info *ri)
{
struct nilfs_root *root;
int err;
if (ri->ri_lsegs_start == 0 || ri->ri_lsegs_end == 0)
return 0;
err = nilfs_attach_checkpoint(sb, ri->ri_cno, true, &root);
if (unlikely(err)) {
nilfs_err(sb, "error %d loading the latest checkpoint", err);
return err;
}
err = nilfs_do_roll_forward(nilfs, sb, root, ri);
if (unlikely(err))
goto failed;
if (ri->ri_need_recovery == NILFS_RECOVERY_ROLLFORWARD_DONE) {
err = nilfs_prepare_segment_for_recovery(nilfs, sb, ri);
if (unlikely(err)) {
nilfs_err(sb, "error %d preparing segment for recovery",
err);
goto failed;
}
err = nilfs_attach_log_writer(sb, root);
if (unlikely(err))
goto failed;
set_nilfs_discontinued(nilfs);
err = nilfs_construct_segment(sb);
nilfs_detach_log_writer(sb);
if (unlikely(err)) {
nilfs_err(sb, "error %d writing segment for recovery",
err);
goto failed;
}
nilfs_finish_roll_forward(nilfs, ri);
}
failed:
nilfs_put_root(root);
return err;
}
/**
* nilfs_search_super_root - search the latest valid super root
* @nilfs: the_nilfs
* @ri: pointer to a nilfs_recovery_info struct to store search results.
*
* nilfs_search_super_root() looks for the latest super-root from a partial
* segment pointed by the superblock. It sets up struct the_nilfs through
* this search. It fills nilfs_recovery_info (ri) required for recovery.
*
* Return Value: On success, 0 is returned. On error, one of the following
* negative error code is returned.
*
* %-EINVAL - No valid segment found
*
* %-EIO - I/O error
*
* %-ENOMEM - Insufficient memory available.
*/
int nilfs_search_super_root(struct the_nilfs *nilfs,
struct nilfs_recovery_info *ri)
{
struct buffer_head *bh_sum = NULL;
struct nilfs_segment_summary *sum = NULL;
sector_t pseg_start, pseg_end, sr_pseg_start = 0;
sector_t seg_start, seg_end; /* range of full segment (block number) */
sector_t b, end;
unsigned long nblocks;
unsigned int flags;
u64 seg_seq;
__u64 segnum, nextnum = 0;
__u64 cno;
LIST_HEAD(segments);
int empty_seg = 0, scan_newer = 0;
int ret;
pseg_start = nilfs->ns_last_pseg;
seg_seq = nilfs->ns_last_seq;
cno = nilfs->ns_last_cno;
segnum = nilfs_get_segnum_of_block(nilfs, pseg_start);
/* Calculate range of segment */
nilfs_get_segment_range(nilfs, segnum, &seg_start, &seg_end);
/* Read ahead segment */
b = seg_start;
while (b <= seg_end)
__breadahead(nilfs->ns_bdev, b++, nilfs->ns_blocksize);
for (;;) {
brelse(bh_sum);
ret = NILFS_SEG_FAIL_IO;
bh_sum = nilfs_read_log_header(nilfs, pseg_start, &sum);
if (!bh_sum)
goto failed;
ret = nilfs_validate_log(nilfs, seg_seq, bh_sum, sum);
if (ret) {
if (ret == NILFS_SEG_FAIL_IO)
goto failed;
goto strayed;
}
nblocks = le32_to_cpu(sum->ss_nblocks);
pseg_end = pseg_start + nblocks - 1;
if (unlikely(pseg_end > seg_end)) {
ret = NILFS_SEG_FAIL_CONSISTENCY;
goto strayed;
}
/* A valid partial segment */
ri->ri_pseg_start = pseg_start;
ri->ri_seq = seg_seq;
ri->ri_segnum = segnum;
nextnum = nilfs_get_segnum_of_block(nilfs,
le64_to_cpu(sum->ss_next));
ri->ri_nextnum = nextnum;
empty_seg = 0;
flags = le16_to_cpu(sum->ss_flags);
if (!(flags & NILFS_SS_SR) && !scan_newer) {
/*
* This will never happen because a superblock
* (last_segment) always points to a pseg with
* a super root.
*/
ret = NILFS_SEG_FAIL_CONSISTENCY;
goto failed;
}
if (pseg_start == seg_start) {
nilfs_get_segment_range(nilfs, nextnum, &b, &end);
while (b <= end)
__breadahead(nilfs->ns_bdev, b++,
nilfs->ns_blocksize);
}
if (!(flags & NILFS_SS_SR)) {
if (!ri->ri_lsegs_start && (flags & NILFS_SS_LOGBGN)) {
ri->ri_lsegs_start = pseg_start;
ri->ri_lsegs_start_seq = seg_seq;
}
if (flags & NILFS_SS_LOGEND)
ri->ri_lsegs_end = pseg_start;
goto try_next_pseg;
}
/* A valid super root was found. */
ri->ri_cno = cno++;
ri->ri_super_root = pseg_end;
ri->ri_lsegs_start = ri->ri_lsegs_end = 0;
nilfs_dispose_segment_list(&segments);
sr_pseg_start = pseg_start;
nilfs->ns_pseg_offset = pseg_start + nblocks - seg_start;
nilfs->ns_seg_seq = seg_seq;
nilfs->ns_segnum = segnum;
nilfs->ns_cno = cno; /* nilfs->ns_cno = ri->ri_cno + 1 */
nilfs->ns_ctime = le64_to_cpu(sum->ss_create);
nilfs->ns_nextnum = nextnum;
if (scan_newer)
ri->ri_need_recovery = NILFS_RECOVERY_SR_UPDATED;
else {
if (nilfs->ns_mount_state & NILFS_VALID_FS)
goto super_root_found;
scan_newer = 1;
}
try_next_pseg:
/* Standing on a course, or met an inconsistent state */
pseg_start += nblocks;
if (pseg_start < seg_end)
continue;
goto feed_segment;
strayed:
/* Off the trail */
if (!scan_newer)
/*
* This can happen if a checkpoint was written without
* barriers, or as a result of an I/O failure.
*/
goto failed;
feed_segment:
/* Looking to the next full segment */
if (empty_seg++)
goto super_root_found; /* found a valid super root */
ret = nilfs_segment_list_add(&segments, segnum);
if (unlikely(ret))
goto failed;
seg_seq++;
segnum = nextnum;
nilfs_get_segment_range(nilfs, segnum, &seg_start, &seg_end);
pseg_start = seg_start;
}
super_root_found:
/* Updating pointers relating to the latest checkpoint */
brelse(bh_sum);
list_splice_tail(&segments, &ri->ri_used_segments);
nilfs->ns_last_pseg = sr_pseg_start;
nilfs->ns_last_seq = nilfs->ns_seg_seq;
nilfs->ns_last_cno = ri->ri_cno;
return 0;
failed:
brelse(bh_sum);
nilfs_dispose_segment_list(&segments);
return ret < 0 ? ret : nilfs_warn_segment_error(nilfs->ns_sb, ret);
}