linux-sg2042/arch/powerpc/kernel/perf_event_fsl_emb.c

688 lines
14 KiB
C

/*
* Performance event support - Freescale Embedded Performance Monitor
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
* Copyright 2010 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/perf_event.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/reg_fsl_emb.h>
#include <asm/pmc.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/ptrace.h>
struct cpu_hw_events {
int n_events;
int disabled;
u8 pmcs_enabled;
struct perf_event *event[MAX_HWEVENTS];
};
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
static struct fsl_emb_pmu *ppmu;
/* Number of perf_events counting hardware events */
static atomic_t num_events;
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);
/*
* If interrupts were soft-disabled when a PMU interrupt occurs, treat
* it as an NMI.
*/
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
#ifdef __powerpc64__
return !regs->softe;
#else
return 0;
#endif
}
static void perf_event_interrupt(struct pt_regs *regs);
/*
* Read one performance monitor counter (PMC).
*/
static unsigned long read_pmc(int idx)
{
unsigned long val;
switch (idx) {
case 0:
val = mfpmr(PMRN_PMC0);
break;
case 1:
val = mfpmr(PMRN_PMC1);
break;
case 2:
val = mfpmr(PMRN_PMC2);
break;
case 3:
val = mfpmr(PMRN_PMC3);
break;
default:
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
val = 0;
}
return val;
}
/*
* Write one PMC.
*/
static void write_pmc(int idx, unsigned long val)
{
switch (idx) {
case 0:
mtpmr(PMRN_PMC0, val);
break;
case 1:
mtpmr(PMRN_PMC1, val);
break;
case 2:
mtpmr(PMRN_PMC2, val);
break;
case 3:
mtpmr(PMRN_PMC3, val);
break;
default:
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
}
isync();
}
/*
* Write one local control A register
*/
static void write_pmlca(int idx, unsigned long val)
{
switch (idx) {
case 0:
mtpmr(PMRN_PMLCA0, val);
break;
case 1:
mtpmr(PMRN_PMLCA1, val);
break;
case 2:
mtpmr(PMRN_PMLCA2, val);
break;
case 3:
mtpmr(PMRN_PMLCA3, val);
break;
default:
printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
}
isync();
}
/*
* Write one local control B register
*/
static void write_pmlcb(int idx, unsigned long val)
{
switch (idx) {
case 0:
mtpmr(PMRN_PMLCB0, val);
break;
case 1:
mtpmr(PMRN_PMLCB1, val);
break;
case 2:
mtpmr(PMRN_PMLCB2, val);
break;
case 3:
mtpmr(PMRN_PMLCB3, val);
break;
default:
printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
}
isync();
}
static void fsl_emb_pmu_read(struct perf_event *event)
{
s64 val, delta, prev;
if (event->hw.state & PERF_HES_STOPPED)
return;
/*
* Performance monitor interrupts come even when interrupts
* are soft-disabled, as long as interrupts are hard-enabled.
* Therefore we treat them like NMIs.
*/
do {
prev = local64_read(&event->hw.prev_count);
barrier();
val = read_pmc(event->hw.idx);
} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
/* The counters are only 32 bits wide */
delta = (val - prev) & 0xfffffffful;
local64_add(delta, &event->count);
local64_sub(delta, &event->hw.period_left);
}
/*
* Disable all events to prevent PMU interrupts and to allow
* events to be added or removed.
*/
static void fsl_emb_pmu_disable(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw;
unsigned long flags;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_events);
if (!cpuhw->disabled) {
cpuhw->disabled = 1;
/*
* Check if we ever enabled the PMU on this cpu.
*/
if (!cpuhw->pmcs_enabled) {
ppc_enable_pmcs();
cpuhw->pmcs_enabled = 1;
}
if (atomic_read(&num_events)) {
/*
* Set the 'freeze all counters' bit, and disable
* interrupts. The barrier is to make sure the
* mtpmr has been executed and the PMU has frozen
* the events before we return.
*/
mtpmr(PMRN_PMGC0, PMGC0_FAC);
isync();
}
}
local_irq_restore(flags);
}
/*
* Re-enable all events if disable == 0.
* If we were previously disabled and events were added, then
* put the new config on the PMU.
*/
static void fsl_emb_pmu_enable(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw;
unsigned long flags;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_events);
if (!cpuhw->disabled)
goto out;
cpuhw->disabled = 0;
ppc_set_pmu_inuse(cpuhw->n_events != 0);
if (cpuhw->n_events > 0) {
mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
isync();
}
out:
local_irq_restore(flags);
}
static int collect_events(struct perf_event *group, int max_count,
struct perf_event *ctrs[])
{
int n = 0;
struct perf_event *event;
if (!is_software_event(group)) {
if (n >= max_count)
return -1;
ctrs[n] = group;
n++;
}
list_for_each_entry(event, &group->sibling_list, group_entry) {
if (!is_software_event(event) &&
event->state != PERF_EVENT_STATE_OFF) {
if (n >= max_count)
return -1;
ctrs[n] = event;
n++;
}
}
return n;
}
/* context locked on entry */
static int fsl_emb_pmu_add(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuhw;
int ret = -EAGAIN;
int num_counters = ppmu->n_counter;
u64 val;
int i;
perf_pmu_disable(event->pmu);
cpuhw = &get_cpu_var(cpu_hw_events);
if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
num_counters = ppmu->n_restricted;
/*
* Allocate counters from top-down, so that restricted-capable
* counters are kept free as long as possible.
*/
for (i = num_counters - 1; i >= 0; i--) {
if (cpuhw->event[i])
continue;
break;
}
if (i < 0)
goto out;
event->hw.idx = i;
cpuhw->event[i] = event;
++cpuhw->n_events;
val = 0;
if (event->hw.sample_period) {
s64 left = local64_read(&event->hw.period_left);
if (left < 0x80000000L)
val = 0x80000000L - left;
}
local64_set(&event->hw.prev_count, val);
if (!(flags & PERF_EF_START)) {
event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
val = 0;
}
write_pmc(i, val);
perf_event_update_userpage(event);
write_pmlcb(i, event->hw.config >> 32);
write_pmlca(i, event->hw.config_base);
ret = 0;
out:
put_cpu_var(cpu_hw_events);
perf_pmu_enable(event->pmu);
return ret;
}
/* context locked on entry */
static void fsl_emb_pmu_del(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuhw;
int i = event->hw.idx;
perf_pmu_disable(event->pmu);
if (i < 0)
goto out;
fsl_emb_pmu_read(event);
cpuhw = &get_cpu_var(cpu_hw_events);
WARN_ON(event != cpuhw->event[event->hw.idx]);
write_pmlca(i, 0);
write_pmlcb(i, 0);
write_pmc(i, 0);
cpuhw->event[i] = NULL;
event->hw.idx = -1;
/*
* TODO: if at least one restricted event exists, and we
* just freed up a non-restricted-capable counter, and
* there is a restricted-capable counter occupied by
* a non-restricted event, migrate that event to the
* vacated counter.
*/
cpuhw->n_events--;
out:
perf_pmu_enable(event->pmu);
put_cpu_var(cpu_hw_events);
}
static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags)
{
unsigned long flags;
s64 left;
if (event->hw.idx < 0 || !event->hw.sample_period)
return;
if (!(event->hw.state & PERF_HES_STOPPED))
return;
if (ef_flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
local_irq_save(flags);
perf_pmu_disable(event->pmu);
event->hw.state = 0;
left = local64_read(&event->hw.period_left);
write_pmc(event->hw.idx, left);
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
}
static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags)
{
unsigned long flags;
if (event->hw.idx < 0 || !event->hw.sample_period)
return;
if (event->hw.state & PERF_HES_STOPPED)
return;
local_irq_save(flags);
perf_pmu_disable(event->pmu);
fsl_emb_pmu_read(event);
event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
write_pmc(event->hw.idx, 0);
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
}
/*
* Release the PMU if this is the last perf_event.
*/
static void hw_perf_event_destroy(struct perf_event *event)
{
if (!atomic_add_unless(&num_events, -1, 1)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_dec_return(&num_events) == 0)
release_pmc_hardware();
mutex_unlock(&pmc_reserve_mutex);
}
}
/*
* Translate a generic cache event_id config to a raw event_id code.
*/
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
unsigned long type, op, result;
int ev;
if (!ppmu->cache_events)
return -EINVAL;
/* unpack config */
type = config & 0xff;
op = (config >> 8) & 0xff;
result = (config >> 16) & 0xff;
if (type >= PERF_COUNT_HW_CACHE_MAX ||
op >= PERF_COUNT_HW_CACHE_OP_MAX ||
result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
ev = (*ppmu->cache_events)[type][op][result];
if (ev == 0)
return -EOPNOTSUPP;
if (ev == -1)
return -EINVAL;
*eventp = ev;
return 0;
}
static int fsl_emb_pmu_event_init(struct perf_event *event)
{
u64 ev;
struct perf_event *events[MAX_HWEVENTS];
int n;
int err;
int num_restricted;
int i;
switch (event->attr.type) {
case PERF_TYPE_HARDWARE:
ev = event->attr.config;
if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
return -EOPNOTSUPP;
ev = ppmu->generic_events[ev];
break;
case PERF_TYPE_HW_CACHE:
err = hw_perf_cache_event(event->attr.config, &ev);
if (err)
return err;
break;
case PERF_TYPE_RAW:
ev = event->attr.config;
break;
default:
return -ENOENT;
}
event->hw.config = ppmu->xlate_event(ev);
if (!(event->hw.config & FSL_EMB_EVENT_VALID))
return -EINVAL;
/*
* If this is in a group, check if it can go on with all the
* other hardware events in the group. We assume the event
* hasn't been linked into its leader's sibling list at this point.
*/
n = 0;
if (event->group_leader != event) {
n = collect_events(event->group_leader,
ppmu->n_counter - 1, events);
if (n < 0)
return -EINVAL;
}
if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
num_restricted = 0;
for (i = 0; i < n; i++) {
if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
num_restricted++;
}
if (num_restricted >= ppmu->n_restricted)
return -EINVAL;
}
event->hw.idx = -1;
event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
(u32)((ev << 16) & PMLCA_EVENT_MASK);
if (event->attr.exclude_user)
event->hw.config_base |= PMLCA_FCU;
if (event->attr.exclude_kernel)
event->hw.config_base |= PMLCA_FCS;
if (event->attr.exclude_idle)
return -ENOTSUPP;
event->hw.last_period = event->hw.sample_period;
local64_set(&event->hw.period_left, event->hw.last_period);
/*
* See if we need to reserve the PMU.
* If no events are currently in use, then we have to take a
* mutex to ensure that we don't race with another task doing
* reserve_pmc_hardware or release_pmc_hardware.
*/
err = 0;
if (!atomic_inc_not_zero(&num_events)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&num_events) == 0 &&
reserve_pmc_hardware(perf_event_interrupt))
err = -EBUSY;
else
atomic_inc(&num_events);
mutex_unlock(&pmc_reserve_mutex);
mtpmr(PMRN_PMGC0, PMGC0_FAC);
isync();
}
event->destroy = hw_perf_event_destroy;
return err;
}
static struct pmu fsl_emb_pmu = {
.pmu_enable = fsl_emb_pmu_enable,
.pmu_disable = fsl_emb_pmu_disable,
.event_init = fsl_emb_pmu_event_init,
.add = fsl_emb_pmu_add,
.del = fsl_emb_pmu_del,
.start = fsl_emb_pmu_start,
.stop = fsl_emb_pmu_stop,
.read = fsl_emb_pmu_read,
};
/*
* A counter has overflowed; update its count and record
* things if requested. Note that interrupts are hard-disabled
* here so there is no possibility of being interrupted.
*/
static void record_and_restart(struct perf_event *event, unsigned long val,
struct pt_regs *regs, int nmi)
{
u64 period = event->hw.sample_period;
s64 prev, delta, left;
int record = 0;
if (event->hw.state & PERF_HES_STOPPED) {
write_pmc(event->hw.idx, 0);
return;
}
/* we don't have to worry about interrupts here */
prev = local64_read(&event->hw.prev_count);
delta = (val - prev) & 0xfffffffful;
local64_add(delta, &event->count);
/*
* See if the total period for this event has expired,
* and update for the next period.
*/
val = 0;
left = local64_read(&event->hw.period_left) - delta;
if (period) {
if (left <= 0) {
left += period;
if (left <= 0)
left = period;
record = 1;
}
if (left < 0x80000000LL)
val = 0x80000000LL - left;
}
write_pmc(event->hw.idx, val);
local64_set(&event->hw.prev_count, val);
local64_set(&event->hw.period_left, left);
perf_event_update_userpage(event);
/*
* Finally record data if requested.
*/
if (record) {
struct perf_sample_data data;
perf_sample_data_init(&data, 0);
data.period = event->hw.last_period;
if (perf_event_overflow(event, nmi, &data, regs))
fsl_emb_pmu_stop(event, 0);
}
}
static void perf_event_interrupt(struct pt_regs *regs)
{
int i;
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
struct perf_event *event;
unsigned long val;
int found = 0;
int nmi;
nmi = perf_intr_is_nmi(regs);
if (nmi)
nmi_enter();
else
irq_enter();
for (i = 0; i < ppmu->n_counter; ++i) {
event = cpuhw->event[i];
val = read_pmc(i);
if ((int)val < 0) {
if (event) {
/* event has overflowed */
found = 1;
record_and_restart(event, val, regs, nmi);
} else {
/*
* Disabled counter is negative,
* reset it just in case.
*/
write_pmc(i, 0);
}
}
}
/* PMM will keep counters frozen until we return from the interrupt. */
mtmsr(mfmsr() | MSR_PMM);
mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
isync();
if (nmi)
nmi_exit();
else
irq_exit();
}
void hw_perf_event_setup(int cpu)
{
struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
memset(cpuhw, 0, sizeof(*cpuhw));
}
int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
{
if (ppmu)
return -EBUSY; /* something's already registered */
ppmu = pmu;
pr_info("%s performance monitor hardware support registered\n",
pmu->name);
perf_pmu_register(&fsl_emb_pmu);
return 0;
}