linux-sg2042/drivers/media/i2c/adv7604.c

2137 lines
62 KiB
C

/*
* adv7604 - Analog Devices ADV7604 video decoder driver
*
* Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/*
* References (c = chapter, p = page):
* REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
* Revision 2.5, June 2010
* REF_02 - Analog devices, Register map documentation, Documentation of
* the register maps, Software manual, Rev. F, June 2010
* REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/workqueue.h>
#include <linux/v4l2-dv-timings.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-chip-ident.h>
#include <media/adv7604.h>
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");
MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");
/* ADV7604 system clock frequency */
#define ADV7604_fsc (28636360)
#define DIGITAL_INPUT (state->mode == ADV7604_MODE_HDMI)
/*
**********************************************************************
*
* Arrays with configuration parameters for the ADV7604
*
**********************************************************************
*/
struct adv7604_state {
struct adv7604_platform_data pdata;
struct v4l2_subdev sd;
struct media_pad pad;
struct v4l2_ctrl_handler hdl;
enum adv7604_mode mode;
struct v4l2_dv_timings timings;
u8 edid[256];
unsigned edid_blocks;
struct v4l2_fract aspect_ratio;
u32 rgb_quantization_range;
struct workqueue_struct *work_queues;
struct delayed_work delayed_work_enable_hotplug;
bool connector_hdmi;
bool restart_stdi_once;
/* i2c clients */
struct i2c_client *i2c_avlink;
struct i2c_client *i2c_cec;
struct i2c_client *i2c_infoframe;
struct i2c_client *i2c_esdp;
struct i2c_client *i2c_dpp;
struct i2c_client *i2c_afe;
struct i2c_client *i2c_repeater;
struct i2c_client *i2c_edid;
struct i2c_client *i2c_hdmi;
struct i2c_client *i2c_test;
struct i2c_client *i2c_cp;
struct i2c_client *i2c_vdp;
/* controls */
struct v4l2_ctrl *detect_tx_5v_ctrl;
struct v4l2_ctrl *analog_sampling_phase_ctrl;
struct v4l2_ctrl *free_run_color_manual_ctrl;
struct v4l2_ctrl *free_run_color_ctrl;
struct v4l2_ctrl *rgb_quantization_range_ctrl;
};
/* Supported CEA and DMT timings */
static const struct v4l2_dv_timings adv7604_timings[] = {
V4L2_DV_BT_CEA_720X480P59_94,
V4L2_DV_BT_CEA_720X576P50,
V4L2_DV_BT_CEA_1280X720P24,
V4L2_DV_BT_CEA_1280X720P25,
V4L2_DV_BT_CEA_1280X720P50,
V4L2_DV_BT_CEA_1280X720P60,
V4L2_DV_BT_CEA_1920X1080P24,
V4L2_DV_BT_CEA_1920X1080P25,
V4L2_DV_BT_CEA_1920X1080P30,
V4L2_DV_BT_CEA_1920X1080P50,
V4L2_DV_BT_CEA_1920X1080P60,
/* sorted by DMT ID */
V4L2_DV_BT_DMT_640X350P85,
V4L2_DV_BT_DMT_640X400P85,
V4L2_DV_BT_DMT_720X400P85,
V4L2_DV_BT_DMT_640X480P60,
V4L2_DV_BT_DMT_640X480P72,
V4L2_DV_BT_DMT_640X480P75,
V4L2_DV_BT_DMT_640X480P85,
V4L2_DV_BT_DMT_800X600P56,
V4L2_DV_BT_DMT_800X600P60,
V4L2_DV_BT_DMT_800X600P72,
V4L2_DV_BT_DMT_800X600P75,
V4L2_DV_BT_DMT_800X600P85,
V4L2_DV_BT_DMT_848X480P60,
V4L2_DV_BT_DMT_1024X768P60,
V4L2_DV_BT_DMT_1024X768P70,
V4L2_DV_BT_DMT_1024X768P75,
V4L2_DV_BT_DMT_1024X768P85,
V4L2_DV_BT_DMT_1152X864P75,
V4L2_DV_BT_DMT_1280X768P60_RB,
V4L2_DV_BT_DMT_1280X768P60,
V4L2_DV_BT_DMT_1280X768P75,
V4L2_DV_BT_DMT_1280X768P85,
V4L2_DV_BT_DMT_1280X800P60_RB,
V4L2_DV_BT_DMT_1280X800P60,
V4L2_DV_BT_DMT_1280X800P75,
V4L2_DV_BT_DMT_1280X800P85,
V4L2_DV_BT_DMT_1280X960P60,
V4L2_DV_BT_DMT_1280X960P85,
V4L2_DV_BT_DMT_1280X1024P60,
V4L2_DV_BT_DMT_1280X1024P75,
V4L2_DV_BT_DMT_1280X1024P85,
V4L2_DV_BT_DMT_1360X768P60,
V4L2_DV_BT_DMT_1400X1050P60_RB,
V4L2_DV_BT_DMT_1400X1050P60,
V4L2_DV_BT_DMT_1400X1050P75,
V4L2_DV_BT_DMT_1400X1050P85,
V4L2_DV_BT_DMT_1440X900P60_RB,
V4L2_DV_BT_DMT_1440X900P60,
V4L2_DV_BT_DMT_1600X1200P60,
V4L2_DV_BT_DMT_1680X1050P60_RB,
V4L2_DV_BT_DMT_1680X1050P60,
V4L2_DV_BT_DMT_1792X1344P60,
V4L2_DV_BT_DMT_1856X1392P60,
V4L2_DV_BT_DMT_1920X1200P60_RB,
V4L2_DV_BT_DMT_1366X768P60,
V4L2_DV_BT_DMT_1920X1080P60,
{ },
};
struct adv7604_video_standards {
struct v4l2_dv_timings timings;
u8 vid_std;
u8 v_freq;
};
/* sorted by number of lines */
static const struct adv7604_video_standards adv7604_prim_mode_comp[] = {
/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
/* TODO add 1920x1080P60_RB (CVT timing) */
{ },
};
/* sorted by number of lines */
static const struct adv7604_video_standards adv7604_prim_mode_gr[] = {
{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
/* TODO add 1600X1200P60_RB (not a DMT timing) */
{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
{ },
};
/* sorted by number of lines */
static const struct adv7604_video_standards adv7604_prim_mode_hdmi_comp[] = {
{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
{ },
};
/* sorted by number of lines */
static const struct adv7604_video_standards adv7604_prim_mode_hdmi_gr[] = {
{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
{ },
};
/* ----------------------------------------------------------------------- */
static inline struct adv7604_state *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct adv7604_state, sd);
}
static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct adv7604_state, hdl)->sd;
}
static inline unsigned hblanking(const struct v4l2_bt_timings *t)
{
return t->hfrontporch + t->hsync + t->hbackporch;
}
static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
return t->width + t->hfrontporch + t->hsync + t->hbackporch;
}
static inline unsigned vblanking(const struct v4l2_bt_timings *t)
{
return t->vfrontporch + t->vsync + t->vbackporch;
}
static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
return t->height + t->vfrontporch + t->vsync + t->vbackporch;
}
/* ----------------------------------------------------------------------- */
static s32 adv_smbus_read_byte_data_check(struct i2c_client *client,
u8 command, bool check)
{
union i2c_smbus_data data;
if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags,
I2C_SMBUS_READ, command,
I2C_SMBUS_BYTE_DATA, &data))
return data.byte;
if (check)
v4l_err(client, "error reading %02x, %02x\n",
client->addr, command);
return -EIO;
}
static s32 adv_smbus_read_byte_data(struct i2c_client *client, u8 command)
{
return adv_smbus_read_byte_data_check(client, command, true);
}
static s32 adv_smbus_write_byte_data(struct i2c_client *client,
u8 command, u8 value)
{
union i2c_smbus_data data;
int err;
int i;
data.byte = value;
for (i = 0; i < 3; i++) {
err = i2c_smbus_xfer(client->adapter, client->addr,
client->flags,
I2C_SMBUS_WRITE, command,
I2C_SMBUS_BYTE_DATA, &data);
if (!err)
break;
}
if (err < 0)
v4l_err(client, "error writing %02x, %02x, %02x\n",
client->addr, command, value);
return err;
}
static s32 adv_smbus_write_i2c_block_data(struct i2c_client *client,
u8 command, unsigned length, const u8 *values)
{
union i2c_smbus_data data;
if (length > I2C_SMBUS_BLOCK_MAX)
length = I2C_SMBUS_BLOCK_MAX;
data.block[0] = length;
memcpy(data.block + 1, values, length);
return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
I2C_SMBUS_WRITE, command,
I2C_SMBUS_I2C_BLOCK_DATA, &data);
}
/* ----------------------------------------------------------------------- */
static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return adv_smbus_read_byte_data(client, reg);
}
static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return adv_smbus_write_byte_data(client, reg, val);
}
static inline int io_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return io_write(sd, reg, (io_read(sd, reg) & mask) | val);
}
static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_avlink, reg);
}
static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_avlink, reg, val);
}
static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_cec, reg);
}
static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_cec, reg, val);
}
static inline int cec_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return cec_write(sd, reg, (cec_read(sd, reg) & mask) | val);
}
static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_infoframe, reg);
}
static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_infoframe, reg, val);
}
static inline int esdp_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_esdp, reg);
}
static inline int esdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_esdp, reg, val);
}
static inline int dpp_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_dpp, reg);
}
static inline int dpp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_dpp, reg, val);
}
static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_afe, reg);
}
static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_afe, reg, val);
}
static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_repeater, reg);
}
static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_repeater, reg, val);
}
static inline int rep_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return rep_write(sd, reg, (rep_read(sd, reg) & mask) | val);
}
static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_edid, reg);
}
static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_edid, reg, val);
}
static inline int edid_read_block(struct v4l2_subdev *sd, unsigned len, u8 *val)
{
struct adv7604_state *state = to_state(sd);
struct i2c_client *client = state->i2c_edid;
u8 msgbuf0[1] = { 0 };
u8 msgbuf1[256];
struct i2c_msg msg[2] = {
{
.addr = client->addr,
.len = 1,
.buf = msgbuf0
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = len,
.buf = msgbuf1
},
};
if (i2c_transfer(client->adapter, msg, 2) < 0)
return -EIO;
memcpy(val, msgbuf1, len);
return 0;
}
static void adv7604_delayed_work_enable_hotplug(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct adv7604_state *state = container_of(dwork, struct adv7604_state,
delayed_work_enable_hotplug);
struct v4l2_subdev *sd = &state->sd;
v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
v4l2_subdev_notify(sd, ADV7604_HOTPLUG, (void *)1);
}
static inline int edid_write_block(struct v4l2_subdev *sd,
unsigned len, const u8 *val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct adv7604_state *state = to_state(sd);
int err = 0;
int i;
v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", __func__, len);
v4l2_subdev_notify(sd, ADV7604_HOTPLUG, (void *)0);
/* Disables I2C access to internal EDID ram from DDC port */
rep_write_and_or(sd, 0x77, 0xf0, 0x0);
for (i = 0; !err && i < len; i += I2C_SMBUS_BLOCK_MAX)
err = adv_smbus_write_i2c_block_data(state->i2c_edid, i,
I2C_SMBUS_BLOCK_MAX, val + i);
if (err)
return err;
/* adv7604 calculates the checksums and enables I2C access to internal
EDID ram from DDC port. */
rep_write_and_or(sd, 0x77, 0xf0, 0x1);
for (i = 0; i < 1000; i++) {
if (rep_read(sd, 0x7d) & 1)
break;
mdelay(1);
}
if (i == 1000) {
v4l_err(client, "error enabling edid\n");
return -EIO;
}
/* enable hotplug after 100 ms */
queue_delayed_work(state->work_queues,
&state->delayed_work_enable_hotplug, HZ / 10);
return 0;
}
static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_hdmi, reg);
}
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_hdmi, reg, val);
}
static inline int test_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_test, reg);
}
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_test, reg, val);
}
static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_cp, reg);
}
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_cp, reg, val);
}
static inline int cp_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return cp_write(sd, reg, (cp_read(sd, reg) & mask) | val);
}
static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_read_byte_data(state->i2c_vdp, reg);
}
static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv7604_state *state = to_state(sd);
return adv_smbus_write_byte_data(state->i2c_vdp, reg, val);
}
/* ----------------------------------------------------------------------- */
#ifdef CONFIG_VIDEO_ADV_DEBUG
static void adv7604_inv_register(struct v4l2_subdev *sd)
{
v4l2_info(sd, "0x000-0x0ff: IO Map\n");
v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
v4l2_info(sd, "0xa00-0xaff: Test Map\n");
v4l2_info(sd, "0xb00-0xbff: CP Map\n");
v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}
static int adv7604_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (!v4l2_chip_match_i2c_client(client, &reg->match))
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
reg->size = 1;
switch (reg->reg >> 8) {
case 0:
reg->val = io_read(sd, reg->reg & 0xff);
break;
case 1:
reg->val = avlink_read(sd, reg->reg & 0xff);
break;
case 2:
reg->val = cec_read(sd, reg->reg & 0xff);
break;
case 3:
reg->val = infoframe_read(sd, reg->reg & 0xff);
break;
case 4:
reg->val = esdp_read(sd, reg->reg & 0xff);
break;
case 5:
reg->val = dpp_read(sd, reg->reg & 0xff);
break;
case 6:
reg->val = afe_read(sd, reg->reg & 0xff);
break;
case 7:
reg->val = rep_read(sd, reg->reg & 0xff);
break;
case 8:
reg->val = edid_read(sd, reg->reg & 0xff);
break;
case 9:
reg->val = hdmi_read(sd, reg->reg & 0xff);
break;
case 0xa:
reg->val = test_read(sd, reg->reg & 0xff);
break;
case 0xb:
reg->val = cp_read(sd, reg->reg & 0xff);
break;
case 0xc:
reg->val = vdp_read(sd, reg->reg & 0xff);
break;
default:
v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
adv7604_inv_register(sd);
break;
}
return 0;
}
static int adv7604_s_register(struct v4l2_subdev *sd,
const struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (!v4l2_chip_match_i2c_client(client, &reg->match))
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (reg->reg >> 8) {
case 0:
io_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 1:
avlink_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 2:
cec_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 3:
infoframe_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 4:
esdp_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 5:
dpp_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 6:
afe_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 7:
rep_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 8:
edid_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 9:
hdmi_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 0xa:
test_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 0xb:
cp_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
case 0xc:
vdp_write(sd, reg->reg & 0xff, reg->val & 0xff);
break;
default:
v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
adv7604_inv_register(sd);
break;
}
return 0;
}
#endif
static int adv7604_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
{
struct adv7604_state *state = to_state(sd);
/* port A only */
return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
((io_read(sd, 0x6f) & 0x10) >> 4));
}
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
u8 prim_mode,
const struct adv7604_video_standards *predef_vid_timings,
const struct v4l2_dv_timings *timings)
{
struct adv7604_state *state = to_state(sd);
int i;
for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
if (!v4l_match_dv_timings(timings, &predef_vid_timings[i].timings,
DIGITAL_INPUT ? 250000 : 1000000))
continue;
io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
prim_mode); /* v_freq and prim mode */
return 0;
}
return -1;
}
static int configure_predefined_video_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv7604_state *state = to_state(sd);
int err;
v4l2_dbg(1, debug, sd, "%s", __func__);
/* reset to default values */
io_write(sd, 0x16, 0x43);
io_write(sd, 0x17, 0x5a);
/* disable embedded syncs for auto graphics mode */
cp_write_and_or(sd, 0x81, 0xef, 0x00);
cp_write(sd, 0x8f, 0x00);
cp_write(sd, 0x90, 0x00);
cp_write(sd, 0xa2, 0x00);
cp_write(sd, 0xa3, 0x00);
cp_write(sd, 0xa4, 0x00);
cp_write(sd, 0xa5, 0x00);
cp_write(sd, 0xa6, 0x00);
cp_write(sd, 0xa7, 0x00);
cp_write(sd, 0xab, 0x00);
cp_write(sd, 0xac, 0x00);
switch (state->mode) {
case ADV7604_MODE_COMP:
case ADV7604_MODE_GR:
err = find_and_set_predefined_video_timings(sd,
0x01, adv7604_prim_mode_comp, timings);
if (err)
err = find_and_set_predefined_video_timings(sd,
0x02, adv7604_prim_mode_gr, timings);
break;
case ADV7604_MODE_HDMI:
err = find_and_set_predefined_video_timings(sd,
0x05, adv7604_prim_mode_hdmi_comp, timings);
if (err)
err = find_and_set_predefined_video_timings(sd,
0x06, adv7604_prim_mode_hdmi_gr, timings);
break;
default:
v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
__func__, state->mode);
err = -1;
break;
}
return err;
}
static void configure_custom_video_timings(struct v4l2_subdev *sd,
const struct v4l2_bt_timings *bt)
{
struct adv7604_state *state = to_state(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
u32 width = htotal(bt);
u32 height = vtotal(bt);
u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
u16 cp_start_eav = width - bt->hfrontporch;
u16 cp_start_vbi = height - bt->vfrontporch;
u16 cp_end_vbi = bt->vsync + bt->vbackporch;
u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
((width * (ADV7604_fsc / 100)) / ((u32)bt->pixelclock / 100)) : 0;
const u8 pll[2] = {
0xc0 | ((width >> 8) & 0x1f),
width & 0xff
};
v4l2_dbg(2, debug, sd, "%s\n", __func__);
switch (state->mode) {
case ADV7604_MODE_COMP:
case ADV7604_MODE_GR:
/* auto graphics */
io_write(sd, 0x00, 0x07); /* video std */
io_write(sd, 0x01, 0x02); /* prim mode */
/* enable embedded syncs for auto graphics mode */
cp_write_and_or(sd, 0x81, 0xef, 0x10);
/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
/* IO-map reg. 0x16 and 0x17 should be written in sequence */
if (adv_smbus_write_i2c_block_data(client, 0x16, 2, pll)) {
v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
break;
}
/* active video - horizontal timing */
cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
((cp_start_eav >> 8) & 0x0f));
cp_write(sd, 0xa4, cp_start_eav & 0xff);
/* active video - vertical timing */
cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
((cp_end_vbi >> 8) & 0xf));
cp_write(sd, 0xa7, cp_end_vbi & 0xff);
break;
case ADV7604_MODE_HDMI:
/* set default prim_mode/vid_std for HDMI
accoring to [REF_03, c. 4.2] */
io_write(sd, 0x00, 0x02); /* video std */
io_write(sd, 0x01, 0x06); /* prim mode */
break;
default:
v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
__func__, state->mode);
break;
}
cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
cp_write(sd, 0x90, ch1_fr_ll & 0xff);
cp_write(sd, 0xab, (height >> 4) & 0xff);
cp_write(sd, 0xac, (height & 0x0f) << 4);
}
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
struct adv7604_state *state = to_state(sd);
switch (state->rgb_quantization_range) {
case V4L2_DV_RGB_RANGE_AUTO:
/* automatic */
if (DIGITAL_INPUT && !(hdmi_read(sd, 0x05) & 0x80)) {
/* receiving DVI-D signal */
/* ADV7604 selects RGB limited range regardless of
input format (CE/IT) in automatic mode */
if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
/* RGB limited range (16-235) */
io_write_and_or(sd, 0x02, 0x0f, 0x00);
} else {
/* RGB full range (0-255) */
io_write_and_or(sd, 0x02, 0x0f, 0x10);
}
} else {
/* receiving HDMI or analog signal, set automode */
io_write_and_or(sd, 0x02, 0x0f, 0xf0);
}
break;
case V4L2_DV_RGB_RANGE_LIMITED:
/* RGB limited range (16-235) */
io_write_and_or(sd, 0x02, 0x0f, 0x00);
break;
case V4L2_DV_RGB_RANGE_FULL:
/* RGB full range (0-255) */
io_write_and_or(sd, 0x02, 0x0f, 0x10);
break;
}
}
static int adv7604_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = to_sd(ctrl);
struct adv7604_state *state = to_state(sd);
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
cp_write(sd, 0x3c, ctrl->val);
return 0;
case V4L2_CID_CONTRAST:
cp_write(sd, 0x3a, ctrl->val);
return 0;
case V4L2_CID_SATURATION:
cp_write(sd, 0x3b, ctrl->val);
return 0;
case V4L2_CID_HUE:
cp_write(sd, 0x3d, ctrl->val);
return 0;
case V4L2_CID_DV_RX_RGB_RANGE:
state->rgb_quantization_range = ctrl->val;
set_rgb_quantization_range(sd);
return 0;
case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
/* Set the analog sampling phase. This is needed to find the
best sampling phase for analog video: an application or
driver has to try a number of phases and analyze the picture
quality before settling on the best performing phase. */
afe_write(sd, 0xc8, ctrl->val);
return 0;
case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
/* Use the default blue color for free running mode,
or supply your own. */
cp_write_and_or(sd, 0xbf, ~0x04, (ctrl->val << 2));
return 0;
case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
return 0;
}
return -EINVAL;
}
static int adv7604_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_ADV7604, 0);
}
/* ----------------------------------------------------------------------- */
static inline bool no_power(struct v4l2_subdev *sd)
{
/* Entire chip or CP powered off */
return io_read(sd, 0x0c) & 0x24;
}
static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
/* TODO port B, C and D */
return !(io_read(sd, 0x6a) & 0x10);
}
static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
return (io_read(sd, 0x6a) & 0xe0) != 0xe0;
}
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
/* TODO channel 2 */
return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}
static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
/* TODO channel 2 */
return !(cp_read(sd, 0xb1) & 0x80);
}
static inline bool no_signal(struct v4l2_subdev *sd)
{
struct adv7604_state *state = to_state(sd);
bool ret;
ret = no_power(sd);
ret |= no_lock_stdi(sd);
ret |= no_lock_sspd(sd);
if (DIGITAL_INPUT) {
ret |= no_lock_tmds(sd);
ret |= no_signal_tmds(sd);
}
return ret;
}
static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
/* CP has detected a non standard number of lines on the incoming
video compared to what it is configured to receive by s_dv_timings */
return io_read(sd, 0x12) & 0x01;
}
static int adv7604_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
struct adv7604_state *state = to_state(sd);
*status = 0;
*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
if (no_lock_cp(sd))
*status |= DIGITAL_INPUT ? V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
return 0;
}
/* ----------------------------------------------------------------------- */
static void adv7604_print_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings, const char *txt, bool detailed)
{
struct v4l2_bt_timings *bt = &timings->bt;
u32 htot, vtot;
if (timings->type != V4L2_DV_BT_656_1120)
return;
htot = htotal(bt);
vtot = vtotal(bt);
v4l2_info(sd, "%s %dx%d%s%d (%dx%d)",
txt, bt->width, bt->height, bt->interlaced ? "i" : "p",
(htot * vtot) > 0 ? ((u32)bt->pixelclock /
(htot * vtot)) : 0,
htot, vtot);
if (detailed) {
v4l2_info(sd, " horizontal: fp = %d, %ssync = %d, bp = %d\n",
bt->hfrontporch,
(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
bt->hsync, bt->hbackporch);
v4l2_info(sd, " vertical: fp = %d, %ssync = %d, bp = %d\n",
bt->vfrontporch,
(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
bt->vsync, bt->vbackporch);
v4l2_info(sd, " pixelclock: %lld, flags: 0x%x, standards: 0x%x\n",
bt->pixelclock, bt->flags, bt->standards);
}
}
struct stdi_readback {
u16 bl, lcf, lcvs;
u8 hs_pol, vs_pol;
bool interlaced;
};
static int stdi2dv_timings(struct v4l2_subdev *sd,
struct stdi_readback *stdi,
struct v4l2_dv_timings *timings)
{
struct adv7604_state *state = to_state(sd);
u32 hfreq = (ADV7604_fsc * 8) / stdi->bl;
u32 pix_clk;
int i;
for (i = 0; adv7604_timings[i].bt.height; i++) {
if (vtotal(&adv7604_timings[i].bt) != stdi->lcf + 1)
continue;
if (adv7604_timings[i].bt.vsync != stdi->lcvs)
continue;
pix_clk = hfreq * htotal(&adv7604_timings[i].bt);
if ((pix_clk < adv7604_timings[i].bt.pixelclock + 1000000) &&
(pix_clk > adv7604_timings[i].bt.pixelclock - 1000000)) {
*timings = adv7604_timings[i];
return 0;
}
}
if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs,
(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
timings))
return 0;
if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
state->aspect_ratio, timings))
return 0;
v4l2_dbg(2, debug, sd,
"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
__func__, stdi->lcvs, stdi->lcf, stdi->bl,
stdi->hs_pol, stdi->vs_pol);
return -1;
}
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
return -1;
}
/* read STDI */
stdi->bl = ((cp_read(sd, 0xb1) & 0x3f) << 8) | cp_read(sd, 0xb2);
stdi->lcf = ((cp_read(sd, 0xb3) & 0x7) << 8) | cp_read(sd, 0xb4);
stdi->lcvs = cp_read(sd, 0xb3) >> 3;
stdi->interlaced = io_read(sd, 0x12) & 0x10;
/* read SSPD */
if ((cp_read(sd, 0xb5) & 0x03) == 0x01) {
stdi->hs_pol = ((cp_read(sd, 0xb5) & 0x10) ?
((cp_read(sd, 0xb5) & 0x08) ? '+' : '-') : 'x');
stdi->vs_pol = ((cp_read(sd, 0xb5) & 0x40) ?
((cp_read(sd, 0xb5) & 0x20) ? '+' : '-') : 'x');
} else {
stdi->hs_pol = 'x';
stdi->vs_pol = 'x';
}
if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
v4l2_dbg(2, debug, sd,
"%s: signal lost during readout of STDI/SSPD\n", __func__);
return -1;
}
if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
memset(stdi, 0, sizeof(struct stdi_readback));
return -1;
}
v4l2_dbg(2, debug, sd,
"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
__func__, stdi->lcf, stdi->bl, stdi->lcvs,
stdi->hs_pol, stdi->vs_pol,
stdi->interlaced ? "interlaced" : "progressive");
return 0;
}
static int adv7604_enum_dv_timings(struct v4l2_subdev *sd,
struct v4l2_enum_dv_timings *timings)
{
if (timings->index >= ARRAY_SIZE(adv7604_timings) - 1)
return -EINVAL;
memset(timings->reserved, 0, sizeof(timings->reserved));
timings->timings = adv7604_timings[timings->index];
return 0;
}
static int adv7604_dv_timings_cap(struct v4l2_subdev *sd,
struct v4l2_dv_timings_cap *cap)
{
struct adv7604_state *state = to_state(sd);
cap->type = V4L2_DV_BT_656_1120;
cap->bt.max_width = 1920;
cap->bt.max_height = 1200;
cap->bt.min_pixelclock = 27000000;
if (DIGITAL_INPUT)
cap->bt.max_pixelclock = 225000000;
else
cap->bt.max_pixelclock = 170000000;
cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
return 0;
}
/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
if the format is listed in adv7604_timings[] */
static void adv7604_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv7604_state *state = to_state(sd);
int i;
for (i = 0; adv7604_timings[i].bt.width; i++) {
if (v4l_match_dv_timings(timings, &adv7604_timings[i],
DIGITAL_INPUT ? 250000 : 1000000)) {
*timings = adv7604_timings[i];
break;
}
}
}
static int adv7604_query_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv7604_state *state = to_state(sd);
struct v4l2_bt_timings *bt = &timings->bt;
struct stdi_readback stdi;
if (!timings)
return -EINVAL;
memset(timings, 0, sizeof(struct v4l2_dv_timings));
if (no_signal(sd)) {
v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
return -ENOLINK;
}
/* read STDI */
if (read_stdi(sd, &stdi)) {
v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
return -ENOLINK;
}
bt->interlaced = stdi.interlaced ?
V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
if (DIGITAL_INPUT) {
timings->type = V4L2_DV_BT_656_1120;
bt->width = (hdmi_read(sd, 0x07) & 0x0f) * 256 + hdmi_read(sd, 0x08);
bt->height = (hdmi_read(sd, 0x09) & 0x0f) * 256 + hdmi_read(sd, 0x0a);
bt->pixelclock = (hdmi_read(sd, 0x06) * 1000000) +
((hdmi_read(sd, 0x3b) & 0x30) >> 4) * 250000;
bt->hfrontporch = (hdmi_read(sd, 0x20) & 0x03) * 256 +
hdmi_read(sd, 0x21);
bt->hsync = (hdmi_read(sd, 0x22) & 0x03) * 256 +
hdmi_read(sd, 0x23);
bt->hbackporch = (hdmi_read(sd, 0x24) & 0x03) * 256 +
hdmi_read(sd, 0x25);
bt->vfrontporch = ((hdmi_read(sd, 0x2a) & 0x1f) * 256 +
hdmi_read(sd, 0x2b)) / 2;
bt->vsync = ((hdmi_read(sd, 0x2e) & 0x1f) * 256 +
hdmi_read(sd, 0x2f)) / 2;
bt->vbackporch = ((hdmi_read(sd, 0x32) & 0x1f) * 256 +
hdmi_read(sd, 0x33)) / 2;
bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
if (bt->interlaced == V4L2_DV_INTERLACED) {
bt->height += (hdmi_read(sd, 0x0b) & 0x0f) * 256 +
hdmi_read(sd, 0x0c);
bt->il_vfrontporch = ((hdmi_read(sd, 0x2c) & 0x1f) * 256 +
hdmi_read(sd, 0x2d)) / 2;
bt->il_vsync = ((hdmi_read(sd, 0x30) & 0x1f) * 256 +
hdmi_read(sd, 0x31)) / 2;
bt->vbackporch = ((hdmi_read(sd, 0x34) & 0x1f) * 256 +
hdmi_read(sd, 0x35)) / 2;
}
adv7604_fill_optional_dv_timings_fields(sd, timings);
} else {
/* find format
* Since LCVS values are inaccurate [REF_03, p. 275-276],
* stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
*/
if (!stdi2dv_timings(sd, &stdi, timings))
goto found;
stdi.lcvs += 1;
v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
if (!stdi2dv_timings(sd, &stdi, timings))
goto found;
stdi.lcvs -= 2;
v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
if (stdi2dv_timings(sd, &stdi, timings)) {
/*
* The STDI block may measure wrong values, especially
* for lcvs and lcf. If the driver can not find any
* valid timing, the STDI block is restarted to measure
* the video timings again. The function will return an
* error, but the restart of STDI will generate a new
* STDI interrupt and the format detection process will
* restart.
*/
if (state->restart_stdi_once) {
v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
/* TODO restart STDI for Sync Channel 2 */
/* enter one-shot mode */
cp_write_and_or(sd, 0x86, 0xf9, 0x00);
/* trigger STDI restart */
cp_write_and_or(sd, 0x86, 0xf9, 0x04);
/* reset to continuous mode */
cp_write_and_or(sd, 0x86, 0xf9, 0x02);
state->restart_stdi_once = false;
return -ENOLINK;
}
v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
return -ERANGE;
}
state->restart_stdi_once = true;
}
found:
if (no_signal(sd)) {
v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
memset(timings, 0, sizeof(struct v4l2_dv_timings));
return -ENOLINK;
}
if ((!DIGITAL_INPUT && bt->pixelclock > 170000000) ||
(DIGITAL_INPUT && bt->pixelclock > 225000000)) {
v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
__func__, (u32)bt->pixelclock);
return -ERANGE;
}
if (debug > 1)
adv7604_print_timings(sd, timings,
"adv7604_query_dv_timings:", true);
return 0;
}
static int adv7604_s_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv7604_state *state = to_state(sd);
struct v4l2_bt_timings *bt;
int err;
if (!timings)
return -EINVAL;
bt = &timings->bt;
if ((!DIGITAL_INPUT && bt->pixelclock > 170000000) ||
(DIGITAL_INPUT && bt->pixelclock > 225000000)) {
v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
__func__, (u32)bt->pixelclock);
return -ERANGE;
}
adv7604_fill_optional_dv_timings_fields(sd, timings);
state->timings = *timings;
cp_write(sd, 0x91, bt->interlaced ? 0x50 : 0x10);
/* Use prim_mode and vid_std when available */
err = configure_predefined_video_timings(sd, timings);
if (err) {
/* custom settings when the video format
does not have prim_mode/vid_std */
configure_custom_video_timings(sd, bt);
}
set_rgb_quantization_range(sd);
if (debug > 1)
adv7604_print_timings(sd, timings,
"adv7604_s_dv_timings:", true);
return 0;
}
static int adv7604_g_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv7604_state *state = to_state(sd);
*timings = state->timings;
return 0;
}
static void enable_input(struct v4l2_subdev *sd)
{
struct adv7604_state *state = to_state(sd);
switch (state->mode) {
case ADV7604_MODE_COMP:
case ADV7604_MODE_GR:
/* enable */
io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
break;
case ADV7604_MODE_HDMI:
/* enable */
hdmi_write(sd, 0x1a, 0x0a); /* Unmute audio */
hdmi_write(sd, 0x01, 0x00); /* Enable HDMI clock terminators */
io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
break;
default:
v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
__func__, state->mode);
break;
}
}
static void disable_input(struct v4l2_subdev *sd)
{
/* disable */
io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
hdmi_write(sd, 0x1a, 0x1a); /* Mute audio */
hdmi_write(sd, 0x01, 0x78); /* Disable HDMI clock terminators */
}
static void select_input(struct v4l2_subdev *sd)
{
struct adv7604_state *state = to_state(sd);
switch (state->mode) {
case ADV7604_MODE_COMP:
case ADV7604_MODE_GR:
/* reset ADI recommended settings for HDMI: */
/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
hdmi_write(sd, 0x0d, 0x04); /* HDMI filter optimization */
hdmi_write(sd, 0x3d, 0x00); /* DDC bus active pull-up control */
hdmi_write(sd, 0x3e, 0x74); /* TMDS PLL optimization */
hdmi_write(sd, 0x4e, 0x3b); /* TMDS PLL optimization */
hdmi_write(sd, 0x57, 0x74); /* TMDS PLL optimization */
hdmi_write(sd, 0x58, 0x63); /* TMDS PLL optimization */
hdmi_write(sd, 0x8d, 0x18); /* equaliser */
hdmi_write(sd, 0x8e, 0x34); /* equaliser */
hdmi_write(sd, 0x93, 0x88); /* equaliser */
hdmi_write(sd, 0x94, 0x2e); /* equaliser */
hdmi_write(sd, 0x96, 0x00); /* enable automatic EQ changing */
afe_write(sd, 0x00, 0x08); /* power up ADC */
afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
afe_write(sd, 0xc8, 0x00); /* phase control */
/* set ADI recommended settings for digitizer */
/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
afe_write(sd, 0x12, 0x7b); /* ADC noise shaping filter controls */
afe_write(sd, 0x0c, 0x1f); /* CP core gain controls */
cp_write(sd, 0x3e, 0x04); /* CP core pre-gain control */
cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
cp_write(sd, 0x40, 0x5c); /* CP core pre-gain control. Graphics mode */
break;
case ADV7604_MODE_HDMI:
/* set ADI recommended settings for HDMI: */
/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
hdmi_write(sd, 0x0d, 0x84); /* HDMI filter optimization */
hdmi_write(sd, 0x3d, 0x10); /* DDC bus active pull-up control */
hdmi_write(sd, 0x3e, 0x39); /* TMDS PLL optimization */
hdmi_write(sd, 0x4e, 0x3b); /* TMDS PLL optimization */
hdmi_write(sd, 0x57, 0xb6); /* TMDS PLL optimization */
hdmi_write(sd, 0x58, 0x03); /* TMDS PLL optimization */
hdmi_write(sd, 0x8d, 0x18); /* equaliser */
hdmi_write(sd, 0x8e, 0x34); /* equaliser */
hdmi_write(sd, 0x93, 0x8b); /* equaliser */
hdmi_write(sd, 0x94, 0x2d); /* equaliser */
hdmi_write(sd, 0x96, 0x01); /* enable automatic EQ changing */
afe_write(sd, 0x00, 0xff); /* power down ADC */
afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
afe_write(sd, 0xc8, 0x40); /* phase control */
/* reset ADI recommended settings for digitizer */
/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
afe_write(sd, 0x12, 0xfb); /* ADC noise shaping filter controls */
afe_write(sd, 0x0c, 0x0d); /* CP core gain controls */
cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
break;
default:
v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
__func__, state->mode);
break;
}
}
static int adv7604_s_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
struct adv7604_state *state = to_state(sd);
v4l2_dbg(2, debug, sd, "%s: input %d", __func__, input);
state->mode = input;
disable_input(sd);
select_input(sd);
enable_input(sd);
return 0;
}
static int adv7604_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned int index,
enum v4l2_mbus_pixelcode *code)
{
if (index)
return -EINVAL;
/* Good enough for now */
*code = V4L2_MBUS_FMT_FIXED;
return 0;
}
static int adv7604_g_mbus_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
struct adv7604_state *state = to_state(sd);
fmt->width = state->timings.bt.width;
fmt->height = state->timings.bt.height;
fmt->code = V4L2_MBUS_FMT_FIXED;
fmt->field = V4L2_FIELD_NONE;
if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
fmt->colorspace = (state->timings.bt.height <= 576) ?
V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
}
return 0;
}
static int adv7604_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
{
struct adv7604_state *state = to_state(sd);
u8 fmt_change, fmt_change_digital, tx_5v;
/* format change */
fmt_change = io_read(sd, 0x43) & 0x98;
if (fmt_change)
io_write(sd, 0x44, fmt_change);
fmt_change_digital = DIGITAL_INPUT ? (io_read(sd, 0x6b) & 0xc0) : 0;
if (fmt_change_digital)
io_write(sd, 0x6c, fmt_change_digital);
if (fmt_change || fmt_change_digital) {
v4l2_dbg(1, debug, sd,
"%s: ADV7604_FMT_CHANGE, fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
__func__, fmt_change, fmt_change_digital);
v4l2_subdev_notify(sd, ADV7604_FMT_CHANGE, NULL);
if (handled)
*handled = true;
}
/* tx 5v detect */
tx_5v = io_read(sd, 0x70) & 0x10;
if (tx_5v) {
v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
io_write(sd, 0x71, tx_5v);
adv7604_s_detect_tx_5v_ctrl(sd);
if (handled)
*handled = true;
}
return 0;
}
static int adv7604_get_edid(struct v4l2_subdev *sd, struct v4l2_subdev_edid *edid)
{
struct adv7604_state *state = to_state(sd);
if (edid->pad != 0)
return -EINVAL;
if (edid->blocks == 0)
return -EINVAL;
if (edid->start_block >= state->edid_blocks)
return -EINVAL;
if (edid->start_block + edid->blocks > state->edid_blocks)
edid->blocks = state->edid_blocks - edid->start_block;
if (!edid->edid)
return -EINVAL;
memcpy(edid->edid + edid->start_block * 128,
state->edid + edid->start_block * 128,
edid->blocks * 128);
return 0;
}
static int adv7604_set_edid(struct v4l2_subdev *sd, struct v4l2_subdev_edid *edid)
{
struct adv7604_state *state = to_state(sd);
int err;
if (edid->pad != 0)
return -EINVAL;
if (edid->start_block != 0)
return -EINVAL;
if (edid->blocks == 0) {
/* Pull down the hotplug pin */
v4l2_subdev_notify(sd, ADV7604_HOTPLUG, (void *)0);
/* Disables I2C access to internal EDID ram from DDC port */
rep_write_and_or(sd, 0x77, 0xf0, 0x0);
state->edid_blocks = 0;
/* Fall back to a 16:9 aspect ratio */
state->aspect_ratio.numerator = 16;
state->aspect_ratio.denominator = 9;
return 0;
}
if (edid->blocks > 2)
return -E2BIG;
if (!edid->edid)
return -EINVAL;
memcpy(state->edid, edid->edid, 128 * edid->blocks);
state->edid_blocks = edid->blocks;
state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
edid->edid[0x16]);
err = edid_write_block(sd, 128 * edid->blocks, state->edid);
if (err < 0)
v4l2_err(sd, "error %d writing edid\n", err);
return err;
}
/*********** avi info frame CEA-861-E **************/
static void print_avi_infoframe(struct v4l2_subdev *sd)
{
int i;
u8 buf[14];
u8 avi_len;
u8 avi_ver;
if (!(hdmi_read(sd, 0x05) & 0x80)) {
v4l2_info(sd, "receive DVI-D signal (AVI infoframe not supported)\n");
return;
}
if (!(io_read(sd, 0x60) & 0x01)) {
v4l2_info(sd, "AVI infoframe not received\n");
return;
}
if (io_read(sd, 0x83) & 0x01) {
v4l2_info(sd, "AVI infoframe checksum error has occurred earlier\n");
io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */
if (io_read(sd, 0x83) & 0x01) {
v4l2_info(sd, "AVI infoframe checksum error still present\n");
io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */
}
}
avi_len = infoframe_read(sd, 0xe2);
avi_ver = infoframe_read(sd, 0xe1);
v4l2_info(sd, "AVI infoframe version %d (%d byte)\n",
avi_ver, avi_len);
if (avi_ver != 0x02)
return;
for (i = 0; i < 14; i++)
buf[i] = infoframe_read(sd, i);
v4l2_info(sd,
"\t%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7],
buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]);
}
static int adv7604_log_status(struct v4l2_subdev *sd)
{
struct adv7604_state *state = to_state(sd);
struct v4l2_dv_timings timings;
struct stdi_readback stdi;
u8 reg_io_0x02 = io_read(sd, 0x02);
char *csc_coeff_sel_rb[16] = {
"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
"reserved", "reserved", "reserved", "reserved", "manual"
};
char *input_color_space_txt[16] = {
"RGB limited range (16-235)", "RGB full range (0-255)",
"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
"XvYCC Bt.601", "XvYCC Bt.709",
"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
"invalid", "invalid", "invalid", "invalid", "invalid",
"invalid", "invalid", "automatic"
};
char *rgb_quantization_range_txt[] = {
"Automatic",
"RGB limited range (16-235)",
"RGB full range (0-255)",
};
v4l2_info(sd, "-----Chip status-----\n");
v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
v4l2_info(sd, "Connector type: %s\n", state->connector_hdmi ?
"HDMI" : (DIGITAL_INPUT ? "DVI-D" : "DVI-A"));
v4l2_info(sd, "EDID: %s\n", ((rep_read(sd, 0x7d) & 0x01) &&
(rep_read(sd, 0x77) & 0x01)) ? "enabled" : "disabled ");
v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
"enabled" : "disabled");
v4l2_info(sd, "-----Signal status-----\n");
v4l2_info(sd, "Cable detected (+5V power): %s\n",
(io_read(sd, 0x6f) & 0x10) ? "true" : "false");
v4l2_info(sd, "TMDS signal detected: %s\n",
no_signal_tmds(sd) ? "false" : "true");
v4l2_info(sd, "TMDS signal locked: %s\n",
no_lock_tmds(sd) ? "false" : "true");
v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
v4l2_info(sd, "CP free run: %s\n",
(!!(cp_read(sd, 0xff) & 0x10) ? "on" : "off"));
v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
(io_read(sd, 0x01) & 0x70) >> 4);
v4l2_info(sd, "-----Video Timings-----\n");
if (read_stdi(sd, &stdi))
v4l2_info(sd, "STDI: not locked\n");
else
v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
stdi.lcf, stdi.bl, stdi.lcvs,
stdi.interlaced ? "interlaced" : "progressive",
stdi.hs_pol, stdi.vs_pol);
if (adv7604_query_dv_timings(sd, &timings))
v4l2_info(sd, "No video detected\n");
else
adv7604_print_timings(sd, &timings, "Detected format:", true);
adv7604_print_timings(sd, &state->timings, "Configured format:", true);
v4l2_info(sd, "-----Color space-----\n");
v4l2_info(sd, "RGB quantization range ctrl: %s\n",
rgb_quantization_range_txt[state->rgb_quantization_range]);
v4l2_info(sd, "Input color space: %s\n",
input_color_space_txt[reg_io_0x02 >> 4]);
v4l2_info(sd, "Output color space: %s %s, saturator %s\n",
(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
((reg_io_0x02 & 0x04) ^ (reg_io_0x02 & 0x01)) ?
"enabled" : "disabled");
v4l2_info(sd, "Color space conversion: %s\n",
csc_coeff_sel_rb[cp_read(sd, 0xfc) >> 4]);
/* Digital video */
if (DIGITAL_INPUT) {
v4l2_info(sd, "-----HDMI status-----\n");
v4l2_info(sd, "HDCP encrypted content: %s\n",
hdmi_read(sd, 0x05) & 0x40 ? "true" : "false");
print_avi_infoframe(sd);
}
return 0;
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_ctrl_ops adv7604_ctrl_ops = {
.s_ctrl = adv7604_s_ctrl,
};
static const struct v4l2_subdev_core_ops adv7604_core_ops = {
.log_status = adv7604_log_status,
.g_ext_ctrls = v4l2_subdev_g_ext_ctrls,
.try_ext_ctrls = v4l2_subdev_try_ext_ctrls,
.s_ext_ctrls = v4l2_subdev_s_ext_ctrls,
.g_ctrl = v4l2_subdev_g_ctrl,
.s_ctrl = v4l2_subdev_s_ctrl,
.queryctrl = v4l2_subdev_queryctrl,
.querymenu = v4l2_subdev_querymenu,
.g_chip_ident = adv7604_g_chip_ident,
.interrupt_service_routine = adv7604_isr,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = adv7604_g_register,
.s_register = adv7604_s_register,
#endif
};
static const struct v4l2_subdev_video_ops adv7604_video_ops = {
.s_routing = adv7604_s_routing,
.g_input_status = adv7604_g_input_status,
.s_dv_timings = adv7604_s_dv_timings,
.g_dv_timings = adv7604_g_dv_timings,
.query_dv_timings = adv7604_query_dv_timings,
.enum_dv_timings = adv7604_enum_dv_timings,
.dv_timings_cap = adv7604_dv_timings_cap,
.enum_mbus_fmt = adv7604_enum_mbus_fmt,
.g_mbus_fmt = adv7604_g_mbus_fmt,
.try_mbus_fmt = adv7604_g_mbus_fmt,
.s_mbus_fmt = adv7604_g_mbus_fmt,
};
static const struct v4l2_subdev_pad_ops adv7604_pad_ops = {
.get_edid = adv7604_get_edid,
.set_edid = adv7604_set_edid,
};
static const struct v4l2_subdev_ops adv7604_ops = {
.core = &adv7604_core_ops,
.video = &adv7604_video_ops,
.pad = &adv7604_pad_ops,
};
/* -------------------------- custom ctrls ---------------------------------- */
static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
.ops = &adv7604_ctrl_ops,
.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
.name = "Analog Sampling Phase",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 0x1f,
.step = 1,
.def = 0,
};
static const struct v4l2_ctrl_config adv7604_ctrl_free_run_color_manual = {
.ops = &adv7604_ctrl_ops,
.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
.name = "Free Running Color, Manual",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.min = false,
.max = true,
.step = 1,
.def = false,
};
static const struct v4l2_ctrl_config adv7604_ctrl_free_run_color = {
.ops = &adv7604_ctrl_ops,
.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
.name = "Free Running Color",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0x0,
.max = 0xffffff,
.step = 0x1,
.def = 0x0,
};
/* ----------------------------------------------------------------------- */
static int adv7604_core_init(struct v4l2_subdev *sd)
{
struct adv7604_state *state = to_state(sd);
struct adv7604_platform_data *pdata = &state->pdata;
hdmi_write(sd, 0x48,
(pdata->disable_pwrdnb ? 0x80 : 0) |
(pdata->disable_cable_det_rst ? 0x40 : 0));
disable_input(sd);
/* power */
io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
io_write(sd, 0x0b, 0x44); /* Power down ESDP block */
cp_write(sd, 0xcf, 0x01); /* Power down macrovision */
/* video format */
io_write_and_or(sd, 0x02, 0xf0,
pdata->alt_gamma << 3 |
pdata->op_656_range << 2 |
pdata->rgb_out << 1 |
pdata->alt_data_sat << 0);
io_write(sd, 0x03, pdata->op_format_sel);
io_write_and_or(sd, 0x04, 0x1f, pdata->op_ch_sel << 5);
io_write_and_or(sd, 0x05, 0xf0, pdata->blank_data << 3 |
pdata->insert_av_codes << 2 |
pdata->replicate_av_codes << 1 |
pdata->invert_cbcr << 0);
/* TODO from platform data */
cp_write(sd, 0x69, 0x30); /* Enable CP CSC */
io_write(sd, 0x06, 0xa6); /* positive VS and HS */
io_write(sd, 0x14, 0x7f); /* Drive strength adjusted to max */
cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
ADI recommended setting [REF_01, c. 2.3.3] */
cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
ADI recommended setting [REF_01, c. 2.3.3] */
cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
for digital formats */
/* TODO from platform data */
afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
io_write_and_or(sd, 0x30, ~(1 << 4), pdata->output_bus_lsb_to_msb << 4);
/* interrupts */
io_write(sd, 0x40, 0xc2); /* Configure INT1 */
io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
io_write(sd, 0x6e, 0xc0); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
io_write(sd, 0x73, 0x10); /* Enable CABLE_DET_A_ST (+5v) interrupt */
return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}
static void adv7604_unregister_clients(struct adv7604_state *state)
{
if (state->i2c_avlink)
i2c_unregister_device(state->i2c_avlink);
if (state->i2c_cec)
i2c_unregister_device(state->i2c_cec);
if (state->i2c_infoframe)
i2c_unregister_device(state->i2c_infoframe);
if (state->i2c_esdp)
i2c_unregister_device(state->i2c_esdp);
if (state->i2c_dpp)
i2c_unregister_device(state->i2c_dpp);
if (state->i2c_afe)
i2c_unregister_device(state->i2c_afe);
if (state->i2c_repeater)
i2c_unregister_device(state->i2c_repeater);
if (state->i2c_edid)
i2c_unregister_device(state->i2c_edid);
if (state->i2c_hdmi)
i2c_unregister_device(state->i2c_hdmi);
if (state->i2c_test)
i2c_unregister_device(state->i2c_test);
if (state->i2c_cp)
i2c_unregister_device(state->i2c_cp);
if (state->i2c_vdp)
i2c_unregister_device(state->i2c_vdp);
}
static struct i2c_client *adv7604_dummy_client(struct v4l2_subdev *sd,
u8 addr, u8 io_reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (addr)
io_write(sd, io_reg, addr << 1);
return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
}
static int adv7604_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct adv7604_state *state;
struct adv7604_platform_data *pdata = client->dev.platform_data;
struct v4l2_ctrl_handler *hdl;
struct v4l2_subdev *sd;
int err;
/* Check if the adapter supports the needed features */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -EIO;
v4l_dbg(1, debug, client, "detecting adv7604 client on address 0x%x\n",
client->addr << 1);
state = kzalloc(sizeof(struct adv7604_state), GFP_KERNEL);
if (!state) {
v4l_err(client, "Could not allocate adv7604_state memory!\n");
return -ENOMEM;
}
/* platform data */
if (!pdata) {
v4l_err(client, "No platform data!\n");
err = -ENODEV;
goto err_state;
}
memcpy(&state->pdata, pdata, sizeof(state->pdata));
sd = &state->sd;
v4l2_i2c_subdev_init(sd, client, &adv7604_ops);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
state->connector_hdmi = pdata->connector_hdmi;
/* i2c access to adv7604? */
if (adv_smbus_read_byte_data_check(client, 0xfb, false) != 0x68) {
v4l2_info(sd, "not an adv7604 on address 0x%x\n",
client->addr << 1);
err = -ENODEV;
goto err_state;
}
/* control handlers */
hdl = &state->hdl;
v4l2_ctrl_handler_init(hdl, 9);
v4l2_ctrl_new_std(hdl, &adv7604_ctrl_ops,
V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
v4l2_ctrl_new_std(hdl, &adv7604_ctrl_ops,
V4L2_CID_CONTRAST, 0, 255, 1, 128);
v4l2_ctrl_new_std(hdl, &adv7604_ctrl_ops,
V4L2_CID_SATURATION, 0, 255, 1, 128);
v4l2_ctrl_new_std(hdl, &adv7604_ctrl_ops,
V4L2_CID_HUE, 0, 128, 1, 0);
/* private controls */
state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0);
state->detect_tx_5v_ctrl->is_private = true;
state->rgb_quantization_range_ctrl =
v4l2_ctrl_new_std_menu(hdl, &adv7604_ctrl_ops,
V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
0, V4L2_DV_RGB_RANGE_AUTO);
state->rgb_quantization_range_ctrl->is_private = true;
/* custom controls */
state->analog_sampling_phase_ctrl =
v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
state->analog_sampling_phase_ctrl->is_private = true;
state->free_run_color_manual_ctrl =
v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_free_run_color_manual, NULL);
state->free_run_color_manual_ctrl->is_private = true;
state->free_run_color_ctrl =
v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_free_run_color, NULL);
state->free_run_color_ctrl->is_private = true;
sd->ctrl_handler = hdl;
if (hdl->error) {
err = hdl->error;
goto err_hdl;
}
if (adv7604_s_detect_tx_5v_ctrl(sd)) {
err = -ENODEV;
goto err_hdl;
}
state->i2c_avlink = adv7604_dummy_client(sd, pdata->i2c_avlink, 0xf3);
state->i2c_cec = adv7604_dummy_client(sd, pdata->i2c_cec, 0xf4);
state->i2c_infoframe = adv7604_dummy_client(sd, pdata->i2c_infoframe, 0xf5);
state->i2c_esdp = adv7604_dummy_client(sd, pdata->i2c_esdp, 0xf6);
state->i2c_dpp = adv7604_dummy_client(sd, pdata->i2c_dpp, 0xf7);
state->i2c_afe = adv7604_dummy_client(sd, pdata->i2c_afe, 0xf8);
state->i2c_repeater = adv7604_dummy_client(sd, pdata->i2c_repeater, 0xf9);
state->i2c_edid = adv7604_dummy_client(sd, pdata->i2c_edid, 0xfa);
state->i2c_hdmi = adv7604_dummy_client(sd, pdata->i2c_hdmi, 0xfb);
state->i2c_test = adv7604_dummy_client(sd, pdata->i2c_test, 0xfc);
state->i2c_cp = adv7604_dummy_client(sd, pdata->i2c_cp, 0xfd);
state->i2c_vdp = adv7604_dummy_client(sd, pdata->i2c_vdp, 0xfe);
if (!state->i2c_avlink || !state->i2c_cec || !state->i2c_infoframe ||
!state->i2c_esdp || !state->i2c_dpp || !state->i2c_afe ||
!state->i2c_repeater || !state->i2c_edid || !state->i2c_hdmi ||
!state->i2c_test || !state->i2c_cp || !state->i2c_vdp) {
err = -ENOMEM;
v4l2_err(sd, "failed to create all i2c clients\n");
goto err_i2c;
}
state->restart_stdi_once = true;
/* work queues */
state->work_queues = create_singlethread_workqueue(client->name);
if (!state->work_queues) {
v4l2_err(sd, "Could not create work queue\n");
err = -ENOMEM;
goto err_i2c;
}
INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
adv7604_delayed_work_enable_hotplug);
state->pad.flags = MEDIA_PAD_FL_SOURCE;
err = media_entity_init(&sd->entity, 1, &state->pad, 0);
if (err)
goto err_work_queues;
err = adv7604_core_init(sd);
if (err)
goto err_entity;
v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
client->addr << 1, client->adapter->name);
return 0;
err_entity:
media_entity_cleanup(&sd->entity);
err_work_queues:
cancel_delayed_work(&state->delayed_work_enable_hotplug);
destroy_workqueue(state->work_queues);
err_i2c:
adv7604_unregister_clients(state);
err_hdl:
v4l2_ctrl_handler_free(hdl);
err_state:
kfree(state);
return err;
}
/* ----------------------------------------------------------------------- */
static int adv7604_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct adv7604_state *state = to_state(sd);
cancel_delayed_work(&state->delayed_work_enable_hotplug);
destroy_workqueue(state->work_queues);
v4l2_device_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
adv7604_unregister_clients(to_state(sd));
v4l2_ctrl_handler_free(sd->ctrl_handler);
kfree(to_state(sd));
return 0;
}
/* ----------------------------------------------------------------------- */
static struct i2c_device_id adv7604_id[] = {
{ "adv7604", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adv7604_id);
static struct i2c_driver adv7604_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "adv7604",
},
.probe = adv7604_probe,
.remove = adv7604_remove,
.id_table = adv7604_id,
};
module_i2c_driver(adv7604_driver);