linux-sg2042/net/wireless/util.c

2180 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Wireless utility functions
*
* Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright 2017 Intel Deutschland GmbH
* Copyright (C) 2018-2020 Intel Corporation
*/
#include <linux/export.h>
#include <linux/bitops.h>
#include <linux/etherdevice.h>
#include <linux/slab.h>
#include <linux/ieee80211.h>
#include <net/cfg80211.h>
#include <net/ip.h>
#include <net/dsfield.h>
#include <linux/if_vlan.h>
#include <linux/mpls.h>
#include <linux/gcd.h>
#include <linux/bitfield.h>
#include <linux/nospec.h>
#include "core.h"
#include "rdev-ops.h"
struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
u32 basic_rates, int bitrate)
{
struct ieee80211_rate *result = &sband->bitrates[0];
int i;
for (i = 0; i < sband->n_bitrates; i++) {
if (!(basic_rates & BIT(i)))
continue;
if (sband->bitrates[i].bitrate > bitrate)
continue;
result = &sband->bitrates[i];
}
return result;
}
EXPORT_SYMBOL(ieee80211_get_response_rate);
u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
enum nl80211_bss_scan_width scan_width)
{
struct ieee80211_rate *bitrates;
u32 mandatory_rates = 0;
enum ieee80211_rate_flags mandatory_flag;
int i;
if (WARN_ON(!sband))
return 1;
if (sband->band == NL80211_BAND_2GHZ) {
if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
scan_width == NL80211_BSS_CHAN_WIDTH_10)
mandatory_flag = IEEE80211_RATE_MANDATORY_G;
else
mandatory_flag = IEEE80211_RATE_MANDATORY_B;
} else {
mandatory_flag = IEEE80211_RATE_MANDATORY_A;
}
bitrates = sband->bitrates;
for (i = 0; i < sband->n_bitrates; i++)
if (bitrates[i].flags & mandatory_flag)
mandatory_rates |= BIT(i);
return mandatory_rates;
}
EXPORT_SYMBOL(ieee80211_mandatory_rates);
u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
{
/* see 802.11 17.3.8.3.2 and Annex J
* there are overlapping channel numbers in 5GHz and 2GHz bands */
if (chan <= 0)
return 0; /* not supported */
switch (band) {
case NL80211_BAND_2GHZ:
if (chan == 14)
return MHZ_TO_KHZ(2484);
else if (chan < 14)
return MHZ_TO_KHZ(2407 + chan * 5);
break;
case NL80211_BAND_5GHZ:
if (chan >= 182 && chan <= 196)
return MHZ_TO_KHZ(4000 + chan * 5);
else
return MHZ_TO_KHZ(5000 + chan * 5);
break;
case NL80211_BAND_6GHZ:
/* see 802.11ax D6.1 27.3.23.2 */
if (chan == 2)
return MHZ_TO_KHZ(5935);
if (chan <= 253)
return MHZ_TO_KHZ(5950 + chan * 5);
break;
case NL80211_BAND_60GHZ:
if (chan < 7)
return MHZ_TO_KHZ(56160 + chan * 2160);
break;
case NL80211_BAND_S1GHZ:
return 902000 + chan * 500;
default:
;
}
return 0; /* not supported */
}
EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
int ieee80211_freq_khz_to_channel(u32 freq)
{
/* TODO: just handle MHz for now */
freq = KHZ_TO_MHZ(freq);
/* see 802.11 17.3.8.3.2 and Annex J */
if (freq == 2484)
return 14;
else if (freq < 2484)
return (freq - 2407) / 5;
else if (freq >= 4910 && freq <= 4980)
return (freq - 4000) / 5;
else if (freq < 5925)
return (freq - 5000) / 5;
else if (freq == 5935)
return 2;
else if (freq <= 45000) /* DMG band lower limit */
/* see 802.11ax D6.1 27.3.22.2 */
return (freq - 5950) / 5;
else if (freq >= 58320 && freq <= 70200)
return (freq - 56160) / 2160;
else
return 0;
}
EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
u32 freq)
{
enum nl80211_band band;
struct ieee80211_supported_band *sband;
int i;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
sband = wiphy->bands[band];
if (!sband)
continue;
for (i = 0; i < sband->n_channels; i++) {
struct ieee80211_channel *chan = &sband->channels[i];
if (ieee80211_channel_to_khz(chan) == freq)
return chan;
}
}
return NULL;
}
EXPORT_SYMBOL(ieee80211_get_channel_khz);
static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
{
int i, want;
switch (sband->band) {
case NL80211_BAND_5GHZ:
case NL80211_BAND_6GHZ:
want = 3;
for (i = 0; i < sband->n_bitrates; i++) {
if (sband->bitrates[i].bitrate == 60 ||
sband->bitrates[i].bitrate == 120 ||
sband->bitrates[i].bitrate == 240) {
sband->bitrates[i].flags |=
IEEE80211_RATE_MANDATORY_A;
want--;
}
}
WARN_ON(want);
break;
case NL80211_BAND_2GHZ:
want = 7;
for (i = 0; i < sband->n_bitrates; i++) {
switch (sband->bitrates[i].bitrate) {
case 10:
case 20:
case 55:
case 110:
sband->bitrates[i].flags |=
IEEE80211_RATE_MANDATORY_B |
IEEE80211_RATE_MANDATORY_G;
want--;
break;
case 60:
case 120:
case 240:
sband->bitrates[i].flags |=
IEEE80211_RATE_MANDATORY_G;
want--;
fallthrough;
default:
sband->bitrates[i].flags |=
IEEE80211_RATE_ERP_G;
break;
}
}
WARN_ON(want != 0 && want != 3);
break;
case NL80211_BAND_60GHZ:
/* check for mandatory HT MCS 1..4 */
WARN_ON(!sband->ht_cap.ht_supported);
WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
break;
case NL80211_BAND_S1GHZ:
/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
* mandatory is ok.
*/
WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
break;
case NUM_NL80211_BANDS:
default:
WARN_ON(1);
break;
}
}
void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
{
enum nl80211_band band;
for (band = 0; band < NUM_NL80211_BANDS; band++)
if (wiphy->bands[band])
set_mandatory_flags_band(wiphy->bands[band]);
}
bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
{
int i;
for (i = 0; i < wiphy->n_cipher_suites; i++)
if (cipher == wiphy->cipher_suites[i])
return true;
return false;
}
int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
struct key_params *params, int key_idx,
bool pairwise, const u8 *mac_addr)
{
int max_key_idx = 5;
if (wiphy_ext_feature_isset(&rdev->wiphy,
NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
wiphy_ext_feature_isset(&rdev->wiphy,
NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
max_key_idx = 7;
if (key_idx < 0 || key_idx > max_key_idx)
return -EINVAL;
if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
return -EINVAL;
if (pairwise && !mac_addr)
return -EINVAL;
switch (params->cipher) {
case WLAN_CIPHER_SUITE_TKIP:
/* Extended Key ID can only be used with CCMP/GCMP ciphers */
if ((pairwise && key_idx) ||
params->mode != NL80211_KEY_RX_TX)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
/* IEEE802.11-2016 allows only 0 and - when supporting
* Extended Key ID - 1 as index for pairwise keys.
* @NL80211_KEY_NO_TX is only allowed for pairwise keys when
* the driver supports Extended Key ID.
* @NL80211_KEY_SET_TX can't be set when installing and
* validating a key.
*/
if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
params->mode == NL80211_KEY_SET_TX)
return -EINVAL;
if (wiphy_ext_feature_isset(&rdev->wiphy,
NL80211_EXT_FEATURE_EXT_KEY_ID)) {
if (pairwise && (key_idx < 0 || key_idx > 1))
return -EINVAL;
} else if (pairwise && key_idx) {
return -EINVAL;
}
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
/* Disallow BIP (group-only) cipher as pairwise cipher */
if (pairwise)
return -EINVAL;
if (key_idx < 4)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
if (key_idx > 3)
return -EINVAL;
default:
break;
}
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
if (params->key_len != WLAN_KEY_LEN_WEP40)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_TKIP:
if (params->key_len != WLAN_KEY_LEN_TKIP)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_CCMP:
if (params->key_len != WLAN_KEY_LEN_CCMP)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_CCMP_256:
if (params->key_len != WLAN_KEY_LEN_CCMP_256)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_GCMP:
if (params->key_len != WLAN_KEY_LEN_GCMP)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_GCMP_256:
if (params->key_len != WLAN_KEY_LEN_GCMP_256)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_WEP104:
if (params->key_len != WLAN_KEY_LEN_WEP104)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
return -EINVAL;
break;
default:
/*
* We don't know anything about this algorithm,
* allow using it -- but the driver must check
* all parameters! We still check below whether
* or not the driver supports this algorithm,
* of course.
*/
break;
}
if (params->seq) {
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
/* These ciphers do not use key sequence */
return -EINVAL;
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
if (params->seq_len != 6)
return -EINVAL;
break;
}
}
if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
return -EINVAL;
return 0;
}
unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
{
unsigned int hdrlen = 24;
if (ieee80211_is_data(fc)) {
if (ieee80211_has_a4(fc))
hdrlen = 30;
if (ieee80211_is_data_qos(fc)) {
hdrlen += IEEE80211_QOS_CTL_LEN;
if (ieee80211_has_order(fc))
hdrlen += IEEE80211_HT_CTL_LEN;
}
goto out;
}
if (ieee80211_is_mgmt(fc)) {
if (ieee80211_has_order(fc))
hdrlen += IEEE80211_HT_CTL_LEN;
goto out;
}
if (ieee80211_is_ctl(fc)) {
/*
* ACK and CTS are 10 bytes, all others 16. To see how
* to get this condition consider
* subtype mask: 0b0000000011110000 (0x00F0)
* ACK subtype: 0b0000000011010000 (0x00D0)
* CTS subtype: 0b0000000011000000 (0x00C0)
* bits that matter: ^^^ (0x00E0)
* value of those: 0b0000000011000000 (0x00C0)
*/
if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
hdrlen = 10;
else
hdrlen = 16;
}
out:
return hdrlen;
}
EXPORT_SYMBOL(ieee80211_hdrlen);
unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
{
const struct ieee80211_hdr *hdr =
(const struct ieee80211_hdr *)skb->data;
unsigned int hdrlen;
if (unlikely(skb->len < 10))
return 0;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
if (unlikely(hdrlen > skb->len))
return 0;
return hdrlen;
}
EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
{
int ae = flags & MESH_FLAGS_AE;
/* 802.11-2012, 8.2.4.7.3 */
switch (ae) {
default:
case 0:
return 6;
case MESH_FLAGS_AE_A4:
return 12;
case MESH_FLAGS_AE_A5_A6:
return 18;
}
}
unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
{
return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
}
EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
const u8 *addr, enum nl80211_iftype iftype,
u8 data_offset)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct {
u8 hdr[ETH_ALEN] __aligned(2);
__be16 proto;
} payload;
struct ethhdr tmp;
u16 hdrlen;
u8 mesh_flags = 0;
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
return -1;
hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
if (skb->len < hdrlen + 8)
return -1;
/* convert IEEE 802.11 header + possible LLC headers into Ethernet
* header
* IEEE 802.11 address fields:
* ToDS FromDS Addr1 Addr2 Addr3 Addr4
* 0 0 DA SA BSSID n/a
* 0 1 DA BSSID SA n/a
* 1 0 BSSID SA DA n/a
* 1 1 RA TA DA SA
*/
memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
if (iftype == NL80211_IFTYPE_MESH_POINT)
skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
mesh_flags &= MESH_FLAGS_AE;
switch (hdr->frame_control &
cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
case cpu_to_le16(IEEE80211_FCTL_TODS):
if (unlikely(iftype != NL80211_IFTYPE_AP &&
iftype != NL80211_IFTYPE_AP_VLAN &&
iftype != NL80211_IFTYPE_P2P_GO))
return -1;
break;
case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
if (unlikely(iftype != NL80211_IFTYPE_WDS &&
iftype != NL80211_IFTYPE_MESH_POINT &&
iftype != NL80211_IFTYPE_AP_VLAN &&
iftype != NL80211_IFTYPE_STATION))
return -1;
if (iftype == NL80211_IFTYPE_MESH_POINT) {
if (mesh_flags == MESH_FLAGS_AE_A4)
return -1;
if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
skb_copy_bits(skb, hdrlen +
offsetof(struct ieee80211s_hdr, eaddr1),
tmp.h_dest, 2 * ETH_ALEN);
}
hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
}
break;
case cpu_to_le16(IEEE80211_FCTL_FROMDS):
if ((iftype != NL80211_IFTYPE_STATION &&
iftype != NL80211_IFTYPE_P2P_CLIENT &&
iftype != NL80211_IFTYPE_MESH_POINT) ||
(is_multicast_ether_addr(tmp.h_dest) &&
ether_addr_equal(tmp.h_source, addr)))
return -1;
if (iftype == NL80211_IFTYPE_MESH_POINT) {
if (mesh_flags == MESH_FLAGS_AE_A5_A6)
return -1;
if (mesh_flags == MESH_FLAGS_AE_A4)
skb_copy_bits(skb, hdrlen +
offsetof(struct ieee80211s_hdr, eaddr1),
tmp.h_source, ETH_ALEN);
hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
}
break;
case cpu_to_le16(0):
if (iftype != NL80211_IFTYPE_ADHOC &&
iftype != NL80211_IFTYPE_STATION &&
iftype != NL80211_IFTYPE_OCB)
return -1;
break;
}
skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
tmp.h_proto = payload.proto;
if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
tmp.h_proto != htons(ETH_P_AARP) &&
tmp.h_proto != htons(ETH_P_IPX)) ||
ether_addr_equal(payload.hdr, bridge_tunnel_header)))
/* remove RFC1042 or Bridge-Tunnel encapsulation and
* replace EtherType */
hdrlen += ETH_ALEN + 2;
else
tmp.h_proto = htons(skb->len - hdrlen);
pskb_pull(skb, hdrlen);
if (!ehdr)
ehdr = skb_push(skb, sizeof(struct ethhdr));
memcpy(ehdr, &tmp, sizeof(tmp));
return 0;
}
EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
static void
__frame_add_frag(struct sk_buff *skb, struct page *page,
void *ptr, int len, int size)
{
struct skb_shared_info *sh = skb_shinfo(skb);
int page_offset;
get_page(page);
page_offset = ptr - page_address(page);
skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
}
static void
__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
int offset, int len)
{
struct skb_shared_info *sh = skb_shinfo(skb);
const skb_frag_t *frag = &sh->frags[0];
struct page *frag_page;
void *frag_ptr;
int frag_len, frag_size;
int head_size = skb->len - skb->data_len;
int cur_len;
frag_page = virt_to_head_page(skb->head);
frag_ptr = skb->data;
frag_size = head_size;
while (offset >= frag_size) {
offset -= frag_size;
frag_page = skb_frag_page(frag);
frag_ptr = skb_frag_address(frag);
frag_size = skb_frag_size(frag);
frag++;
}
frag_ptr += offset;
frag_len = frag_size - offset;
cur_len = min(len, frag_len);
__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
len -= cur_len;
while (len > 0) {
frag_len = skb_frag_size(frag);
cur_len = min(len, frag_len);
__frame_add_frag(frame, skb_frag_page(frag),
skb_frag_address(frag), cur_len, frag_len);
len -= cur_len;
frag++;
}
}
static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
int offset, int len, bool reuse_frag)
{
struct sk_buff *frame;
int cur_len = len;
if (skb->len - offset < len)
return NULL;
/*
* When reusing framents, copy some data to the head to simplify
* ethernet header handling and speed up protocol header processing
* in the stack later.
*/
if (reuse_frag)
cur_len = min_t(int, len, 32);
/*
* Allocate and reserve two bytes more for payload
* alignment since sizeof(struct ethhdr) is 14.
*/
frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
if (!frame)
return NULL;
skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
len -= cur_len;
if (!len)
return frame;
offset += cur_len;
__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
return frame;
}
void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
const u8 *addr, enum nl80211_iftype iftype,
const unsigned int extra_headroom,
const u8 *check_da, const u8 *check_sa)
{
unsigned int hlen = ALIGN(extra_headroom, 4);
struct sk_buff *frame = NULL;
u16 ethertype;
u8 *payload;
int offset = 0, remaining;
struct ethhdr eth;
bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
bool reuse_skb = false;
bool last = false;
while (!last) {
unsigned int subframe_len;
int len;
u8 padding;
skb_copy_bits(skb, offset, &eth, sizeof(eth));
len = ntohs(eth.h_proto);
subframe_len = sizeof(struct ethhdr) + len;
padding = (4 - subframe_len) & 0x3;
/* the last MSDU has no padding */
remaining = skb->len - offset;
if (subframe_len > remaining)
goto purge;
offset += sizeof(struct ethhdr);
last = remaining <= subframe_len + padding;
/* FIXME: should we really accept multicast DA? */
if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
!ether_addr_equal(check_da, eth.h_dest)) ||
(check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
offset += len + padding;
continue;
}
/* reuse skb for the last subframe */
if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
skb_pull(skb, offset);
frame = skb;
reuse_skb = true;
} else {
frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
reuse_frag);
if (!frame)
goto purge;
offset += len + padding;
}
skb_reset_network_header(frame);
frame->dev = skb->dev;
frame->priority = skb->priority;
payload = frame->data;
ethertype = (payload[6] << 8) | payload[7];
if (likely((ether_addr_equal(payload, rfc1042_header) &&
ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
ether_addr_equal(payload, bridge_tunnel_header))) {
eth.h_proto = htons(ethertype);
skb_pull(frame, ETH_ALEN + 2);
}
memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
__skb_queue_tail(list, frame);
}
if (!reuse_skb)
dev_kfree_skb(skb);
return;
purge:
__skb_queue_purge(list);
dev_kfree_skb(skb);
}
EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
/* Given a data frame determine the 802.1p/1d tag to use. */
unsigned int cfg80211_classify8021d(struct sk_buff *skb,
struct cfg80211_qos_map *qos_map)
{
unsigned int dscp;
unsigned char vlan_priority;
unsigned int ret;
/* skb->priority values from 256->263 are magic values to
* directly indicate a specific 802.1d priority. This is used
* to allow 802.1d priority to be passed directly in from VLAN
* tags, etc.
*/
if (skb->priority >= 256 && skb->priority <= 263) {
ret = skb->priority - 256;
goto out;
}
if (skb_vlan_tag_present(skb)) {
vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
>> VLAN_PRIO_SHIFT;
if (vlan_priority > 0) {
ret = vlan_priority;
goto out;
}
}
switch (skb->protocol) {
case htons(ETH_P_IP):
dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
break;
case htons(ETH_P_IPV6):
dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
break;
case htons(ETH_P_MPLS_UC):
case htons(ETH_P_MPLS_MC): {
struct mpls_label mpls_tmp, *mpls;
mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
sizeof(*mpls), &mpls_tmp);
if (!mpls)
return 0;
ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
>> MPLS_LS_TC_SHIFT;
goto out;
}
case htons(ETH_P_80221):
/* 802.21 is always network control traffic */
return 7;
default:
return 0;
}
if (qos_map) {
unsigned int i, tmp_dscp = dscp >> 2;
for (i = 0; i < qos_map->num_des; i++) {
if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
ret = qos_map->dscp_exception[i].up;
goto out;
}
}
for (i = 0; i < 8; i++) {
if (tmp_dscp >= qos_map->up[i].low &&
tmp_dscp <= qos_map->up[i].high) {
ret = i;
goto out;
}
}
}
ret = dscp >> 5;
out:
return array_index_nospec(ret, IEEE80211_NUM_TIDS);
}
EXPORT_SYMBOL(cfg80211_classify8021d);
const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
{
const struct cfg80211_bss_ies *ies;
ies = rcu_dereference(bss->ies);
if (!ies)
return NULL;
return cfg80211_find_elem(id, ies->data, ies->len);
}
EXPORT_SYMBOL(ieee80211_bss_get_elem);
void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct net_device *dev = wdev->netdev;
int i;
if (!wdev->connect_keys)
return;
for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
if (!wdev->connect_keys->params[i].cipher)
continue;
if (rdev_add_key(rdev, dev, i, false, NULL,
&wdev->connect_keys->params[i])) {
netdev_err(dev, "failed to set key %d\n", i);
continue;
}
if (wdev->connect_keys->def == i &&
rdev_set_default_key(rdev, dev, i, true, true)) {
netdev_err(dev, "failed to set defkey %d\n", i);
continue;
}
}
kfree_sensitive(wdev->connect_keys);
wdev->connect_keys = NULL;
}
void cfg80211_process_wdev_events(struct wireless_dev *wdev)
{
struct cfg80211_event *ev;
unsigned long flags;
spin_lock_irqsave(&wdev->event_lock, flags);
while (!list_empty(&wdev->event_list)) {
ev = list_first_entry(&wdev->event_list,
struct cfg80211_event, list);
list_del(&ev->list);
spin_unlock_irqrestore(&wdev->event_lock, flags);
wdev_lock(wdev);
switch (ev->type) {
case EVENT_CONNECT_RESULT:
__cfg80211_connect_result(
wdev->netdev,
&ev->cr,
ev->cr.status == WLAN_STATUS_SUCCESS);
break;
case EVENT_ROAMED:
__cfg80211_roamed(wdev, &ev->rm);
break;
case EVENT_DISCONNECTED:
__cfg80211_disconnected(wdev->netdev,
ev->dc.ie, ev->dc.ie_len,
ev->dc.reason,
!ev->dc.locally_generated);
break;
case EVENT_IBSS_JOINED:
__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
ev->ij.channel);
break;
case EVENT_STOPPED:
__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
break;
case EVENT_PORT_AUTHORIZED:
__cfg80211_port_authorized(wdev, ev->pa.bssid);
break;
}
wdev_unlock(wdev);
kfree(ev);
spin_lock_irqsave(&wdev->event_lock, flags);
}
spin_unlock_irqrestore(&wdev->event_lock, flags);
}
void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
{
struct wireless_dev *wdev;
ASSERT_RTNL();
list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
cfg80211_process_wdev_events(wdev);
}
int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
struct net_device *dev, enum nl80211_iftype ntype,
struct vif_params *params)
{
int err;
enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
ASSERT_RTNL();
/* don't support changing VLANs, you just re-create them */
if (otype == NL80211_IFTYPE_AP_VLAN)
return -EOPNOTSUPP;
/* cannot change into P2P device or NAN */
if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
ntype == NL80211_IFTYPE_NAN)
return -EOPNOTSUPP;
if (!rdev->ops->change_virtual_intf ||
!(rdev->wiphy.interface_modes & (1 << ntype)))
return -EOPNOTSUPP;
/* if it's part of a bridge, reject changing type to station/ibss */
if (netif_is_bridge_port(dev) &&
(ntype == NL80211_IFTYPE_ADHOC ||
ntype == NL80211_IFTYPE_STATION ||
ntype == NL80211_IFTYPE_P2P_CLIENT))
return -EBUSY;
if (ntype != otype) {
dev->ieee80211_ptr->use_4addr = false;
dev->ieee80211_ptr->mesh_id_up_len = 0;
wdev_lock(dev->ieee80211_ptr);
rdev_set_qos_map(rdev, dev, NULL);
wdev_unlock(dev->ieee80211_ptr);
switch (otype) {
case NL80211_IFTYPE_AP:
cfg80211_stop_ap(rdev, dev, true);
break;
case NL80211_IFTYPE_ADHOC:
cfg80211_leave_ibss(rdev, dev, false);
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
wdev_lock(dev->ieee80211_ptr);
cfg80211_disconnect(rdev, dev,
WLAN_REASON_DEAUTH_LEAVING, true);
wdev_unlock(dev->ieee80211_ptr);
break;
case NL80211_IFTYPE_MESH_POINT:
/* mesh should be handled? */
break;
default:
break;
}
cfg80211_process_rdev_events(rdev);
cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
}
err = rdev_change_virtual_intf(rdev, dev, ntype, params);
WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
if (!err && params && params->use_4addr != -1)
dev->ieee80211_ptr->use_4addr = params->use_4addr;
if (!err) {
dev->priv_flags &= ~IFF_DONT_BRIDGE;
switch (ntype) {
case NL80211_IFTYPE_STATION:
if (dev->ieee80211_ptr->use_4addr)
break;
fallthrough;
case NL80211_IFTYPE_OCB:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_ADHOC:
dev->priv_flags |= IFF_DONT_BRIDGE;
break;
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_MESH_POINT:
/* bridging OK */
break;
case NL80211_IFTYPE_MONITOR:
/* monitor can't bridge anyway */
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
/* not happening */
break;
case NL80211_IFTYPE_P2P_DEVICE:
case NL80211_IFTYPE_NAN:
WARN_ON(1);
break;
}
}
if (!err && ntype != otype && netif_running(dev)) {
cfg80211_update_iface_num(rdev, ntype, 1);
cfg80211_update_iface_num(rdev, otype, -1);
}
return err;
}
static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
{
int modulation, streams, bitrate;
/* the formula below does only work for MCS values smaller than 32 */
if (WARN_ON_ONCE(rate->mcs >= 32))
return 0;
modulation = rate->mcs & 7;
streams = (rate->mcs >> 3) + 1;
bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
if (modulation < 4)
bitrate *= (modulation + 1);
else if (modulation == 4)
bitrate *= (modulation + 2);
else
bitrate *= (modulation + 3);
bitrate *= streams;
if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
bitrate = (bitrate / 9) * 10;
/* do NOT round down here */
return (bitrate + 50000) / 100000;
}
static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
{
static const u32 __mcs2bitrate[] = {
/* control PHY */
[0] = 275,
/* SC PHY */
[1] = 3850,
[2] = 7700,
[3] = 9625,
[4] = 11550,
[5] = 12512, /* 1251.25 mbps */
[6] = 15400,
[7] = 19250,
[8] = 23100,
[9] = 25025,
[10] = 30800,
[11] = 38500,
[12] = 46200,
/* OFDM PHY */
[13] = 6930,
[14] = 8662, /* 866.25 mbps */
[15] = 13860,
[16] = 17325,
[17] = 20790,
[18] = 27720,
[19] = 34650,
[20] = 41580,
[21] = 45045,
[22] = 51975,
[23] = 62370,
[24] = 67568, /* 6756.75 mbps */
/* LP-SC PHY */
[25] = 6260,
[26] = 8340,
[27] = 11120,
[28] = 12510,
[29] = 16680,
[30] = 22240,
[31] = 25030,
};
if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
return 0;
return __mcs2bitrate[rate->mcs];
}
static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
{
static const u32 __mcs2bitrate[] = {
/* control PHY */
[0] = 275,
/* SC PHY */
[1] = 3850,
[2] = 7700,
[3] = 9625,
[4] = 11550,
[5] = 12512, /* 1251.25 mbps */
[6] = 13475,
[7] = 15400,
[8] = 19250,
[9] = 23100,
[10] = 25025,
[11] = 26950,
[12] = 30800,
[13] = 38500,
[14] = 46200,
[15] = 50050,
[16] = 53900,
[17] = 57750,
[18] = 69300,
[19] = 75075,
[20] = 80850,
};
if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
return 0;
return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
}
static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
{
static const u32 base[4][10] = {
{ 6500000,
13000000,
19500000,
26000000,
39000000,
52000000,
58500000,
65000000,
78000000,
/* not in the spec, but some devices use this: */
86500000,
},
{ 13500000,
27000000,
40500000,
54000000,
81000000,
108000000,
121500000,
135000000,
162000000,
180000000,
},
{ 29300000,
58500000,
87800000,
117000000,
175500000,
234000000,
263300000,
292500000,
351000000,
390000000,
},
{ 58500000,
117000000,
175500000,
234000000,
351000000,
468000000,
526500000,
585000000,
702000000,
780000000,
},
};
u32 bitrate;
int idx;
if (rate->mcs > 9)
goto warn;
switch (rate->bw) {
case RATE_INFO_BW_160:
idx = 3;
break;
case RATE_INFO_BW_80:
idx = 2;
break;
case RATE_INFO_BW_40:
idx = 1;
break;
case RATE_INFO_BW_5:
case RATE_INFO_BW_10:
default:
goto warn;
case RATE_INFO_BW_20:
idx = 0;
}
bitrate = base[idx][rate->mcs];
bitrate *= rate->nss;
if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
bitrate = (bitrate / 9) * 10;
/* do NOT round down here */
return (bitrate + 50000) / 100000;
warn:
WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
rate->bw, rate->mcs, rate->nss);
return 0;
}
static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
{
#define SCALE 2048
u16 mcs_divisors[12] = {
34133, /* 16.666666... */
17067, /* 8.333333... */
11378, /* 5.555555... */
8533, /* 4.166666... */
5689, /* 2.777777... */
4267, /* 2.083333... */
3923, /* 1.851851... */
3413, /* 1.666666... */
2844, /* 1.388888... */
2560, /* 1.250000... */
2276, /* 1.111111... */
2048, /* 1.000000... */
};
u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
u32 rates_969[3] = { 480388888, 453700000, 408333333 };
u32 rates_484[3] = { 229411111, 216666666, 195000000 };
u32 rates_242[3] = { 114711111, 108333333, 97500000 };
u32 rates_106[3] = { 40000000, 37777777, 34000000 };
u32 rates_52[3] = { 18820000, 17777777, 16000000 };
u32 rates_26[3] = { 9411111, 8888888, 8000000 };
u64 tmp;
u32 result;
if (WARN_ON_ONCE(rate->mcs > 11))
return 0;
if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
return 0;
if (WARN_ON_ONCE(rate->he_ru_alloc >
NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
return 0;
if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
return 0;
if (rate->bw == RATE_INFO_BW_160)
result = rates_160M[rate->he_gi];
else if (rate->bw == RATE_INFO_BW_80 ||
(rate->bw == RATE_INFO_BW_HE_RU &&
rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
result = rates_969[rate->he_gi];
else if (rate->bw == RATE_INFO_BW_40 ||
(rate->bw == RATE_INFO_BW_HE_RU &&
rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
result = rates_484[rate->he_gi];
else if (rate->bw == RATE_INFO_BW_20 ||
(rate->bw == RATE_INFO_BW_HE_RU &&
rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
result = rates_242[rate->he_gi];
else if (rate->bw == RATE_INFO_BW_HE_RU &&
rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
result = rates_106[rate->he_gi];
else if (rate->bw == RATE_INFO_BW_HE_RU &&
rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
result = rates_52[rate->he_gi];
else if (rate->bw == RATE_INFO_BW_HE_RU &&
rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
result = rates_26[rate->he_gi];
else {
WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
rate->bw, rate->he_ru_alloc);
return 0;
}
/* now scale to the appropriate MCS */
tmp = result;
tmp *= SCALE;
do_div(tmp, mcs_divisors[rate->mcs]);
result = tmp;
/* and take NSS, DCM into account */
result = (result * rate->nss) / 8;
if (rate->he_dcm)
result /= 2;
return result / 10000;
}
u32 cfg80211_calculate_bitrate(struct rate_info *rate)
{
if (rate->flags & RATE_INFO_FLAGS_MCS)
return cfg80211_calculate_bitrate_ht(rate);
if (rate->flags & RATE_INFO_FLAGS_DMG)
return cfg80211_calculate_bitrate_dmg(rate);
if (rate->flags & RATE_INFO_FLAGS_EDMG)
return cfg80211_calculate_bitrate_edmg(rate);
if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
return cfg80211_calculate_bitrate_vht(rate);
if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
return cfg80211_calculate_bitrate_he(rate);
return rate->legacy;
}
EXPORT_SYMBOL(cfg80211_calculate_bitrate);
int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
enum ieee80211_p2p_attr_id attr,
u8 *buf, unsigned int bufsize)
{
u8 *out = buf;
u16 attr_remaining = 0;
bool desired_attr = false;
u16 desired_len = 0;
while (len > 0) {
unsigned int iedatalen;
unsigned int copy;
const u8 *iedata;
if (len < 2)
return -EILSEQ;
iedatalen = ies[1];
if (iedatalen + 2 > len)
return -EILSEQ;
if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
goto cont;
if (iedatalen < 4)
goto cont;
iedata = ies + 2;
/* check WFA OUI, P2P subtype */
if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
iedata[2] != 0x9a || iedata[3] != 0x09)
goto cont;
iedatalen -= 4;
iedata += 4;
/* check attribute continuation into this IE */
copy = min_t(unsigned int, attr_remaining, iedatalen);
if (copy && desired_attr) {
desired_len += copy;
if (out) {
memcpy(out, iedata, min(bufsize, copy));
out += min(bufsize, copy);
bufsize -= min(bufsize, copy);
}
if (copy == attr_remaining)
return desired_len;
}
attr_remaining -= copy;
if (attr_remaining)
goto cont;
iedatalen -= copy;
iedata += copy;
while (iedatalen > 0) {
u16 attr_len;
/* P2P attribute ID & size must fit */
if (iedatalen < 3)
return -EILSEQ;
desired_attr = iedata[0] == attr;
attr_len = get_unaligned_le16(iedata + 1);
iedatalen -= 3;
iedata += 3;
copy = min_t(unsigned int, attr_len, iedatalen);
if (desired_attr) {
desired_len += copy;
if (out) {
memcpy(out, iedata, min(bufsize, copy));
out += min(bufsize, copy);
bufsize -= min(bufsize, copy);
}
if (copy == attr_len)
return desired_len;
}
iedata += copy;
iedatalen -= copy;
attr_remaining = attr_len - copy;
}
cont:
len -= ies[1] + 2;
ies += ies[1] + 2;
}
if (attr_remaining && desired_attr)
return -EILSEQ;
return -ENOENT;
}
EXPORT_SYMBOL(cfg80211_get_p2p_attr);
static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
{
int i;
/* Make sure array values are legal */
if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
return false;
i = 0;
while (i < n_ids) {
if (ids[i] == WLAN_EID_EXTENSION) {
if (id_ext && (ids[i + 1] == id))
return true;
i += 2;
continue;
}
if (ids[i] == id && !id_ext)
return true;
i++;
}
return false;
}
static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
{
/* we assume a validly formed IEs buffer */
u8 len = ies[pos + 1];
pos += 2 + len;
/* the IE itself must have 255 bytes for fragments to follow */
if (len < 255)
return pos;
while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
len = ies[pos + 1];
pos += 2 + len;
}
return pos;
}
size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
const u8 *ids, int n_ids,
const u8 *after_ric, int n_after_ric,
size_t offset)
{
size_t pos = offset;
while (pos < ielen) {
u8 ext = 0;
if (ies[pos] == WLAN_EID_EXTENSION)
ext = 2;
if ((pos + ext) >= ielen)
break;
if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
ies[pos] == WLAN_EID_EXTENSION))
break;
if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
pos = skip_ie(ies, ielen, pos);
while (pos < ielen) {
if (ies[pos] == WLAN_EID_EXTENSION)
ext = 2;
else
ext = 0;
if ((pos + ext) >= ielen)
break;
if (!ieee80211_id_in_list(after_ric,
n_after_ric,
ies[pos + ext],
ext == 2))
pos = skip_ie(ies, ielen, pos);
else
break;
}
} else {
pos = skip_ie(ies, ielen, pos);
}
}
return pos;
}
EXPORT_SYMBOL(ieee80211_ie_split_ric);
bool ieee80211_operating_class_to_band(u8 operating_class,
enum nl80211_band *band)
{
switch (operating_class) {
case 112:
case 115 ... 127:
case 128 ... 130:
*band = NL80211_BAND_5GHZ;
return true;
case 131 ... 135:
*band = NL80211_BAND_6GHZ;
return true;
case 81:
case 82:
case 83:
case 84:
*band = NL80211_BAND_2GHZ;
return true;
case 180:
*band = NL80211_BAND_60GHZ;
return true;
}
return false;
}
EXPORT_SYMBOL(ieee80211_operating_class_to_band);
bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
u8 *op_class)
{
u8 vht_opclass;
u32 freq = chandef->center_freq1;
if (freq >= 2412 && freq <= 2472) {
if (chandef->width > NL80211_CHAN_WIDTH_40)
return false;
/* 2.407 GHz, channels 1..13 */
if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 83; /* HT40+ */
else
*op_class = 84; /* HT40- */
} else {
*op_class = 81;
}
return true;
}
if (freq == 2484) {
/* channel 14 is only for IEEE 802.11b */
if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
return false;
*op_class = 82; /* channel 14 */
return true;
}
switch (chandef->width) {
case NL80211_CHAN_WIDTH_80:
vht_opclass = 128;
break;
case NL80211_CHAN_WIDTH_160:
vht_opclass = 129;
break;
case NL80211_CHAN_WIDTH_80P80:
vht_opclass = 130;
break;
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_5:
return false; /* unsupported for now */
default:
vht_opclass = 0;
break;
}
/* 5 GHz, channels 36..48 */
if (freq >= 5180 && freq <= 5240) {
if (vht_opclass) {
*op_class = vht_opclass;
} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 116;
else
*op_class = 117;
} else {
*op_class = 115;
}
return true;
}
/* 5 GHz, channels 52..64 */
if (freq >= 5260 && freq <= 5320) {
if (vht_opclass) {
*op_class = vht_opclass;
} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 119;
else
*op_class = 120;
} else {
*op_class = 118;
}
return true;
}
/* 5 GHz, channels 100..144 */
if (freq >= 5500 && freq <= 5720) {
if (vht_opclass) {
*op_class = vht_opclass;
} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 122;
else
*op_class = 123;
} else {
*op_class = 121;
}
return true;
}
/* 5 GHz, channels 149..169 */
if (freq >= 5745 && freq <= 5845) {
if (vht_opclass) {
*op_class = vht_opclass;
} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 126;
else
*op_class = 127;
} else if (freq <= 5805) {
*op_class = 124;
} else {
*op_class = 125;
}
return true;
}
/* 56.16 GHz, channel 1..4 */
if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
if (chandef->width >= NL80211_CHAN_WIDTH_40)
return false;
*op_class = 180;
return true;
}
/* not supported yet */
return false;
}
EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
u32 *beacon_int_gcd,
bool *beacon_int_different)
{
struct wireless_dev *wdev;
*beacon_int_gcd = 0;
*beacon_int_different = false;
list_for_each_entry(wdev, &wiphy->wdev_list, list) {
if (!wdev->beacon_interval)
continue;
if (!*beacon_int_gcd) {
*beacon_int_gcd = wdev->beacon_interval;
continue;
}
if (wdev->beacon_interval == *beacon_int_gcd)
continue;
*beacon_int_different = true;
*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
}
if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
if (*beacon_int_gcd)
*beacon_int_different = true;
*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
}
}
int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
enum nl80211_iftype iftype, u32 beacon_int)
{
/*
* This is just a basic pre-condition check; if interface combinations
* are possible the driver must already be checking those with a call
* to cfg80211_check_combinations(), in which case we'll validate more
* through the cfg80211_calculate_bi_data() call and code in
* cfg80211_iter_combinations().
*/
if (beacon_int < 10 || beacon_int > 10000)
return -EINVAL;
return 0;
}
int cfg80211_iter_combinations(struct wiphy *wiphy,
struct iface_combination_params *params,
void (*iter)(const struct ieee80211_iface_combination *c,
void *data),
void *data)
{
const struct ieee80211_regdomain *regdom;
enum nl80211_dfs_regions region = 0;
int i, j, iftype;
int num_interfaces = 0;
u32 used_iftypes = 0;
u32 beacon_int_gcd;
bool beacon_int_different;
/*
* This is a bit strange, since the iteration used to rely only on
* the data given by the driver, but here it now relies on context,
* in form of the currently operating interfaces.
* This is OK for all current users, and saves us from having to
* push the GCD calculations into all the drivers.
* In the future, this should probably rely more on data that's in
* cfg80211 already - the only thing not would appear to be any new
* interfaces (while being brought up) and channel/radar data.
*/
cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
&beacon_int_gcd, &beacon_int_different);
if (params->radar_detect) {
rcu_read_lock();
regdom = rcu_dereference(cfg80211_regdomain);
if (regdom)
region = regdom->dfs_region;
rcu_read_unlock();
}
for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
num_interfaces += params->iftype_num[iftype];
if (params->iftype_num[iftype] > 0 &&
!cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
used_iftypes |= BIT(iftype);
}
for (i = 0; i < wiphy->n_iface_combinations; i++) {
const struct ieee80211_iface_combination *c;
struct ieee80211_iface_limit *limits;
u32 all_iftypes = 0;
c = &wiphy->iface_combinations[i];
if (num_interfaces > c->max_interfaces)
continue;
if (params->num_different_channels > c->num_different_channels)
continue;
limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
GFP_KERNEL);
if (!limits)
return -ENOMEM;
for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
continue;
for (j = 0; j < c->n_limits; j++) {
all_iftypes |= limits[j].types;
if (!(limits[j].types & BIT(iftype)))
continue;
if (limits[j].max < params->iftype_num[iftype])
goto cont;
limits[j].max -= params->iftype_num[iftype];
}
}
if (params->radar_detect !=
(c->radar_detect_widths & params->radar_detect))
goto cont;
if (params->radar_detect && c->radar_detect_regions &&
!(c->radar_detect_regions & BIT(region)))
goto cont;
/* Finally check that all iftypes that we're currently
* using are actually part of this combination. If they
* aren't then we can't use this combination and have
* to continue to the next.
*/
if ((all_iftypes & used_iftypes) != used_iftypes)
goto cont;
if (beacon_int_gcd) {
if (c->beacon_int_min_gcd &&
beacon_int_gcd < c->beacon_int_min_gcd)
goto cont;
if (!c->beacon_int_min_gcd && beacon_int_different)
goto cont;
}
/* This combination covered all interface types and
* supported the requested numbers, so we're good.
*/
(*iter)(c, data);
cont:
kfree(limits);
}
return 0;
}
EXPORT_SYMBOL(cfg80211_iter_combinations);
static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
void *data)
{
int *num = data;
(*num)++;
}
int cfg80211_check_combinations(struct wiphy *wiphy,
struct iface_combination_params *params)
{
int err, num = 0;
err = cfg80211_iter_combinations(wiphy, params,
cfg80211_iter_sum_ifcombs, &num);
if (err)
return err;
if (num == 0)
return -EBUSY;
return 0;
}
EXPORT_SYMBOL(cfg80211_check_combinations);
int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
const u8 *rates, unsigned int n_rates,
u32 *mask)
{
int i, j;
if (!sband)
return -EINVAL;
if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
return -EINVAL;
*mask = 0;
for (i = 0; i < n_rates; i++) {
int rate = (rates[i] & 0x7f) * 5;
bool found = false;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate) {
found = true;
*mask |= BIT(j);
break;
}
}
if (!found)
return -EINVAL;
}
/*
* mask must have at least one bit set here since we
* didn't accept a 0-length rates array nor allowed
* entries in the array that didn't exist
*/
return 0;
}
unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
{
enum nl80211_band band;
unsigned int n_channels = 0;
for (band = 0; band < NUM_NL80211_BANDS; band++)
if (wiphy->bands[band])
n_channels += wiphy->bands[band]->n_channels;
return n_channels;
}
EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
struct station_info *sinfo)
{
struct cfg80211_registered_device *rdev;
struct wireless_dev *wdev;
wdev = dev->ieee80211_ptr;
if (!wdev)
return -EOPNOTSUPP;
rdev = wiphy_to_rdev(wdev->wiphy);
if (!rdev->ops->get_station)
return -EOPNOTSUPP;
memset(sinfo, 0, sizeof(*sinfo));
return rdev_get_station(rdev, dev, mac_addr, sinfo);
}
EXPORT_SYMBOL(cfg80211_get_station);
void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
{
int i;
if (!f)
return;
kfree(f->serv_spec_info);
kfree(f->srf_bf);
kfree(f->srf_macs);
for (i = 0; i < f->num_rx_filters; i++)
kfree(f->rx_filters[i].filter);
for (i = 0; i < f->num_tx_filters; i++)
kfree(f->tx_filters[i].filter);
kfree(f->rx_filters);
kfree(f->tx_filters);
kfree(f);
}
EXPORT_SYMBOL(cfg80211_free_nan_func);
bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
u32 center_freq_khz, u32 bw_khz)
{
u32 start_freq_khz, end_freq_khz;
start_freq_khz = center_freq_khz - (bw_khz / 2);
end_freq_khz = center_freq_khz + (bw_khz / 2);
if (start_freq_khz >= freq_range->start_freq_khz &&
end_freq_khz <= freq_range->end_freq_khz)
return true;
return false;
}
int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
{
sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
sizeof(*(sinfo->pertid)),
gfp);
if (!sinfo->pertid)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
const unsigned char rfc1042_header[] __aligned(2) =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
EXPORT_SYMBOL(rfc1042_header);
/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
const unsigned char bridge_tunnel_header[] __aligned(2) =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
EXPORT_SYMBOL(bridge_tunnel_header);
/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
struct iapp_layer2_update {
u8 da[ETH_ALEN]; /* broadcast */
u8 sa[ETH_ALEN]; /* STA addr */
__be16 len; /* 6 */
u8 dsap; /* 0 */
u8 ssap; /* 0 */
u8 control;
u8 xid_info[3];
} __packed;
void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
{
struct iapp_layer2_update *msg;
struct sk_buff *skb;
/* Send Level 2 Update Frame to update forwarding tables in layer 2
* bridge devices */
skb = dev_alloc_skb(sizeof(*msg));
if (!skb)
return;
msg = skb_put(skb, sizeof(*msg));
/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
* Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
eth_broadcast_addr(msg->da);
ether_addr_copy(msg->sa, addr);
msg->len = htons(6);
msg->dsap = 0;
msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
msg->control = 0xaf; /* XID response lsb.1111F101.
* F=0 (no poll command; unsolicited frame) */
msg->xid_info[0] = 0x81; /* XID format identifier */
msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx_ni(skb);
}
EXPORT_SYMBOL(cfg80211_send_layer2_update);
int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
enum ieee80211_vht_chanwidth bw,
int mcs, bool ext_nss_bw_capable,
unsigned int max_vht_nss)
{
u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
int ext_nss_bw;
int supp_width;
int i, mcs_encoding;
if (map == 0xffff)
return 0;
if (WARN_ON(mcs > 9 || max_vht_nss > 8))
return 0;
if (mcs <= 7)
mcs_encoding = 0;
else if (mcs == 8)
mcs_encoding = 1;
else
mcs_encoding = 2;
if (!max_vht_nss) {
/* find max_vht_nss for the given MCS */
for (i = 7; i >= 0; i--) {
int supp = (map >> (2 * i)) & 3;
if (supp == 3)
continue;
if (supp >= mcs_encoding) {
max_vht_nss = i + 1;
break;
}
}
}
if (!(cap->supp_mcs.tx_mcs_map &
cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
return max_vht_nss;
ext_nss_bw = le32_get_bits(cap->vht_cap_info,
IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
supp_width = le32_get_bits(cap->vht_cap_info,
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
/* if not capable, treat ext_nss_bw as 0 */
if (!ext_nss_bw_capable)
ext_nss_bw = 0;
/* This is invalid */
if (supp_width == 3)
return 0;
/* This is an invalid combination so pretend nothing is supported */
if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
return 0;
/*
* Cover all the special cases according to IEEE 802.11-2016
* Table 9-250. All other cases are either factor of 1 or not
* valid/supported.
*/
switch (bw) {
case IEEE80211_VHT_CHANWIDTH_USE_HT:
case IEEE80211_VHT_CHANWIDTH_80MHZ:
if ((supp_width == 1 || supp_width == 2) &&
ext_nss_bw == 3)
return 2 * max_vht_nss;
break;
case IEEE80211_VHT_CHANWIDTH_160MHZ:
if (supp_width == 0 &&
(ext_nss_bw == 1 || ext_nss_bw == 2))
return max_vht_nss / 2;
if (supp_width == 0 &&
ext_nss_bw == 3)
return (3 * max_vht_nss) / 4;
if (supp_width == 1 &&
ext_nss_bw == 3)
return 2 * max_vht_nss;
break;
case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
if (supp_width == 0 && ext_nss_bw == 1)
return 0; /* not possible */
if (supp_width == 0 &&
ext_nss_bw == 2)
return max_vht_nss / 2;
if (supp_width == 0 &&
ext_nss_bw == 3)
return (3 * max_vht_nss) / 4;
if (supp_width == 1 &&
ext_nss_bw == 0)
return 0; /* not possible */
if (supp_width == 1 &&
ext_nss_bw == 1)
return max_vht_nss / 2;
if (supp_width == 1 &&
ext_nss_bw == 2)
return (3 * max_vht_nss) / 4;
break;
}
/* not covered or invalid combination received */
return max_vht_nss;
}
EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
bool is_4addr, u8 check_swif)
{
bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
switch (check_swif) {
case 0:
if (is_vlan && is_4addr)
return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
return wiphy->interface_modes & BIT(iftype);
case 1:
if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
return wiphy->software_iftypes & BIT(iftype);
default:
break;
}
return false;
}
EXPORT_SYMBOL(cfg80211_iftype_allowed);