8865 lines
217 KiB
C
8865 lines
217 KiB
C
/*
|
|
* kernel/sched/core.c
|
|
*
|
|
* Kernel scheduler and related syscalls
|
|
*
|
|
* Copyright (C) 1991-2002 Linus Torvalds
|
|
*
|
|
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
|
|
* make semaphores SMP safe
|
|
* 1998-11-19 Implemented schedule_timeout() and related stuff
|
|
* by Andrea Arcangeli
|
|
* 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
|
|
* hybrid priority-list and round-robin design with
|
|
* an array-switch method of distributing timeslices
|
|
* and per-CPU runqueues. Cleanups and useful suggestions
|
|
* by Davide Libenzi, preemptible kernel bits by Robert Love.
|
|
* 2003-09-03 Interactivity tuning by Con Kolivas.
|
|
* 2004-04-02 Scheduler domains code by Nick Piggin
|
|
* 2007-04-15 Work begun on replacing all interactivity tuning with a
|
|
* fair scheduling design by Con Kolivas.
|
|
* 2007-05-05 Load balancing (smp-nice) and other improvements
|
|
* by Peter Williams
|
|
* 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
|
|
* 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
|
|
* 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
|
|
* Thomas Gleixner, Mike Kravetz
|
|
*/
|
|
|
|
#include <linux/kasan.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/init.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/debug_locks.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/security.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/times.h>
|
|
#include <linux/tsacct_kern.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/delayacct.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/frame.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/mutex.h>
|
|
|
|
#include <asm/switch_to.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/irq_regs.h>
|
|
#ifdef CONFIG_PARAVIRT
|
|
#include <asm/paravirt.h>
|
|
#endif
|
|
|
|
#include "sched.h"
|
|
#include "../workqueue_internal.h"
|
|
#include "../smpboot.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/sched.h>
|
|
|
|
DEFINE_MUTEX(sched_domains_mutex);
|
|
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
|
|
|
|
static void update_rq_clock_task(struct rq *rq, s64 delta);
|
|
|
|
void update_rq_clock(struct rq *rq)
|
|
{
|
|
s64 delta;
|
|
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
if (rq->clock_skip_update & RQCF_ACT_SKIP)
|
|
return;
|
|
|
|
delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
|
|
if (delta < 0)
|
|
return;
|
|
rq->clock += delta;
|
|
update_rq_clock_task(rq, delta);
|
|
}
|
|
|
|
/*
|
|
* Debugging: various feature bits
|
|
*/
|
|
|
|
#define SCHED_FEAT(name, enabled) \
|
|
(1UL << __SCHED_FEAT_##name) * enabled |
|
|
|
|
const_debug unsigned int sysctl_sched_features =
|
|
#include "features.h"
|
|
0;
|
|
|
|
#undef SCHED_FEAT
|
|
|
|
/*
|
|
* Number of tasks to iterate in a single balance run.
|
|
* Limited because this is done with IRQs disabled.
|
|
*/
|
|
const_debug unsigned int sysctl_sched_nr_migrate = 32;
|
|
|
|
/*
|
|
* period over which we average the RT time consumption, measured
|
|
* in ms.
|
|
*
|
|
* default: 1s
|
|
*/
|
|
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
|
|
|
|
/*
|
|
* period over which we measure -rt task cpu usage in us.
|
|
* default: 1s
|
|
*/
|
|
unsigned int sysctl_sched_rt_period = 1000000;
|
|
|
|
__read_mostly int scheduler_running;
|
|
|
|
/*
|
|
* part of the period that we allow rt tasks to run in us.
|
|
* default: 0.95s
|
|
*/
|
|
int sysctl_sched_rt_runtime = 950000;
|
|
|
|
/* cpus with isolated domains */
|
|
cpumask_var_t cpu_isolated_map;
|
|
|
|
/*
|
|
* this_rq_lock - lock this runqueue and disable interrupts.
|
|
*/
|
|
static struct rq *this_rq_lock(void)
|
|
__acquires(rq->lock)
|
|
{
|
|
struct rq *rq;
|
|
|
|
local_irq_disable();
|
|
rq = this_rq();
|
|
raw_spin_lock(&rq->lock);
|
|
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* __task_rq_lock - lock the rq @p resides on.
|
|
*/
|
|
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
struct rq *rq;
|
|
|
|
lockdep_assert_held(&p->pi_lock);
|
|
|
|
for (;;) {
|
|
rq = task_rq(p);
|
|
raw_spin_lock(&rq->lock);
|
|
if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
|
|
rf->cookie = lockdep_pin_lock(&rq->lock);
|
|
return rq;
|
|
}
|
|
raw_spin_unlock(&rq->lock);
|
|
|
|
while (unlikely(task_on_rq_migrating(p)))
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
|
|
*/
|
|
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
|
__acquires(p->pi_lock)
|
|
__acquires(rq->lock)
|
|
{
|
|
struct rq *rq;
|
|
|
|
for (;;) {
|
|
raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
|
|
rq = task_rq(p);
|
|
raw_spin_lock(&rq->lock);
|
|
/*
|
|
* move_queued_task() task_rq_lock()
|
|
*
|
|
* ACQUIRE (rq->lock)
|
|
* [S] ->on_rq = MIGRATING [L] rq = task_rq()
|
|
* WMB (__set_task_cpu()) ACQUIRE (rq->lock);
|
|
* [S] ->cpu = new_cpu [L] task_rq()
|
|
* [L] ->on_rq
|
|
* RELEASE (rq->lock)
|
|
*
|
|
* If we observe the old cpu in task_rq_lock, the acquire of
|
|
* the old rq->lock will fully serialize against the stores.
|
|
*
|
|
* If we observe the new cpu in task_rq_lock, the acquire will
|
|
* pair with the WMB to ensure we must then also see migrating.
|
|
*/
|
|
if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
|
|
rf->cookie = lockdep_pin_lock(&rq->lock);
|
|
return rq;
|
|
}
|
|
raw_spin_unlock(&rq->lock);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
|
|
|
|
while (unlikely(task_on_rq_migrating(p)))
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
/*
|
|
* Use HR-timers to deliver accurate preemption points.
|
|
*/
|
|
|
|
static void hrtick_clear(struct rq *rq)
|
|
{
|
|
if (hrtimer_active(&rq->hrtick_timer))
|
|
hrtimer_cancel(&rq->hrtick_timer);
|
|
}
|
|
|
|
/*
|
|
* High-resolution timer tick.
|
|
* Runs from hardirq context with interrupts disabled.
|
|
*/
|
|
static enum hrtimer_restart hrtick(struct hrtimer *timer)
|
|
{
|
|
struct rq *rq = container_of(timer, struct rq, hrtick_timer);
|
|
|
|
WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
|
|
|
|
raw_spin_lock(&rq->lock);
|
|
update_rq_clock(rq);
|
|
rq->curr->sched_class->task_tick(rq, rq->curr, 1);
|
|
raw_spin_unlock(&rq->lock);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static void __hrtick_restart(struct rq *rq)
|
|
{
|
|
struct hrtimer *timer = &rq->hrtick_timer;
|
|
|
|
hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
|
|
}
|
|
|
|
/*
|
|
* called from hardirq (IPI) context
|
|
*/
|
|
static void __hrtick_start(void *arg)
|
|
{
|
|
struct rq *rq = arg;
|
|
|
|
raw_spin_lock(&rq->lock);
|
|
__hrtick_restart(rq);
|
|
rq->hrtick_csd_pending = 0;
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
/*
|
|
* Called to set the hrtick timer state.
|
|
*
|
|
* called with rq->lock held and irqs disabled
|
|
*/
|
|
void hrtick_start(struct rq *rq, u64 delay)
|
|
{
|
|
struct hrtimer *timer = &rq->hrtick_timer;
|
|
ktime_t time;
|
|
s64 delta;
|
|
|
|
/*
|
|
* Don't schedule slices shorter than 10000ns, that just
|
|
* doesn't make sense and can cause timer DoS.
|
|
*/
|
|
delta = max_t(s64, delay, 10000LL);
|
|
time = ktime_add_ns(timer->base->get_time(), delta);
|
|
|
|
hrtimer_set_expires(timer, time);
|
|
|
|
if (rq == this_rq()) {
|
|
__hrtick_restart(rq);
|
|
} else if (!rq->hrtick_csd_pending) {
|
|
smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
|
|
rq->hrtick_csd_pending = 1;
|
|
}
|
|
}
|
|
|
|
#else
|
|
/*
|
|
* Called to set the hrtick timer state.
|
|
*
|
|
* called with rq->lock held and irqs disabled
|
|
*/
|
|
void hrtick_start(struct rq *rq, u64 delay)
|
|
{
|
|
/*
|
|
* Don't schedule slices shorter than 10000ns, that just
|
|
* doesn't make sense. Rely on vruntime for fairness.
|
|
*/
|
|
delay = max_t(u64, delay, 10000LL);
|
|
hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
|
|
HRTIMER_MODE_REL_PINNED);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static void init_rq_hrtick(struct rq *rq)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
rq->hrtick_csd_pending = 0;
|
|
|
|
rq->hrtick_csd.flags = 0;
|
|
rq->hrtick_csd.func = __hrtick_start;
|
|
rq->hrtick_csd.info = rq;
|
|
#endif
|
|
|
|
hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
rq->hrtick_timer.function = hrtick;
|
|
}
|
|
#else /* CONFIG_SCHED_HRTICK */
|
|
static inline void hrtick_clear(struct rq *rq)
|
|
{
|
|
}
|
|
|
|
static inline void init_rq_hrtick(struct rq *rq)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SCHED_HRTICK */
|
|
|
|
/*
|
|
* cmpxchg based fetch_or, macro so it works for different integer types
|
|
*/
|
|
#define fetch_or(ptr, mask) \
|
|
({ \
|
|
typeof(ptr) _ptr = (ptr); \
|
|
typeof(mask) _mask = (mask); \
|
|
typeof(*_ptr) _old, _val = *_ptr; \
|
|
\
|
|
for (;;) { \
|
|
_old = cmpxchg(_ptr, _val, _val | _mask); \
|
|
if (_old == _val) \
|
|
break; \
|
|
_val = _old; \
|
|
} \
|
|
_old; \
|
|
})
|
|
|
|
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
|
|
/*
|
|
* Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
|
|
* this avoids any races wrt polling state changes and thereby avoids
|
|
* spurious IPIs.
|
|
*/
|
|
static bool set_nr_and_not_polling(struct task_struct *p)
|
|
{
|
|
struct thread_info *ti = task_thread_info(p);
|
|
return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
|
|
}
|
|
|
|
/*
|
|
* Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
|
|
*
|
|
* If this returns true, then the idle task promises to call
|
|
* sched_ttwu_pending() and reschedule soon.
|
|
*/
|
|
static bool set_nr_if_polling(struct task_struct *p)
|
|
{
|
|
struct thread_info *ti = task_thread_info(p);
|
|
typeof(ti->flags) old, val = READ_ONCE(ti->flags);
|
|
|
|
for (;;) {
|
|
if (!(val & _TIF_POLLING_NRFLAG))
|
|
return false;
|
|
if (val & _TIF_NEED_RESCHED)
|
|
return true;
|
|
old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
|
|
if (old == val)
|
|
break;
|
|
val = old;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#else
|
|
static bool set_nr_and_not_polling(struct task_struct *p)
|
|
{
|
|
set_tsk_need_resched(p);
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static bool set_nr_if_polling(struct task_struct *p)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
|
|
{
|
|
struct wake_q_node *node = &task->wake_q;
|
|
|
|
/*
|
|
* Atomically grab the task, if ->wake_q is !nil already it means
|
|
* its already queued (either by us or someone else) and will get the
|
|
* wakeup due to that.
|
|
*
|
|
* This cmpxchg() implies a full barrier, which pairs with the write
|
|
* barrier implied by the wakeup in wake_up_q().
|
|
*/
|
|
if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
|
|
return;
|
|
|
|
get_task_struct(task);
|
|
|
|
/*
|
|
* The head is context local, there can be no concurrency.
|
|
*/
|
|
*head->lastp = node;
|
|
head->lastp = &node->next;
|
|
}
|
|
|
|
void wake_up_q(struct wake_q_head *head)
|
|
{
|
|
struct wake_q_node *node = head->first;
|
|
|
|
while (node != WAKE_Q_TAIL) {
|
|
struct task_struct *task;
|
|
|
|
task = container_of(node, struct task_struct, wake_q);
|
|
BUG_ON(!task);
|
|
/* task can safely be re-inserted now */
|
|
node = node->next;
|
|
task->wake_q.next = NULL;
|
|
|
|
/*
|
|
* wake_up_process() implies a wmb() to pair with the queueing
|
|
* in wake_q_add() so as not to miss wakeups.
|
|
*/
|
|
wake_up_process(task);
|
|
put_task_struct(task);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* resched_curr - mark rq's current task 'to be rescheduled now'.
|
|
*
|
|
* On UP this means the setting of the need_resched flag, on SMP it
|
|
* might also involve a cross-CPU call to trigger the scheduler on
|
|
* the target CPU.
|
|
*/
|
|
void resched_curr(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
int cpu;
|
|
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
if (test_tsk_need_resched(curr))
|
|
return;
|
|
|
|
cpu = cpu_of(rq);
|
|
|
|
if (cpu == smp_processor_id()) {
|
|
set_tsk_need_resched(curr);
|
|
set_preempt_need_resched();
|
|
return;
|
|
}
|
|
|
|
if (set_nr_and_not_polling(curr))
|
|
smp_send_reschedule(cpu);
|
|
else
|
|
trace_sched_wake_idle_without_ipi(cpu);
|
|
}
|
|
|
|
void resched_cpu(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
if (!raw_spin_trylock_irqsave(&rq->lock, flags))
|
|
return;
|
|
resched_curr(rq);
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
/*
|
|
* In the semi idle case, use the nearest busy cpu for migrating timers
|
|
* from an idle cpu. This is good for power-savings.
|
|
*
|
|
* We don't do similar optimization for completely idle system, as
|
|
* selecting an idle cpu will add more delays to the timers than intended
|
|
* (as that cpu's timer base may not be uptodate wrt jiffies etc).
|
|
*/
|
|
int get_nohz_timer_target(void)
|
|
{
|
|
int i, cpu = smp_processor_id();
|
|
struct sched_domain *sd;
|
|
|
|
if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
|
|
return cpu;
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, sd) {
|
|
for_each_cpu(i, sched_domain_span(sd)) {
|
|
if (cpu == i)
|
|
continue;
|
|
|
|
if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
|
|
cpu = i;
|
|
goto unlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!is_housekeeping_cpu(cpu))
|
|
cpu = housekeeping_any_cpu();
|
|
unlock:
|
|
rcu_read_unlock();
|
|
return cpu;
|
|
}
|
|
/*
|
|
* When add_timer_on() enqueues a timer into the timer wheel of an
|
|
* idle CPU then this timer might expire before the next timer event
|
|
* which is scheduled to wake up that CPU. In case of a completely
|
|
* idle system the next event might even be infinite time into the
|
|
* future. wake_up_idle_cpu() ensures that the CPU is woken up and
|
|
* leaves the inner idle loop so the newly added timer is taken into
|
|
* account when the CPU goes back to idle and evaluates the timer
|
|
* wheel for the next timer event.
|
|
*/
|
|
static void wake_up_idle_cpu(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
if (cpu == smp_processor_id())
|
|
return;
|
|
|
|
if (set_nr_and_not_polling(rq->idle))
|
|
smp_send_reschedule(cpu);
|
|
else
|
|
trace_sched_wake_idle_without_ipi(cpu);
|
|
}
|
|
|
|
static bool wake_up_full_nohz_cpu(int cpu)
|
|
{
|
|
/*
|
|
* We just need the target to call irq_exit() and re-evaluate
|
|
* the next tick. The nohz full kick at least implies that.
|
|
* If needed we can still optimize that later with an
|
|
* empty IRQ.
|
|
*/
|
|
if (cpu_is_offline(cpu))
|
|
return true; /* Don't try to wake offline CPUs. */
|
|
if (tick_nohz_full_cpu(cpu)) {
|
|
if (cpu != smp_processor_id() ||
|
|
tick_nohz_tick_stopped())
|
|
tick_nohz_full_kick_cpu(cpu);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Wake up the specified CPU. If the CPU is going offline, it is the
|
|
* caller's responsibility to deal with the lost wakeup, for example,
|
|
* by hooking into the CPU_DEAD notifier like timers and hrtimers do.
|
|
*/
|
|
void wake_up_nohz_cpu(int cpu)
|
|
{
|
|
if (!wake_up_full_nohz_cpu(cpu))
|
|
wake_up_idle_cpu(cpu);
|
|
}
|
|
|
|
static inline bool got_nohz_idle_kick(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
|
|
return false;
|
|
|
|
if (idle_cpu(cpu) && !need_resched())
|
|
return true;
|
|
|
|
/*
|
|
* We can't run Idle Load Balance on this CPU for this time so we
|
|
* cancel it and clear NOHZ_BALANCE_KICK
|
|
*/
|
|
clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
|
|
return false;
|
|
}
|
|
|
|
#else /* CONFIG_NO_HZ_COMMON */
|
|
|
|
static inline bool got_nohz_idle_kick(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif /* CONFIG_NO_HZ_COMMON */
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
bool sched_can_stop_tick(struct rq *rq)
|
|
{
|
|
int fifo_nr_running;
|
|
|
|
/* Deadline tasks, even if single, need the tick */
|
|
if (rq->dl.dl_nr_running)
|
|
return false;
|
|
|
|
/*
|
|
* If there are more than one RR tasks, we need the tick to effect the
|
|
* actual RR behaviour.
|
|
*/
|
|
if (rq->rt.rr_nr_running) {
|
|
if (rq->rt.rr_nr_running == 1)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If there's no RR tasks, but FIFO tasks, we can skip the tick, no
|
|
* forced preemption between FIFO tasks.
|
|
*/
|
|
fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
|
|
if (fifo_nr_running)
|
|
return true;
|
|
|
|
/*
|
|
* If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
|
|
* if there's more than one we need the tick for involuntary
|
|
* preemption.
|
|
*/
|
|
if (rq->nr_running > 1)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_NO_HZ_FULL */
|
|
|
|
void sched_avg_update(struct rq *rq)
|
|
{
|
|
s64 period = sched_avg_period();
|
|
|
|
while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
|
|
/*
|
|
* Inline assembly required to prevent the compiler
|
|
* optimising this loop into a divmod call.
|
|
* See __iter_div_u64_rem() for another example of this.
|
|
*/
|
|
asm("" : "+rm" (rq->age_stamp));
|
|
rq->age_stamp += period;
|
|
rq->rt_avg /= 2;
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
|
|
(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
|
|
/*
|
|
* Iterate task_group tree rooted at *from, calling @down when first entering a
|
|
* node and @up when leaving it for the final time.
|
|
*
|
|
* Caller must hold rcu_lock or sufficient equivalent.
|
|
*/
|
|
int walk_tg_tree_from(struct task_group *from,
|
|
tg_visitor down, tg_visitor up, void *data)
|
|
{
|
|
struct task_group *parent, *child;
|
|
int ret;
|
|
|
|
parent = from;
|
|
|
|
down:
|
|
ret = (*down)(parent, data);
|
|
if (ret)
|
|
goto out;
|
|
list_for_each_entry_rcu(child, &parent->children, siblings) {
|
|
parent = child;
|
|
goto down;
|
|
|
|
up:
|
|
continue;
|
|
}
|
|
ret = (*up)(parent, data);
|
|
if (ret || parent == from)
|
|
goto out;
|
|
|
|
child = parent;
|
|
parent = parent->parent;
|
|
if (parent)
|
|
goto up;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int tg_nop(struct task_group *tg, void *data)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void set_load_weight(struct task_struct *p)
|
|
{
|
|
int prio = p->static_prio - MAX_RT_PRIO;
|
|
struct load_weight *load = &p->se.load;
|
|
|
|
/*
|
|
* SCHED_IDLE tasks get minimal weight:
|
|
*/
|
|
if (idle_policy(p->policy)) {
|
|
load->weight = scale_load(WEIGHT_IDLEPRIO);
|
|
load->inv_weight = WMULT_IDLEPRIO;
|
|
return;
|
|
}
|
|
|
|
load->weight = scale_load(sched_prio_to_weight[prio]);
|
|
load->inv_weight = sched_prio_to_wmult[prio];
|
|
}
|
|
|
|
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
update_rq_clock(rq);
|
|
if (!(flags & ENQUEUE_RESTORE))
|
|
sched_info_queued(rq, p);
|
|
p->sched_class->enqueue_task(rq, p, flags);
|
|
}
|
|
|
|
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
update_rq_clock(rq);
|
|
if (!(flags & DEQUEUE_SAVE))
|
|
sched_info_dequeued(rq, p);
|
|
p->sched_class->dequeue_task(rq, p, flags);
|
|
}
|
|
|
|
void activate_task(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
if (task_contributes_to_load(p))
|
|
rq->nr_uninterruptible--;
|
|
|
|
enqueue_task(rq, p, flags);
|
|
}
|
|
|
|
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
if (task_contributes_to_load(p))
|
|
rq->nr_uninterruptible++;
|
|
|
|
dequeue_task(rq, p, flags);
|
|
}
|
|
|
|
static void update_rq_clock_task(struct rq *rq, s64 delta)
|
|
{
|
|
/*
|
|
* In theory, the compile should just see 0 here, and optimize out the call
|
|
* to sched_rt_avg_update. But I don't trust it...
|
|
*/
|
|
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
|
|
s64 steal = 0, irq_delta = 0;
|
|
#endif
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
|
|
|
|
/*
|
|
* Since irq_time is only updated on {soft,}irq_exit, we might run into
|
|
* this case when a previous update_rq_clock() happened inside a
|
|
* {soft,}irq region.
|
|
*
|
|
* When this happens, we stop ->clock_task and only update the
|
|
* prev_irq_time stamp to account for the part that fit, so that a next
|
|
* update will consume the rest. This ensures ->clock_task is
|
|
* monotonic.
|
|
*
|
|
* It does however cause some slight miss-attribution of {soft,}irq
|
|
* time, a more accurate solution would be to update the irq_time using
|
|
* the current rq->clock timestamp, except that would require using
|
|
* atomic ops.
|
|
*/
|
|
if (irq_delta > delta)
|
|
irq_delta = delta;
|
|
|
|
rq->prev_irq_time += irq_delta;
|
|
delta -= irq_delta;
|
|
#endif
|
|
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
|
|
if (static_key_false((¶virt_steal_rq_enabled))) {
|
|
steal = paravirt_steal_clock(cpu_of(rq));
|
|
steal -= rq->prev_steal_time_rq;
|
|
|
|
if (unlikely(steal > delta))
|
|
steal = delta;
|
|
|
|
rq->prev_steal_time_rq += steal;
|
|
delta -= steal;
|
|
}
|
|
#endif
|
|
|
|
rq->clock_task += delta;
|
|
|
|
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
|
|
if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
|
|
sched_rt_avg_update(rq, irq_delta + steal);
|
|
#endif
|
|
}
|
|
|
|
void sched_set_stop_task(int cpu, struct task_struct *stop)
|
|
{
|
|
struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
|
|
struct task_struct *old_stop = cpu_rq(cpu)->stop;
|
|
|
|
if (stop) {
|
|
/*
|
|
* Make it appear like a SCHED_FIFO task, its something
|
|
* userspace knows about and won't get confused about.
|
|
*
|
|
* Also, it will make PI more or less work without too
|
|
* much confusion -- but then, stop work should not
|
|
* rely on PI working anyway.
|
|
*/
|
|
sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
|
|
|
|
stop->sched_class = &stop_sched_class;
|
|
}
|
|
|
|
cpu_rq(cpu)->stop = stop;
|
|
|
|
if (old_stop) {
|
|
/*
|
|
* Reset it back to a normal scheduling class so that
|
|
* it can die in pieces.
|
|
*/
|
|
old_stop->sched_class = &rt_sched_class;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* __normal_prio - return the priority that is based on the static prio
|
|
*/
|
|
static inline int __normal_prio(struct task_struct *p)
|
|
{
|
|
return p->static_prio;
|
|
}
|
|
|
|
/*
|
|
* Calculate the expected normal priority: i.e. priority
|
|
* without taking RT-inheritance into account. Might be
|
|
* boosted by interactivity modifiers. Changes upon fork,
|
|
* setprio syscalls, and whenever the interactivity
|
|
* estimator recalculates.
|
|
*/
|
|
static inline int normal_prio(struct task_struct *p)
|
|
{
|
|
int prio;
|
|
|
|
if (task_has_dl_policy(p))
|
|
prio = MAX_DL_PRIO-1;
|
|
else if (task_has_rt_policy(p))
|
|
prio = MAX_RT_PRIO-1 - p->rt_priority;
|
|
else
|
|
prio = __normal_prio(p);
|
|
return prio;
|
|
}
|
|
|
|
/*
|
|
* Calculate the current priority, i.e. the priority
|
|
* taken into account by the scheduler. This value might
|
|
* be boosted by RT tasks, or might be boosted by
|
|
* interactivity modifiers. Will be RT if the task got
|
|
* RT-boosted. If not then it returns p->normal_prio.
|
|
*/
|
|
static int effective_prio(struct task_struct *p)
|
|
{
|
|
p->normal_prio = normal_prio(p);
|
|
/*
|
|
* If we are RT tasks or we were boosted to RT priority,
|
|
* keep the priority unchanged. Otherwise, update priority
|
|
* to the normal priority:
|
|
*/
|
|
if (!rt_prio(p->prio))
|
|
return p->normal_prio;
|
|
return p->prio;
|
|
}
|
|
|
|
/**
|
|
* task_curr - is this task currently executing on a CPU?
|
|
* @p: the task in question.
|
|
*
|
|
* Return: 1 if the task is currently executing. 0 otherwise.
|
|
*/
|
|
inline int task_curr(const struct task_struct *p)
|
|
{
|
|
return cpu_curr(task_cpu(p)) == p;
|
|
}
|
|
|
|
/*
|
|
* switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
|
|
* use the balance_callback list if you want balancing.
|
|
*
|
|
* this means any call to check_class_changed() must be followed by a call to
|
|
* balance_callback().
|
|
*/
|
|
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
|
|
const struct sched_class *prev_class,
|
|
int oldprio)
|
|
{
|
|
if (prev_class != p->sched_class) {
|
|
if (prev_class->switched_from)
|
|
prev_class->switched_from(rq, p);
|
|
|
|
p->sched_class->switched_to(rq, p);
|
|
} else if (oldprio != p->prio || dl_task(p))
|
|
p->sched_class->prio_changed(rq, p, oldprio);
|
|
}
|
|
|
|
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
const struct sched_class *class;
|
|
|
|
if (p->sched_class == rq->curr->sched_class) {
|
|
rq->curr->sched_class->check_preempt_curr(rq, p, flags);
|
|
} else {
|
|
for_each_class(class) {
|
|
if (class == rq->curr->sched_class)
|
|
break;
|
|
if (class == p->sched_class) {
|
|
resched_curr(rq);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A queue event has occurred, and we're going to schedule. In
|
|
* this case, we can save a useless back to back clock update.
|
|
*/
|
|
if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
|
|
rq_clock_skip_update(rq, true);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* This is how migration works:
|
|
*
|
|
* 1) we invoke migration_cpu_stop() on the target CPU using
|
|
* stop_one_cpu().
|
|
* 2) stopper starts to run (implicitly forcing the migrated thread
|
|
* off the CPU)
|
|
* 3) it checks whether the migrated task is still in the wrong runqueue.
|
|
* 4) if it's in the wrong runqueue then the migration thread removes
|
|
* it and puts it into the right queue.
|
|
* 5) stopper completes and stop_one_cpu() returns and the migration
|
|
* is done.
|
|
*/
|
|
|
|
/*
|
|
* move_queued_task - move a queued task to new rq.
|
|
*
|
|
* Returns (locked) new rq. Old rq's lock is released.
|
|
*/
|
|
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
p->on_rq = TASK_ON_RQ_MIGRATING;
|
|
dequeue_task(rq, p, 0);
|
|
set_task_cpu(p, new_cpu);
|
|
raw_spin_unlock(&rq->lock);
|
|
|
|
rq = cpu_rq(new_cpu);
|
|
|
|
raw_spin_lock(&rq->lock);
|
|
BUG_ON(task_cpu(p) != new_cpu);
|
|
enqueue_task(rq, p, 0);
|
|
p->on_rq = TASK_ON_RQ_QUEUED;
|
|
check_preempt_curr(rq, p, 0);
|
|
|
|
return rq;
|
|
}
|
|
|
|
struct migration_arg {
|
|
struct task_struct *task;
|
|
int dest_cpu;
|
|
};
|
|
|
|
/*
|
|
* Move (not current) task off this cpu, onto dest cpu. We're doing
|
|
* this because either it can't run here any more (set_cpus_allowed()
|
|
* away from this CPU, or CPU going down), or because we're
|
|
* attempting to rebalance this task on exec (sched_exec).
|
|
*
|
|
* So we race with normal scheduler movements, but that's OK, as long
|
|
* as the task is no longer on this CPU.
|
|
*/
|
|
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
|
|
{
|
|
if (unlikely(!cpu_active(dest_cpu)))
|
|
return rq;
|
|
|
|
/* Affinity changed (again). */
|
|
if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
|
|
return rq;
|
|
|
|
rq = move_queued_task(rq, p, dest_cpu);
|
|
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* migration_cpu_stop - this will be executed by a highprio stopper thread
|
|
* and performs thread migration by bumping thread off CPU then
|
|
* 'pushing' onto another runqueue.
|
|
*/
|
|
static int migration_cpu_stop(void *data)
|
|
{
|
|
struct migration_arg *arg = data;
|
|
struct task_struct *p = arg->task;
|
|
struct rq *rq = this_rq();
|
|
|
|
/*
|
|
* The original target cpu might have gone down and we might
|
|
* be on another cpu but it doesn't matter.
|
|
*/
|
|
local_irq_disable();
|
|
/*
|
|
* We need to explicitly wake pending tasks before running
|
|
* __migrate_task() such that we will not miss enforcing cpus_allowed
|
|
* during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
|
|
*/
|
|
sched_ttwu_pending();
|
|
|
|
raw_spin_lock(&p->pi_lock);
|
|
raw_spin_lock(&rq->lock);
|
|
/*
|
|
* If task_rq(p) != rq, it cannot be migrated here, because we're
|
|
* holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
|
|
* we're holding p->pi_lock.
|
|
*/
|
|
if (task_rq(p) == rq) {
|
|
if (task_on_rq_queued(p))
|
|
rq = __migrate_task(rq, p, arg->dest_cpu);
|
|
else
|
|
p->wake_cpu = arg->dest_cpu;
|
|
}
|
|
raw_spin_unlock(&rq->lock);
|
|
raw_spin_unlock(&p->pi_lock);
|
|
|
|
local_irq_enable();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sched_class::set_cpus_allowed must do the below, but is not required to
|
|
* actually call this function.
|
|
*/
|
|
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
|
|
{
|
|
cpumask_copy(&p->cpus_allowed, new_mask);
|
|
p->nr_cpus_allowed = cpumask_weight(new_mask);
|
|
}
|
|
|
|
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
|
|
{
|
|
struct rq *rq = task_rq(p);
|
|
bool queued, running;
|
|
|
|
lockdep_assert_held(&p->pi_lock);
|
|
|
|
queued = task_on_rq_queued(p);
|
|
running = task_current(rq, p);
|
|
|
|
if (queued) {
|
|
/*
|
|
* Because __kthread_bind() calls this on blocked tasks without
|
|
* holding rq->lock.
|
|
*/
|
|
lockdep_assert_held(&rq->lock);
|
|
dequeue_task(rq, p, DEQUEUE_SAVE);
|
|
}
|
|
if (running)
|
|
put_prev_task(rq, p);
|
|
|
|
p->sched_class->set_cpus_allowed(p, new_mask);
|
|
|
|
if (queued)
|
|
enqueue_task(rq, p, ENQUEUE_RESTORE);
|
|
if (running)
|
|
set_curr_task(rq, p);
|
|
}
|
|
|
|
/*
|
|
* Change a given task's CPU affinity. Migrate the thread to a
|
|
* proper CPU and schedule it away if the CPU it's executing on
|
|
* is removed from the allowed bitmask.
|
|
*
|
|
* NOTE: the caller must have a valid reference to the task, the
|
|
* task must not exit() & deallocate itself prematurely. The
|
|
* call is not atomic; no spinlocks may be held.
|
|
*/
|
|
static int __set_cpus_allowed_ptr(struct task_struct *p,
|
|
const struct cpumask *new_mask, bool check)
|
|
{
|
|
const struct cpumask *cpu_valid_mask = cpu_active_mask;
|
|
unsigned int dest_cpu;
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
int ret = 0;
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
|
|
if (p->flags & PF_KTHREAD) {
|
|
/*
|
|
* Kernel threads are allowed on online && !active CPUs
|
|
*/
|
|
cpu_valid_mask = cpu_online_mask;
|
|
}
|
|
|
|
/*
|
|
* Must re-check here, to close a race against __kthread_bind(),
|
|
* sched_setaffinity() is not guaranteed to observe the flag.
|
|
*/
|
|
if (check && (p->flags & PF_NO_SETAFFINITY)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (cpumask_equal(&p->cpus_allowed, new_mask))
|
|
goto out;
|
|
|
|
if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
do_set_cpus_allowed(p, new_mask);
|
|
|
|
if (p->flags & PF_KTHREAD) {
|
|
/*
|
|
* For kernel threads that do indeed end up on online &&
|
|
* !active we want to ensure they are strict per-cpu threads.
|
|
*/
|
|
WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
|
|
!cpumask_intersects(new_mask, cpu_active_mask) &&
|
|
p->nr_cpus_allowed != 1);
|
|
}
|
|
|
|
/* Can the task run on the task's current CPU? If so, we're done */
|
|
if (cpumask_test_cpu(task_cpu(p), new_mask))
|
|
goto out;
|
|
|
|
dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
|
|
if (task_running(rq, p) || p->state == TASK_WAKING) {
|
|
struct migration_arg arg = { p, dest_cpu };
|
|
/* Need help from migration thread: drop lock and wait. */
|
|
task_rq_unlock(rq, p, &rf);
|
|
stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
|
|
tlb_migrate_finish(p->mm);
|
|
return 0;
|
|
} else if (task_on_rq_queued(p)) {
|
|
/*
|
|
* OK, since we're going to drop the lock immediately
|
|
* afterwards anyway.
|
|
*/
|
|
lockdep_unpin_lock(&rq->lock, rf.cookie);
|
|
rq = move_queued_task(rq, p, dest_cpu);
|
|
lockdep_repin_lock(&rq->lock, rf.cookie);
|
|
}
|
|
out:
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
|
|
{
|
|
return __set_cpus_allowed_ptr(p, new_mask, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
|
|
|
|
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
|
|
{
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
/*
|
|
* We should never call set_task_cpu() on a blocked task,
|
|
* ttwu() will sort out the placement.
|
|
*/
|
|
WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
|
|
!p->on_rq);
|
|
|
|
/*
|
|
* Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
|
|
* because schedstat_wait_{start,end} rebase migrating task's wait_start
|
|
* time relying on p->on_rq.
|
|
*/
|
|
WARN_ON_ONCE(p->state == TASK_RUNNING &&
|
|
p->sched_class == &fair_sched_class &&
|
|
(p->on_rq && !task_on_rq_migrating(p)));
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
/*
|
|
* The caller should hold either p->pi_lock or rq->lock, when changing
|
|
* a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
|
|
*
|
|
* sched_move_task() holds both and thus holding either pins the cgroup,
|
|
* see task_group().
|
|
*
|
|
* Furthermore, all task_rq users should acquire both locks, see
|
|
* task_rq_lock().
|
|
*/
|
|
WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
|
|
lockdep_is_held(&task_rq(p)->lock)));
|
|
#endif
|
|
#endif
|
|
|
|
trace_sched_migrate_task(p, new_cpu);
|
|
|
|
if (task_cpu(p) != new_cpu) {
|
|
if (p->sched_class->migrate_task_rq)
|
|
p->sched_class->migrate_task_rq(p);
|
|
p->se.nr_migrations++;
|
|
perf_event_task_migrate(p);
|
|
}
|
|
|
|
__set_task_cpu(p, new_cpu);
|
|
}
|
|
|
|
static void __migrate_swap_task(struct task_struct *p, int cpu)
|
|
{
|
|
if (task_on_rq_queued(p)) {
|
|
struct rq *src_rq, *dst_rq;
|
|
|
|
src_rq = task_rq(p);
|
|
dst_rq = cpu_rq(cpu);
|
|
|
|
p->on_rq = TASK_ON_RQ_MIGRATING;
|
|
deactivate_task(src_rq, p, 0);
|
|
set_task_cpu(p, cpu);
|
|
activate_task(dst_rq, p, 0);
|
|
p->on_rq = TASK_ON_RQ_QUEUED;
|
|
check_preempt_curr(dst_rq, p, 0);
|
|
} else {
|
|
/*
|
|
* Task isn't running anymore; make it appear like we migrated
|
|
* it before it went to sleep. This means on wakeup we make the
|
|
* previous cpu our target instead of where it really is.
|
|
*/
|
|
p->wake_cpu = cpu;
|
|
}
|
|
}
|
|
|
|
struct migration_swap_arg {
|
|
struct task_struct *src_task, *dst_task;
|
|
int src_cpu, dst_cpu;
|
|
};
|
|
|
|
static int migrate_swap_stop(void *data)
|
|
{
|
|
struct migration_swap_arg *arg = data;
|
|
struct rq *src_rq, *dst_rq;
|
|
int ret = -EAGAIN;
|
|
|
|
if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
|
|
return -EAGAIN;
|
|
|
|
src_rq = cpu_rq(arg->src_cpu);
|
|
dst_rq = cpu_rq(arg->dst_cpu);
|
|
|
|
double_raw_lock(&arg->src_task->pi_lock,
|
|
&arg->dst_task->pi_lock);
|
|
double_rq_lock(src_rq, dst_rq);
|
|
|
|
if (task_cpu(arg->dst_task) != arg->dst_cpu)
|
|
goto unlock;
|
|
|
|
if (task_cpu(arg->src_task) != arg->src_cpu)
|
|
goto unlock;
|
|
|
|
if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
|
|
goto unlock;
|
|
|
|
if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
|
|
goto unlock;
|
|
|
|
__migrate_swap_task(arg->src_task, arg->dst_cpu);
|
|
__migrate_swap_task(arg->dst_task, arg->src_cpu);
|
|
|
|
ret = 0;
|
|
|
|
unlock:
|
|
double_rq_unlock(src_rq, dst_rq);
|
|
raw_spin_unlock(&arg->dst_task->pi_lock);
|
|
raw_spin_unlock(&arg->src_task->pi_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Cross migrate two tasks
|
|
*/
|
|
int migrate_swap(struct task_struct *cur, struct task_struct *p)
|
|
{
|
|
struct migration_swap_arg arg;
|
|
int ret = -EINVAL;
|
|
|
|
arg = (struct migration_swap_arg){
|
|
.src_task = cur,
|
|
.src_cpu = task_cpu(cur),
|
|
.dst_task = p,
|
|
.dst_cpu = task_cpu(p),
|
|
};
|
|
|
|
if (arg.src_cpu == arg.dst_cpu)
|
|
goto out;
|
|
|
|
/*
|
|
* These three tests are all lockless; this is OK since all of them
|
|
* will be re-checked with proper locks held further down the line.
|
|
*/
|
|
if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
|
|
goto out;
|
|
|
|
if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
|
|
goto out;
|
|
|
|
if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
|
|
goto out;
|
|
|
|
trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
|
|
ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* wait_task_inactive - wait for a thread to unschedule.
|
|
*
|
|
* If @match_state is nonzero, it's the @p->state value just checked and
|
|
* not expected to change. If it changes, i.e. @p might have woken up,
|
|
* then return zero. When we succeed in waiting for @p to be off its CPU,
|
|
* we return a positive number (its total switch count). If a second call
|
|
* a short while later returns the same number, the caller can be sure that
|
|
* @p has remained unscheduled the whole time.
|
|
*
|
|
* The caller must ensure that the task *will* unschedule sometime soon,
|
|
* else this function might spin for a *long* time. This function can't
|
|
* be called with interrupts off, or it may introduce deadlock with
|
|
* smp_call_function() if an IPI is sent by the same process we are
|
|
* waiting to become inactive.
|
|
*/
|
|
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
|
|
{
|
|
int running, queued;
|
|
struct rq_flags rf;
|
|
unsigned long ncsw;
|
|
struct rq *rq;
|
|
|
|
for (;;) {
|
|
/*
|
|
* We do the initial early heuristics without holding
|
|
* any task-queue locks at all. We'll only try to get
|
|
* the runqueue lock when things look like they will
|
|
* work out!
|
|
*/
|
|
rq = task_rq(p);
|
|
|
|
/*
|
|
* If the task is actively running on another CPU
|
|
* still, just relax and busy-wait without holding
|
|
* any locks.
|
|
*
|
|
* NOTE! Since we don't hold any locks, it's not
|
|
* even sure that "rq" stays as the right runqueue!
|
|
* But we don't care, since "task_running()" will
|
|
* return false if the runqueue has changed and p
|
|
* is actually now running somewhere else!
|
|
*/
|
|
while (task_running(rq, p)) {
|
|
if (match_state && unlikely(p->state != match_state))
|
|
return 0;
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* Ok, time to look more closely! We need the rq
|
|
* lock now, to be *sure*. If we're wrong, we'll
|
|
* just go back and repeat.
|
|
*/
|
|
rq = task_rq_lock(p, &rf);
|
|
trace_sched_wait_task(p);
|
|
running = task_running(rq, p);
|
|
queued = task_on_rq_queued(p);
|
|
ncsw = 0;
|
|
if (!match_state || p->state == match_state)
|
|
ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
/*
|
|
* If it changed from the expected state, bail out now.
|
|
*/
|
|
if (unlikely(!ncsw))
|
|
break;
|
|
|
|
/*
|
|
* Was it really running after all now that we
|
|
* checked with the proper locks actually held?
|
|
*
|
|
* Oops. Go back and try again..
|
|
*/
|
|
if (unlikely(running)) {
|
|
cpu_relax();
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* It's not enough that it's not actively running,
|
|
* it must be off the runqueue _entirely_, and not
|
|
* preempted!
|
|
*
|
|
* So if it was still runnable (but just not actively
|
|
* running right now), it's preempted, and we should
|
|
* yield - it could be a while.
|
|
*/
|
|
if (unlikely(queued)) {
|
|
ktime_t to = NSEC_PER_SEC / HZ;
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_hrtimeout(&to, HRTIMER_MODE_REL);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Ahh, all good. It wasn't running, and it wasn't
|
|
* runnable, which means that it will never become
|
|
* running in the future either. We're all done!
|
|
*/
|
|
break;
|
|
}
|
|
|
|
return ncsw;
|
|
}
|
|
|
|
/***
|
|
* kick_process - kick a running thread to enter/exit the kernel
|
|
* @p: the to-be-kicked thread
|
|
*
|
|
* Cause a process which is running on another CPU to enter
|
|
* kernel-mode, without any delay. (to get signals handled.)
|
|
*
|
|
* NOTE: this function doesn't have to take the runqueue lock,
|
|
* because all it wants to ensure is that the remote task enters
|
|
* the kernel. If the IPI races and the task has been migrated
|
|
* to another CPU then no harm is done and the purpose has been
|
|
* achieved as well.
|
|
*/
|
|
void kick_process(struct task_struct *p)
|
|
{
|
|
int cpu;
|
|
|
|
preempt_disable();
|
|
cpu = task_cpu(p);
|
|
if ((cpu != smp_processor_id()) && task_curr(p))
|
|
smp_send_reschedule(cpu);
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kick_process);
|
|
|
|
/*
|
|
* ->cpus_allowed is protected by both rq->lock and p->pi_lock
|
|
*
|
|
* A few notes on cpu_active vs cpu_online:
|
|
*
|
|
* - cpu_active must be a subset of cpu_online
|
|
*
|
|
* - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
|
|
* see __set_cpus_allowed_ptr(). At this point the newly online
|
|
* cpu isn't yet part of the sched domains, and balancing will not
|
|
* see it.
|
|
*
|
|
* - on cpu-down we clear cpu_active() to mask the sched domains and
|
|
* avoid the load balancer to place new tasks on the to be removed
|
|
* cpu. Existing tasks will remain running there and will be taken
|
|
* off.
|
|
*
|
|
* This means that fallback selection must not select !active CPUs.
|
|
* And can assume that any active CPU must be online. Conversely
|
|
* select_task_rq() below may allow selection of !active CPUs in order
|
|
* to satisfy the above rules.
|
|
*/
|
|
static int select_fallback_rq(int cpu, struct task_struct *p)
|
|
{
|
|
int nid = cpu_to_node(cpu);
|
|
const struct cpumask *nodemask = NULL;
|
|
enum { cpuset, possible, fail } state = cpuset;
|
|
int dest_cpu;
|
|
|
|
/*
|
|
* If the node that the cpu is on has been offlined, cpu_to_node()
|
|
* will return -1. There is no cpu on the node, and we should
|
|
* select the cpu on the other node.
|
|
*/
|
|
if (nid != -1) {
|
|
nodemask = cpumask_of_node(nid);
|
|
|
|
/* Look for allowed, online CPU in same node. */
|
|
for_each_cpu(dest_cpu, nodemask) {
|
|
if (!cpu_active(dest_cpu))
|
|
continue;
|
|
if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
|
|
return dest_cpu;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
/* Any allowed, online CPU? */
|
|
for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
|
|
if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
|
|
continue;
|
|
if (!cpu_online(dest_cpu))
|
|
continue;
|
|
goto out;
|
|
}
|
|
|
|
/* No more Mr. Nice Guy. */
|
|
switch (state) {
|
|
case cpuset:
|
|
if (IS_ENABLED(CONFIG_CPUSETS)) {
|
|
cpuset_cpus_allowed_fallback(p);
|
|
state = possible;
|
|
break;
|
|
}
|
|
/* fall-through */
|
|
case possible:
|
|
do_set_cpus_allowed(p, cpu_possible_mask);
|
|
state = fail;
|
|
break;
|
|
|
|
case fail:
|
|
BUG();
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (state != cpuset) {
|
|
/*
|
|
* Don't tell them about moving exiting tasks or
|
|
* kernel threads (both mm NULL), since they never
|
|
* leave kernel.
|
|
*/
|
|
if (p->mm && printk_ratelimit()) {
|
|
printk_deferred("process %d (%s) no longer affine to cpu%d\n",
|
|
task_pid_nr(p), p->comm, cpu);
|
|
}
|
|
}
|
|
|
|
return dest_cpu;
|
|
}
|
|
|
|
/*
|
|
* The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
|
|
*/
|
|
static inline
|
|
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
|
|
{
|
|
lockdep_assert_held(&p->pi_lock);
|
|
|
|
if (tsk_nr_cpus_allowed(p) > 1)
|
|
cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
|
|
else
|
|
cpu = cpumask_any(tsk_cpus_allowed(p));
|
|
|
|
/*
|
|
* In order not to call set_task_cpu() on a blocking task we need
|
|
* to rely on ttwu() to place the task on a valid ->cpus_allowed
|
|
* cpu.
|
|
*
|
|
* Since this is common to all placement strategies, this lives here.
|
|
*
|
|
* [ this allows ->select_task() to simply return task_cpu(p) and
|
|
* not worry about this generic constraint ]
|
|
*/
|
|
if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
|
|
!cpu_online(cpu)))
|
|
cpu = select_fallback_rq(task_cpu(p), p);
|
|
|
|
return cpu;
|
|
}
|
|
|
|
static void update_avg(u64 *avg, u64 sample)
|
|
{
|
|
s64 diff = sample - *avg;
|
|
*avg += diff >> 3;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline int __set_cpus_allowed_ptr(struct task_struct *p,
|
|
const struct cpumask *new_mask, bool check)
|
|
{
|
|
return set_cpus_allowed_ptr(p, new_mask);
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static void
|
|
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
|
|
{
|
|
struct rq *rq;
|
|
|
|
if (!schedstat_enabled())
|
|
return;
|
|
|
|
rq = this_rq();
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (cpu == rq->cpu) {
|
|
schedstat_inc(rq->ttwu_local);
|
|
schedstat_inc(p->se.statistics.nr_wakeups_local);
|
|
} else {
|
|
struct sched_domain *sd;
|
|
|
|
schedstat_inc(p->se.statistics.nr_wakeups_remote);
|
|
rcu_read_lock();
|
|
for_each_domain(rq->cpu, sd) {
|
|
if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
|
|
schedstat_inc(sd->ttwu_wake_remote);
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
if (wake_flags & WF_MIGRATED)
|
|
schedstat_inc(p->se.statistics.nr_wakeups_migrate);
|
|
#endif /* CONFIG_SMP */
|
|
|
|
schedstat_inc(rq->ttwu_count);
|
|
schedstat_inc(p->se.statistics.nr_wakeups);
|
|
|
|
if (wake_flags & WF_SYNC)
|
|
schedstat_inc(p->se.statistics.nr_wakeups_sync);
|
|
}
|
|
|
|
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
|
|
{
|
|
activate_task(rq, p, en_flags);
|
|
p->on_rq = TASK_ON_RQ_QUEUED;
|
|
|
|
/* if a worker is waking up, notify workqueue */
|
|
if (p->flags & PF_WQ_WORKER)
|
|
wq_worker_waking_up(p, cpu_of(rq));
|
|
}
|
|
|
|
/*
|
|
* Mark the task runnable and perform wakeup-preemption.
|
|
*/
|
|
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
|
|
struct pin_cookie cookie)
|
|
{
|
|
check_preempt_curr(rq, p, wake_flags);
|
|
p->state = TASK_RUNNING;
|
|
trace_sched_wakeup(p);
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (p->sched_class->task_woken) {
|
|
/*
|
|
* Our task @p is fully woken up and running; so its safe to
|
|
* drop the rq->lock, hereafter rq is only used for statistics.
|
|
*/
|
|
lockdep_unpin_lock(&rq->lock, cookie);
|
|
p->sched_class->task_woken(rq, p);
|
|
lockdep_repin_lock(&rq->lock, cookie);
|
|
}
|
|
|
|
if (rq->idle_stamp) {
|
|
u64 delta = rq_clock(rq) - rq->idle_stamp;
|
|
u64 max = 2*rq->max_idle_balance_cost;
|
|
|
|
update_avg(&rq->avg_idle, delta);
|
|
|
|
if (rq->avg_idle > max)
|
|
rq->avg_idle = max;
|
|
|
|
rq->idle_stamp = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
|
|
struct pin_cookie cookie)
|
|
{
|
|
int en_flags = ENQUEUE_WAKEUP;
|
|
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (p->sched_contributes_to_load)
|
|
rq->nr_uninterruptible--;
|
|
|
|
if (wake_flags & WF_MIGRATED)
|
|
en_flags |= ENQUEUE_MIGRATED;
|
|
#endif
|
|
|
|
ttwu_activate(rq, p, en_flags);
|
|
ttwu_do_wakeup(rq, p, wake_flags, cookie);
|
|
}
|
|
|
|
/*
|
|
* Called in case the task @p isn't fully descheduled from its runqueue,
|
|
* in this case we must do a remote wakeup. Its a 'light' wakeup though,
|
|
* since all we need to do is flip p->state to TASK_RUNNING, since
|
|
* the task is still ->on_rq.
|
|
*/
|
|
static int ttwu_remote(struct task_struct *p, int wake_flags)
|
|
{
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
int ret = 0;
|
|
|
|
rq = __task_rq_lock(p, &rf);
|
|
if (task_on_rq_queued(p)) {
|
|
/* check_preempt_curr() may use rq clock */
|
|
update_rq_clock(rq);
|
|
ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
|
|
ret = 1;
|
|
}
|
|
__task_rq_unlock(rq, &rf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void sched_ttwu_pending(void)
|
|
{
|
|
struct rq *rq = this_rq();
|
|
struct llist_node *llist = llist_del_all(&rq->wake_list);
|
|
struct pin_cookie cookie;
|
|
struct task_struct *p;
|
|
unsigned long flags;
|
|
|
|
if (!llist)
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
cookie = lockdep_pin_lock(&rq->lock);
|
|
|
|
while (llist) {
|
|
int wake_flags = 0;
|
|
|
|
p = llist_entry(llist, struct task_struct, wake_entry);
|
|
llist = llist_next(llist);
|
|
|
|
if (p->sched_remote_wakeup)
|
|
wake_flags = WF_MIGRATED;
|
|
|
|
ttwu_do_activate(rq, p, wake_flags, cookie);
|
|
}
|
|
|
|
lockdep_unpin_lock(&rq->lock, cookie);
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
void scheduler_ipi(void)
|
|
{
|
|
/*
|
|
* Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
|
|
* TIF_NEED_RESCHED remotely (for the first time) will also send
|
|
* this IPI.
|
|
*/
|
|
preempt_fold_need_resched();
|
|
|
|
if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
|
|
return;
|
|
|
|
/*
|
|
* Not all reschedule IPI handlers call irq_enter/irq_exit, since
|
|
* traditionally all their work was done from the interrupt return
|
|
* path. Now that we actually do some work, we need to make sure
|
|
* we do call them.
|
|
*
|
|
* Some archs already do call them, luckily irq_enter/exit nest
|
|
* properly.
|
|
*
|
|
* Arguably we should visit all archs and update all handlers,
|
|
* however a fair share of IPIs are still resched only so this would
|
|
* somewhat pessimize the simple resched case.
|
|
*/
|
|
irq_enter();
|
|
sched_ttwu_pending();
|
|
|
|
/*
|
|
* Check if someone kicked us for doing the nohz idle load balance.
|
|
*/
|
|
if (unlikely(got_nohz_idle_kick())) {
|
|
this_rq()->idle_balance = 1;
|
|
raise_softirq_irqoff(SCHED_SOFTIRQ);
|
|
}
|
|
irq_exit();
|
|
}
|
|
|
|
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
|
|
|
|
if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
|
|
if (!set_nr_if_polling(rq->idle))
|
|
smp_send_reschedule(cpu);
|
|
else
|
|
trace_sched_wake_idle_without_ipi(cpu);
|
|
}
|
|
}
|
|
|
|
void wake_up_if_idle(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
rcu_read_lock();
|
|
|
|
if (!is_idle_task(rcu_dereference(rq->curr)))
|
|
goto out;
|
|
|
|
if (set_nr_if_polling(rq->idle)) {
|
|
trace_sched_wake_idle_without_ipi(cpu);
|
|
} else {
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
if (is_idle_task(rq->curr))
|
|
smp_send_reschedule(cpu);
|
|
/* Else cpu is not in idle, do nothing here */
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
bool cpus_share_cache(int this_cpu, int that_cpu)
|
|
{
|
|
return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
struct pin_cookie cookie;
|
|
|
|
#if defined(CONFIG_SMP)
|
|
if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
|
|
sched_clock_cpu(cpu); /* sync clocks x-cpu */
|
|
ttwu_queue_remote(p, cpu, wake_flags);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
raw_spin_lock(&rq->lock);
|
|
cookie = lockdep_pin_lock(&rq->lock);
|
|
ttwu_do_activate(rq, p, wake_flags, cookie);
|
|
lockdep_unpin_lock(&rq->lock, cookie);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
/*
|
|
* Notes on Program-Order guarantees on SMP systems.
|
|
*
|
|
* MIGRATION
|
|
*
|
|
* The basic program-order guarantee on SMP systems is that when a task [t]
|
|
* migrates, all its activity on its old cpu [c0] happens-before any subsequent
|
|
* execution on its new cpu [c1].
|
|
*
|
|
* For migration (of runnable tasks) this is provided by the following means:
|
|
*
|
|
* A) UNLOCK of the rq(c0)->lock scheduling out task t
|
|
* B) migration for t is required to synchronize *both* rq(c0)->lock and
|
|
* rq(c1)->lock (if not at the same time, then in that order).
|
|
* C) LOCK of the rq(c1)->lock scheduling in task
|
|
*
|
|
* Transitivity guarantees that B happens after A and C after B.
|
|
* Note: we only require RCpc transitivity.
|
|
* Note: the cpu doing B need not be c0 or c1
|
|
*
|
|
* Example:
|
|
*
|
|
* CPU0 CPU1 CPU2
|
|
*
|
|
* LOCK rq(0)->lock
|
|
* sched-out X
|
|
* sched-in Y
|
|
* UNLOCK rq(0)->lock
|
|
*
|
|
* LOCK rq(0)->lock // orders against CPU0
|
|
* dequeue X
|
|
* UNLOCK rq(0)->lock
|
|
*
|
|
* LOCK rq(1)->lock
|
|
* enqueue X
|
|
* UNLOCK rq(1)->lock
|
|
*
|
|
* LOCK rq(1)->lock // orders against CPU2
|
|
* sched-out Z
|
|
* sched-in X
|
|
* UNLOCK rq(1)->lock
|
|
*
|
|
*
|
|
* BLOCKING -- aka. SLEEP + WAKEUP
|
|
*
|
|
* For blocking we (obviously) need to provide the same guarantee as for
|
|
* migration. However the means are completely different as there is no lock
|
|
* chain to provide order. Instead we do:
|
|
*
|
|
* 1) smp_store_release(X->on_cpu, 0)
|
|
* 2) smp_cond_load_acquire(!X->on_cpu)
|
|
*
|
|
* Example:
|
|
*
|
|
* CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
|
|
*
|
|
* LOCK rq(0)->lock LOCK X->pi_lock
|
|
* dequeue X
|
|
* sched-out X
|
|
* smp_store_release(X->on_cpu, 0);
|
|
*
|
|
* smp_cond_load_acquire(&X->on_cpu, !VAL);
|
|
* X->state = WAKING
|
|
* set_task_cpu(X,2)
|
|
*
|
|
* LOCK rq(2)->lock
|
|
* enqueue X
|
|
* X->state = RUNNING
|
|
* UNLOCK rq(2)->lock
|
|
*
|
|
* LOCK rq(2)->lock // orders against CPU1
|
|
* sched-out Z
|
|
* sched-in X
|
|
* UNLOCK rq(2)->lock
|
|
*
|
|
* UNLOCK X->pi_lock
|
|
* UNLOCK rq(0)->lock
|
|
*
|
|
*
|
|
* However; for wakeups there is a second guarantee we must provide, namely we
|
|
* must observe the state that lead to our wakeup. That is, not only must our
|
|
* task observe its own prior state, it must also observe the stores prior to
|
|
* its wakeup.
|
|
*
|
|
* This means that any means of doing remote wakeups must order the CPU doing
|
|
* the wakeup against the CPU the task is going to end up running on. This,
|
|
* however, is already required for the regular Program-Order guarantee above,
|
|
* since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* try_to_wake_up - wake up a thread
|
|
* @p: the thread to be awakened
|
|
* @state: the mask of task states that can be woken
|
|
* @wake_flags: wake modifier flags (WF_*)
|
|
*
|
|
* If (@state & @p->state) @p->state = TASK_RUNNING.
|
|
*
|
|
* If the task was not queued/runnable, also place it back on a runqueue.
|
|
*
|
|
* Atomic against schedule() which would dequeue a task, also see
|
|
* set_current_state().
|
|
*
|
|
* Return: %true if @p->state changes (an actual wakeup was done),
|
|
* %false otherwise.
|
|
*/
|
|
static int
|
|
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
|
|
{
|
|
unsigned long flags;
|
|
int cpu, success = 0;
|
|
|
|
/*
|
|
* If we are going to wake up a thread waiting for CONDITION we
|
|
* need to ensure that CONDITION=1 done by the caller can not be
|
|
* reordered with p->state check below. This pairs with mb() in
|
|
* set_current_state() the waiting thread does.
|
|
*/
|
|
smp_mb__before_spinlock();
|
|
raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
if (!(p->state & state))
|
|
goto out;
|
|
|
|
trace_sched_waking(p);
|
|
|
|
success = 1; /* we're going to change ->state */
|
|
cpu = task_cpu(p);
|
|
|
|
/*
|
|
* Ensure we load p->on_rq _after_ p->state, otherwise it would
|
|
* be possible to, falsely, observe p->on_rq == 0 and get stuck
|
|
* in smp_cond_load_acquire() below.
|
|
*
|
|
* sched_ttwu_pending() try_to_wake_up()
|
|
* [S] p->on_rq = 1; [L] P->state
|
|
* UNLOCK rq->lock -----.
|
|
* \
|
|
* +--- RMB
|
|
* schedule() /
|
|
* LOCK rq->lock -----'
|
|
* UNLOCK rq->lock
|
|
*
|
|
* [task p]
|
|
* [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
|
|
*
|
|
* Pairs with the UNLOCK+LOCK on rq->lock from the
|
|
* last wakeup of our task and the schedule that got our task
|
|
* current.
|
|
*/
|
|
smp_rmb();
|
|
if (p->on_rq && ttwu_remote(p, wake_flags))
|
|
goto stat;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
|
|
* possible to, falsely, observe p->on_cpu == 0.
|
|
*
|
|
* One must be running (->on_cpu == 1) in order to remove oneself
|
|
* from the runqueue.
|
|
*
|
|
* [S] ->on_cpu = 1; [L] ->on_rq
|
|
* UNLOCK rq->lock
|
|
* RMB
|
|
* LOCK rq->lock
|
|
* [S] ->on_rq = 0; [L] ->on_cpu
|
|
*
|
|
* Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
|
|
* from the consecutive calls to schedule(); the first switching to our
|
|
* task, the second putting it to sleep.
|
|
*/
|
|
smp_rmb();
|
|
|
|
/*
|
|
* If the owning (remote) cpu is still in the middle of schedule() with
|
|
* this task as prev, wait until its done referencing the task.
|
|
*
|
|
* Pairs with the smp_store_release() in finish_lock_switch().
|
|
*
|
|
* This ensures that tasks getting woken will be fully ordered against
|
|
* their previous state and preserve Program Order.
|
|
*/
|
|
smp_cond_load_acquire(&p->on_cpu, !VAL);
|
|
|
|
p->sched_contributes_to_load = !!task_contributes_to_load(p);
|
|
p->state = TASK_WAKING;
|
|
|
|
cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
|
|
if (task_cpu(p) != cpu) {
|
|
wake_flags |= WF_MIGRATED;
|
|
set_task_cpu(p, cpu);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
ttwu_queue(p, cpu, wake_flags);
|
|
stat:
|
|
ttwu_stat(p, cpu, wake_flags);
|
|
out:
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
return success;
|
|
}
|
|
|
|
/**
|
|
* try_to_wake_up_local - try to wake up a local task with rq lock held
|
|
* @p: the thread to be awakened
|
|
* @cookie: context's cookie for pinning
|
|
*
|
|
* Put @p on the run-queue if it's not already there. The caller must
|
|
* ensure that this_rq() is locked, @p is bound to this_rq() and not
|
|
* the current task.
|
|
*/
|
|
static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
|
|
{
|
|
struct rq *rq = task_rq(p);
|
|
|
|
if (WARN_ON_ONCE(rq != this_rq()) ||
|
|
WARN_ON_ONCE(p == current))
|
|
return;
|
|
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
if (!raw_spin_trylock(&p->pi_lock)) {
|
|
/*
|
|
* This is OK, because current is on_cpu, which avoids it being
|
|
* picked for load-balance and preemption/IRQs are still
|
|
* disabled avoiding further scheduler activity on it and we've
|
|
* not yet picked a replacement task.
|
|
*/
|
|
lockdep_unpin_lock(&rq->lock, cookie);
|
|
raw_spin_unlock(&rq->lock);
|
|
raw_spin_lock(&p->pi_lock);
|
|
raw_spin_lock(&rq->lock);
|
|
lockdep_repin_lock(&rq->lock, cookie);
|
|
}
|
|
|
|
if (!(p->state & TASK_NORMAL))
|
|
goto out;
|
|
|
|
trace_sched_waking(p);
|
|
|
|
if (!task_on_rq_queued(p))
|
|
ttwu_activate(rq, p, ENQUEUE_WAKEUP);
|
|
|
|
ttwu_do_wakeup(rq, p, 0, cookie);
|
|
ttwu_stat(p, smp_processor_id(), 0);
|
|
out:
|
|
raw_spin_unlock(&p->pi_lock);
|
|
}
|
|
|
|
/**
|
|
* wake_up_process - Wake up a specific process
|
|
* @p: The process to be woken up.
|
|
*
|
|
* Attempt to wake up the nominated process and move it to the set of runnable
|
|
* processes.
|
|
*
|
|
* Return: 1 if the process was woken up, 0 if it was already running.
|
|
*
|
|
* It may be assumed that this function implies a write memory barrier before
|
|
* changing the task state if and only if any tasks are woken up.
|
|
*/
|
|
int wake_up_process(struct task_struct *p)
|
|
{
|
|
return try_to_wake_up(p, TASK_NORMAL, 0);
|
|
}
|
|
EXPORT_SYMBOL(wake_up_process);
|
|
|
|
int wake_up_state(struct task_struct *p, unsigned int state)
|
|
{
|
|
return try_to_wake_up(p, state, 0);
|
|
}
|
|
|
|
/*
|
|
* This function clears the sched_dl_entity static params.
|
|
*/
|
|
void __dl_clear_params(struct task_struct *p)
|
|
{
|
|
struct sched_dl_entity *dl_se = &p->dl;
|
|
|
|
dl_se->dl_runtime = 0;
|
|
dl_se->dl_deadline = 0;
|
|
dl_se->dl_period = 0;
|
|
dl_se->flags = 0;
|
|
dl_se->dl_bw = 0;
|
|
|
|
dl_se->dl_throttled = 0;
|
|
dl_se->dl_yielded = 0;
|
|
}
|
|
|
|
/*
|
|
* Perform scheduler related setup for a newly forked process p.
|
|
* p is forked by current.
|
|
*
|
|
* __sched_fork() is basic setup used by init_idle() too:
|
|
*/
|
|
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
|
|
{
|
|
p->on_rq = 0;
|
|
|
|
p->se.on_rq = 0;
|
|
p->se.exec_start = 0;
|
|
p->se.sum_exec_runtime = 0;
|
|
p->se.prev_sum_exec_runtime = 0;
|
|
p->se.nr_migrations = 0;
|
|
p->se.vruntime = 0;
|
|
INIT_LIST_HEAD(&p->se.group_node);
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
p->se.cfs_rq = NULL;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/* Even if schedstat is disabled, there should not be garbage */
|
|
memset(&p->se.statistics, 0, sizeof(p->se.statistics));
|
|
#endif
|
|
|
|
RB_CLEAR_NODE(&p->dl.rb_node);
|
|
init_dl_task_timer(&p->dl);
|
|
__dl_clear_params(p);
|
|
|
|
INIT_LIST_HEAD(&p->rt.run_list);
|
|
p->rt.timeout = 0;
|
|
p->rt.time_slice = sched_rr_timeslice;
|
|
p->rt.on_rq = 0;
|
|
p->rt.on_list = 0;
|
|
|
|
#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
INIT_HLIST_HEAD(&p->preempt_notifiers);
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
|
|
p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
|
|
p->mm->numa_scan_seq = 0;
|
|
}
|
|
|
|
if (clone_flags & CLONE_VM)
|
|
p->numa_preferred_nid = current->numa_preferred_nid;
|
|
else
|
|
p->numa_preferred_nid = -1;
|
|
|
|
p->node_stamp = 0ULL;
|
|
p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
|
|
p->numa_scan_period = sysctl_numa_balancing_scan_delay;
|
|
p->numa_work.next = &p->numa_work;
|
|
p->numa_faults = NULL;
|
|
p->last_task_numa_placement = 0;
|
|
p->last_sum_exec_runtime = 0;
|
|
|
|
p->numa_group = NULL;
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
}
|
|
|
|
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
|
|
void set_numabalancing_state(bool enabled)
|
|
{
|
|
if (enabled)
|
|
static_branch_enable(&sched_numa_balancing);
|
|
else
|
|
static_branch_disable(&sched_numa_balancing);
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_SYSCTL
|
|
int sysctl_numa_balancing(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table t;
|
|
int err;
|
|
int state = static_branch_likely(&sched_numa_balancing);
|
|
|
|
if (write && !capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
t = *table;
|
|
t.data = &state;
|
|
err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
|
|
if (err < 0)
|
|
return err;
|
|
if (write)
|
|
set_numabalancing_state(state);
|
|
return err;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
|
|
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
|
|
static bool __initdata __sched_schedstats = false;
|
|
|
|
static void set_schedstats(bool enabled)
|
|
{
|
|
if (enabled)
|
|
static_branch_enable(&sched_schedstats);
|
|
else
|
|
static_branch_disable(&sched_schedstats);
|
|
}
|
|
|
|
void force_schedstat_enabled(void)
|
|
{
|
|
if (!schedstat_enabled()) {
|
|
pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
|
|
static_branch_enable(&sched_schedstats);
|
|
}
|
|
}
|
|
|
|
static int __init setup_schedstats(char *str)
|
|
{
|
|
int ret = 0;
|
|
if (!str)
|
|
goto out;
|
|
|
|
/*
|
|
* This code is called before jump labels have been set up, so we can't
|
|
* change the static branch directly just yet. Instead set a temporary
|
|
* variable so init_schedstats() can do it later.
|
|
*/
|
|
if (!strcmp(str, "enable")) {
|
|
__sched_schedstats = true;
|
|
ret = 1;
|
|
} else if (!strcmp(str, "disable")) {
|
|
__sched_schedstats = false;
|
|
ret = 1;
|
|
}
|
|
out:
|
|
if (!ret)
|
|
pr_warn("Unable to parse schedstats=\n");
|
|
|
|
return ret;
|
|
}
|
|
__setup("schedstats=", setup_schedstats);
|
|
|
|
static void __init init_schedstats(void)
|
|
{
|
|
set_schedstats(__sched_schedstats);
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_SYSCTL
|
|
int sysctl_schedstats(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table t;
|
|
int err;
|
|
int state = static_branch_likely(&sched_schedstats);
|
|
|
|
if (write && !capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
t = *table;
|
|
t.data = &state;
|
|
err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
|
|
if (err < 0)
|
|
return err;
|
|
if (write)
|
|
set_schedstats(state);
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_PROC_SYSCTL */
|
|
#else /* !CONFIG_SCHEDSTATS */
|
|
static inline void init_schedstats(void) {}
|
|
#endif /* CONFIG_SCHEDSTATS */
|
|
|
|
/*
|
|
* fork()/clone()-time setup:
|
|
*/
|
|
int sched_fork(unsigned long clone_flags, struct task_struct *p)
|
|
{
|
|
unsigned long flags;
|
|
int cpu = get_cpu();
|
|
|
|
__sched_fork(clone_flags, p);
|
|
/*
|
|
* We mark the process as NEW here. This guarantees that
|
|
* nobody will actually run it, and a signal or other external
|
|
* event cannot wake it up and insert it on the runqueue either.
|
|
*/
|
|
p->state = TASK_NEW;
|
|
|
|
/*
|
|
* Make sure we do not leak PI boosting priority to the child.
|
|
*/
|
|
p->prio = current->normal_prio;
|
|
|
|
/*
|
|
* Revert to default priority/policy on fork if requested.
|
|
*/
|
|
if (unlikely(p->sched_reset_on_fork)) {
|
|
if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
|
|
p->policy = SCHED_NORMAL;
|
|
p->static_prio = NICE_TO_PRIO(0);
|
|
p->rt_priority = 0;
|
|
} else if (PRIO_TO_NICE(p->static_prio) < 0)
|
|
p->static_prio = NICE_TO_PRIO(0);
|
|
|
|
p->prio = p->normal_prio = __normal_prio(p);
|
|
set_load_weight(p);
|
|
|
|
/*
|
|
* We don't need the reset flag anymore after the fork. It has
|
|
* fulfilled its duty:
|
|
*/
|
|
p->sched_reset_on_fork = 0;
|
|
}
|
|
|
|
if (dl_prio(p->prio)) {
|
|
put_cpu();
|
|
return -EAGAIN;
|
|
} else if (rt_prio(p->prio)) {
|
|
p->sched_class = &rt_sched_class;
|
|
} else {
|
|
p->sched_class = &fair_sched_class;
|
|
}
|
|
|
|
init_entity_runnable_average(&p->se);
|
|
|
|
/*
|
|
* The child is not yet in the pid-hash so no cgroup attach races,
|
|
* and the cgroup is pinned to this child due to cgroup_fork()
|
|
* is ran before sched_fork().
|
|
*
|
|
* Silence PROVE_RCU.
|
|
*/
|
|
raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
/*
|
|
* We're setting the cpu for the first time, we don't migrate,
|
|
* so use __set_task_cpu().
|
|
*/
|
|
__set_task_cpu(p, cpu);
|
|
if (p->sched_class->task_fork)
|
|
p->sched_class->task_fork(p);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
#ifdef CONFIG_SCHED_INFO
|
|
if (likely(sched_info_on()))
|
|
memset(&p->sched_info, 0, sizeof(p->sched_info));
|
|
#endif
|
|
#if defined(CONFIG_SMP)
|
|
p->on_cpu = 0;
|
|
#endif
|
|
init_task_preempt_count(p);
|
|
#ifdef CONFIG_SMP
|
|
plist_node_init(&p->pushable_tasks, MAX_PRIO);
|
|
RB_CLEAR_NODE(&p->pushable_dl_tasks);
|
|
#endif
|
|
|
|
put_cpu();
|
|
return 0;
|
|
}
|
|
|
|
unsigned long to_ratio(u64 period, u64 runtime)
|
|
{
|
|
if (runtime == RUNTIME_INF)
|
|
return 1ULL << 20;
|
|
|
|
/*
|
|
* Doing this here saves a lot of checks in all
|
|
* the calling paths, and returning zero seems
|
|
* safe for them anyway.
|
|
*/
|
|
if (period == 0)
|
|
return 0;
|
|
|
|
return div64_u64(runtime << 20, period);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
inline struct dl_bw *dl_bw_of(int i)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
|
|
"sched RCU must be held");
|
|
return &cpu_rq(i)->rd->dl_bw;
|
|
}
|
|
|
|
static inline int dl_bw_cpus(int i)
|
|
{
|
|
struct root_domain *rd = cpu_rq(i)->rd;
|
|
int cpus = 0;
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
|
|
"sched RCU must be held");
|
|
for_each_cpu_and(i, rd->span, cpu_active_mask)
|
|
cpus++;
|
|
|
|
return cpus;
|
|
}
|
|
#else
|
|
inline struct dl_bw *dl_bw_of(int i)
|
|
{
|
|
return &cpu_rq(i)->dl.dl_bw;
|
|
}
|
|
|
|
static inline int dl_bw_cpus(int i)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We must be sure that accepting a new task (or allowing changing the
|
|
* parameters of an existing one) is consistent with the bandwidth
|
|
* constraints. If yes, this function also accordingly updates the currently
|
|
* allocated bandwidth to reflect the new situation.
|
|
*
|
|
* This function is called while holding p's rq->lock.
|
|
*
|
|
* XXX we should delay bw change until the task's 0-lag point, see
|
|
* __setparam_dl().
|
|
*/
|
|
static int dl_overflow(struct task_struct *p, int policy,
|
|
const struct sched_attr *attr)
|
|
{
|
|
|
|
struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
|
|
u64 period = attr->sched_period ?: attr->sched_deadline;
|
|
u64 runtime = attr->sched_runtime;
|
|
u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
|
|
int cpus, err = -1;
|
|
|
|
/* !deadline task may carry old deadline bandwidth */
|
|
if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
|
|
return 0;
|
|
|
|
/*
|
|
* Either if a task, enters, leave, or stays -deadline but changes
|
|
* its parameters, we may need to update accordingly the total
|
|
* allocated bandwidth of the container.
|
|
*/
|
|
raw_spin_lock(&dl_b->lock);
|
|
cpus = dl_bw_cpus(task_cpu(p));
|
|
if (dl_policy(policy) && !task_has_dl_policy(p) &&
|
|
!__dl_overflow(dl_b, cpus, 0, new_bw)) {
|
|
__dl_add(dl_b, new_bw);
|
|
err = 0;
|
|
} else if (dl_policy(policy) && task_has_dl_policy(p) &&
|
|
!__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
|
|
__dl_clear(dl_b, p->dl.dl_bw);
|
|
__dl_add(dl_b, new_bw);
|
|
err = 0;
|
|
} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
|
|
__dl_clear(dl_b, p->dl.dl_bw);
|
|
err = 0;
|
|
}
|
|
raw_spin_unlock(&dl_b->lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
extern void init_dl_bw(struct dl_bw *dl_b);
|
|
|
|
/*
|
|
* wake_up_new_task - wake up a newly created task for the first time.
|
|
*
|
|
* This function will do some initial scheduler statistics housekeeping
|
|
* that must be done for every newly created context, then puts the task
|
|
* on the runqueue and wakes it.
|
|
*/
|
|
void wake_up_new_task(struct task_struct *p)
|
|
{
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
|
|
p->state = TASK_RUNNING;
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Fork balancing, do it here and not earlier because:
|
|
* - cpus_allowed can change in the fork path
|
|
* - any previously selected cpu might disappear through hotplug
|
|
*
|
|
* Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
|
|
* as we're not fully set-up yet.
|
|
*/
|
|
__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
|
|
#endif
|
|
rq = __task_rq_lock(p, &rf);
|
|
post_init_entity_util_avg(&p->se);
|
|
|
|
activate_task(rq, p, 0);
|
|
p->on_rq = TASK_ON_RQ_QUEUED;
|
|
trace_sched_wakeup_new(p);
|
|
check_preempt_curr(rq, p, WF_FORK);
|
|
#ifdef CONFIG_SMP
|
|
if (p->sched_class->task_woken) {
|
|
/*
|
|
* Nothing relies on rq->lock after this, so its fine to
|
|
* drop it.
|
|
*/
|
|
lockdep_unpin_lock(&rq->lock, rf.cookie);
|
|
p->sched_class->task_woken(rq, p);
|
|
lockdep_repin_lock(&rq->lock, rf.cookie);
|
|
}
|
|
#endif
|
|
task_rq_unlock(rq, p, &rf);
|
|
}
|
|
|
|
#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
|
|
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
|
|
|
|
void preempt_notifier_inc(void)
|
|
{
|
|
static_key_slow_inc(&preempt_notifier_key);
|
|
}
|
|
EXPORT_SYMBOL_GPL(preempt_notifier_inc);
|
|
|
|
void preempt_notifier_dec(void)
|
|
{
|
|
static_key_slow_dec(&preempt_notifier_key);
|
|
}
|
|
EXPORT_SYMBOL_GPL(preempt_notifier_dec);
|
|
|
|
/**
|
|
* preempt_notifier_register - tell me when current is being preempted & rescheduled
|
|
* @notifier: notifier struct to register
|
|
*/
|
|
void preempt_notifier_register(struct preempt_notifier *notifier)
|
|
{
|
|
if (!static_key_false(&preempt_notifier_key))
|
|
WARN(1, "registering preempt_notifier while notifiers disabled\n");
|
|
|
|
hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
|
|
}
|
|
EXPORT_SYMBOL_GPL(preempt_notifier_register);
|
|
|
|
/**
|
|
* preempt_notifier_unregister - no longer interested in preemption notifications
|
|
* @notifier: notifier struct to unregister
|
|
*
|
|
* This is *not* safe to call from within a preemption notifier.
|
|
*/
|
|
void preempt_notifier_unregister(struct preempt_notifier *notifier)
|
|
{
|
|
hlist_del(¬ifier->link);
|
|
}
|
|
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
|
|
|
|
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
|
|
{
|
|
struct preempt_notifier *notifier;
|
|
|
|
hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
|
|
notifier->ops->sched_in(notifier, raw_smp_processor_id());
|
|
}
|
|
|
|
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
|
|
{
|
|
if (static_key_false(&preempt_notifier_key))
|
|
__fire_sched_in_preempt_notifiers(curr);
|
|
}
|
|
|
|
static void
|
|
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
|
|
struct task_struct *next)
|
|
{
|
|
struct preempt_notifier *notifier;
|
|
|
|
hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
|
|
notifier->ops->sched_out(notifier, next);
|
|
}
|
|
|
|
static __always_inline void
|
|
fire_sched_out_preempt_notifiers(struct task_struct *curr,
|
|
struct task_struct *next)
|
|
{
|
|
if (static_key_false(&preempt_notifier_key))
|
|
__fire_sched_out_preempt_notifiers(curr, next);
|
|
}
|
|
|
|
#else /* !CONFIG_PREEMPT_NOTIFIERS */
|
|
|
|
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
|
|
{
|
|
}
|
|
|
|
static inline void
|
|
fire_sched_out_preempt_notifiers(struct task_struct *curr,
|
|
struct task_struct *next)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_PREEMPT_NOTIFIERS */
|
|
|
|
/**
|
|
* prepare_task_switch - prepare to switch tasks
|
|
* @rq: the runqueue preparing to switch
|
|
* @prev: the current task that is being switched out
|
|
* @next: the task we are going to switch to.
|
|
*
|
|
* This is called with the rq lock held and interrupts off. It must
|
|
* be paired with a subsequent finish_task_switch after the context
|
|
* switch.
|
|
*
|
|
* prepare_task_switch sets up locking and calls architecture specific
|
|
* hooks.
|
|
*/
|
|
static inline void
|
|
prepare_task_switch(struct rq *rq, struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
sched_info_switch(rq, prev, next);
|
|
perf_event_task_sched_out(prev, next);
|
|
fire_sched_out_preempt_notifiers(prev, next);
|
|
prepare_lock_switch(rq, next);
|
|
prepare_arch_switch(next);
|
|
}
|
|
|
|
/**
|
|
* finish_task_switch - clean up after a task-switch
|
|
* @prev: the thread we just switched away from.
|
|
*
|
|
* finish_task_switch must be called after the context switch, paired
|
|
* with a prepare_task_switch call before the context switch.
|
|
* finish_task_switch will reconcile locking set up by prepare_task_switch,
|
|
* and do any other architecture-specific cleanup actions.
|
|
*
|
|
* Note that we may have delayed dropping an mm in context_switch(). If
|
|
* so, we finish that here outside of the runqueue lock. (Doing it
|
|
* with the lock held can cause deadlocks; see schedule() for
|
|
* details.)
|
|
*
|
|
* The context switch have flipped the stack from under us and restored the
|
|
* local variables which were saved when this task called schedule() in the
|
|
* past. prev == current is still correct but we need to recalculate this_rq
|
|
* because prev may have moved to another CPU.
|
|
*/
|
|
static struct rq *finish_task_switch(struct task_struct *prev)
|
|
__releases(rq->lock)
|
|
{
|
|
struct rq *rq = this_rq();
|
|
struct mm_struct *mm = rq->prev_mm;
|
|
long prev_state;
|
|
|
|
/*
|
|
* The previous task will have left us with a preempt_count of 2
|
|
* because it left us after:
|
|
*
|
|
* schedule()
|
|
* preempt_disable(); // 1
|
|
* __schedule()
|
|
* raw_spin_lock_irq(&rq->lock) // 2
|
|
*
|
|
* Also, see FORK_PREEMPT_COUNT.
|
|
*/
|
|
if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
|
|
"corrupted preempt_count: %s/%d/0x%x\n",
|
|
current->comm, current->pid, preempt_count()))
|
|
preempt_count_set(FORK_PREEMPT_COUNT);
|
|
|
|
rq->prev_mm = NULL;
|
|
|
|
/*
|
|
* A task struct has one reference for the use as "current".
|
|
* If a task dies, then it sets TASK_DEAD in tsk->state and calls
|
|
* schedule one last time. The schedule call will never return, and
|
|
* the scheduled task must drop that reference.
|
|
*
|
|
* We must observe prev->state before clearing prev->on_cpu (in
|
|
* finish_lock_switch), otherwise a concurrent wakeup can get prev
|
|
* running on another CPU and we could rave with its RUNNING -> DEAD
|
|
* transition, resulting in a double drop.
|
|
*/
|
|
prev_state = prev->state;
|
|
vtime_task_switch(prev);
|
|
perf_event_task_sched_in(prev, current);
|
|
finish_lock_switch(rq, prev);
|
|
finish_arch_post_lock_switch();
|
|
|
|
fire_sched_in_preempt_notifiers(current);
|
|
if (mm)
|
|
mmdrop(mm);
|
|
if (unlikely(prev_state == TASK_DEAD)) {
|
|
if (prev->sched_class->task_dead)
|
|
prev->sched_class->task_dead(prev);
|
|
|
|
/*
|
|
* Remove function-return probe instances associated with this
|
|
* task and put them back on the free list.
|
|
*/
|
|
kprobe_flush_task(prev);
|
|
|
|
/* Task is done with its stack. */
|
|
put_task_stack(prev);
|
|
|
|
put_task_struct(prev);
|
|
}
|
|
|
|
tick_nohz_task_switch();
|
|
return rq;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/* rq->lock is NOT held, but preemption is disabled */
|
|
static void __balance_callback(struct rq *rq)
|
|
{
|
|
struct callback_head *head, *next;
|
|
void (*func)(struct rq *rq);
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
head = rq->balance_callback;
|
|
rq->balance_callback = NULL;
|
|
while (head) {
|
|
func = (void (*)(struct rq *))head->func;
|
|
next = head->next;
|
|
head->next = NULL;
|
|
head = next;
|
|
|
|
func(rq);
|
|
}
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
static inline void balance_callback(struct rq *rq)
|
|
{
|
|
if (unlikely(rq->balance_callback))
|
|
__balance_callback(rq);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void balance_callback(struct rq *rq)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* schedule_tail - first thing a freshly forked thread must call.
|
|
* @prev: the thread we just switched away from.
|
|
*/
|
|
asmlinkage __visible void schedule_tail(struct task_struct *prev)
|
|
__releases(rq->lock)
|
|
{
|
|
struct rq *rq;
|
|
|
|
/*
|
|
* New tasks start with FORK_PREEMPT_COUNT, see there and
|
|
* finish_task_switch() for details.
|
|
*
|
|
* finish_task_switch() will drop rq->lock() and lower preempt_count
|
|
* and the preempt_enable() will end up enabling preemption (on
|
|
* PREEMPT_COUNT kernels).
|
|
*/
|
|
|
|
rq = finish_task_switch(prev);
|
|
balance_callback(rq);
|
|
preempt_enable();
|
|
|
|
if (current->set_child_tid)
|
|
put_user(task_pid_vnr(current), current->set_child_tid);
|
|
}
|
|
|
|
/*
|
|
* context_switch - switch to the new MM and the new thread's register state.
|
|
*/
|
|
static __always_inline struct rq *
|
|
context_switch(struct rq *rq, struct task_struct *prev,
|
|
struct task_struct *next, struct pin_cookie cookie)
|
|
{
|
|
struct mm_struct *mm, *oldmm;
|
|
|
|
prepare_task_switch(rq, prev, next);
|
|
|
|
mm = next->mm;
|
|
oldmm = prev->active_mm;
|
|
/*
|
|
* For paravirt, this is coupled with an exit in switch_to to
|
|
* combine the page table reload and the switch backend into
|
|
* one hypercall.
|
|
*/
|
|
arch_start_context_switch(prev);
|
|
|
|
if (!mm) {
|
|
next->active_mm = oldmm;
|
|
atomic_inc(&oldmm->mm_count);
|
|
enter_lazy_tlb(oldmm, next);
|
|
} else
|
|
switch_mm_irqs_off(oldmm, mm, next);
|
|
|
|
if (!prev->mm) {
|
|
prev->active_mm = NULL;
|
|
rq->prev_mm = oldmm;
|
|
}
|
|
/*
|
|
* Since the runqueue lock will be released by the next
|
|
* task (which is an invalid locking op but in the case
|
|
* of the scheduler it's an obvious special-case), so we
|
|
* do an early lockdep release here:
|
|
*/
|
|
lockdep_unpin_lock(&rq->lock, cookie);
|
|
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
|
|
|
|
/* Here we just switch the register state and the stack. */
|
|
switch_to(prev, next, prev);
|
|
barrier();
|
|
|
|
return finish_task_switch(prev);
|
|
}
|
|
|
|
/*
|
|
* nr_running and nr_context_switches:
|
|
*
|
|
* externally visible scheduler statistics: current number of runnable
|
|
* threads, total number of context switches performed since bootup.
|
|
*/
|
|
unsigned long nr_running(void)
|
|
{
|
|
unsigned long i, sum = 0;
|
|
|
|
for_each_online_cpu(i)
|
|
sum += cpu_rq(i)->nr_running;
|
|
|
|
return sum;
|
|
}
|
|
|
|
/*
|
|
* Check if only the current task is running on the cpu.
|
|
*
|
|
* Caution: this function does not check that the caller has disabled
|
|
* preemption, thus the result might have a time-of-check-to-time-of-use
|
|
* race. The caller is responsible to use it correctly, for example:
|
|
*
|
|
* - from a non-preemptable section (of course)
|
|
*
|
|
* - from a thread that is bound to a single CPU
|
|
*
|
|
* - in a loop with very short iterations (e.g. a polling loop)
|
|
*/
|
|
bool single_task_running(void)
|
|
{
|
|
return raw_rq()->nr_running == 1;
|
|
}
|
|
EXPORT_SYMBOL(single_task_running);
|
|
|
|
unsigned long long nr_context_switches(void)
|
|
{
|
|
int i;
|
|
unsigned long long sum = 0;
|
|
|
|
for_each_possible_cpu(i)
|
|
sum += cpu_rq(i)->nr_switches;
|
|
|
|
return sum;
|
|
}
|
|
|
|
unsigned long nr_iowait(void)
|
|
{
|
|
unsigned long i, sum = 0;
|
|
|
|
for_each_possible_cpu(i)
|
|
sum += atomic_read(&cpu_rq(i)->nr_iowait);
|
|
|
|
return sum;
|
|
}
|
|
|
|
unsigned long nr_iowait_cpu(int cpu)
|
|
{
|
|
struct rq *this = cpu_rq(cpu);
|
|
return atomic_read(&this->nr_iowait);
|
|
}
|
|
|
|
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
|
|
{
|
|
struct rq *rq = this_rq();
|
|
*nr_waiters = atomic_read(&rq->nr_iowait);
|
|
*load = rq->load.weight;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* sched_exec - execve() is a valuable balancing opportunity, because at
|
|
* this point the task has the smallest effective memory and cache footprint.
|
|
*/
|
|
void sched_exec(void)
|
|
{
|
|
struct task_struct *p = current;
|
|
unsigned long flags;
|
|
int dest_cpu;
|
|
|
|
raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
|
|
if (dest_cpu == smp_processor_id())
|
|
goto unlock;
|
|
|
|
if (likely(cpu_active(dest_cpu))) {
|
|
struct migration_arg arg = { p, dest_cpu };
|
|
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
|
|
return;
|
|
}
|
|
unlock:
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
}
|
|
|
|
#endif
|
|
|
|
DEFINE_PER_CPU(struct kernel_stat, kstat);
|
|
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
|
|
|
|
EXPORT_PER_CPU_SYMBOL(kstat);
|
|
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
|
|
|
|
/*
|
|
* The function fair_sched_class.update_curr accesses the struct curr
|
|
* and its field curr->exec_start; when called from task_sched_runtime(),
|
|
* we observe a high rate of cache misses in practice.
|
|
* Prefetching this data results in improved performance.
|
|
*/
|
|
static inline void prefetch_curr_exec_start(struct task_struct *p)
|
|
{
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
struct sched_entity *curr = (&p->se)->cfs_rq->curr;
|
|
#else
|
|
struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
|
|
#endif
|
|
prefetch(curr);
|
|
prefetch(&curr->exec_start);
|
|
}
|
|
|
|
/*
|
|
* Return accounted runtime for the task.
|
|
* In case the task is currently running, return the runtime plus current's
|
|
* pending runtime that have not been accounted yet.
|
|
*/
|
|
unsigned long long task_sched_runtime(struct task_struct *p)
|
|
{
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
u64 ns;
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
|
|
/*
|
|
* 64-bit doesn't need locks to atomically read a 64bit value.
|
|
* So we have a optimization chance when the task's delta_exec is 0.
|
|
* Reading ->on_cpu is racy, but this is ok.
|
|
*
|
|
* If we race with it leaving cpu, we'll take a lock. So we're correct.
|
|
* If we race with it entering cpu, unaccounted time is 0. This is
|
|
* indistinguishable from the read occurring a few cycles earlier.
|
|
* If we see ->on_cpu without ->on_rq, the task is leaving, and has
|
|
* been accounted, so we're correct here as well.
|
|
*/
|
|
if (!p->on_cpu || !task_on_rq_queued(p))
|
|
return p->se.sum_exec_runtime;
|
|
#endif
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
/*
|
|
* Must be ->curr _and_ ->on_rq. If dequeued, we would
|
|
* project cycles that may never be accounted to this
|
|
* thread, breaking clock_gettime().
|
|
*/
|
|
if (task_current(rq, p) && task_on_rq_queued(p)) {
|
|
prefetch_curr_exec_start(p);
|
|
update_rq_clock(rq);
|
|
p->sched_class->update_curr(rq);
|
|
}
|
|
ns = p->se.sum_exec_runtime;
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
return ns;
|
|
}
|
|
|
|
/*
|
|
* This function gets called by the timer code, with HZ frequency.
|
|
* We call it with interrupts disabled.
|
|
*/
|
|
void scheduler_tick(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct rq *rq = cpu_rq(cpu);
|
|
struct task_struct *curr = rq->curr;
|
|
|
|
sched_clock_tick();
|
|
|
|
raw_spin_lock(&rq->lock);
|
|
update_rq_clock(rq);
|
|
curr->sched_class->task_tick(rq, curr, 0);
|
|
cpu_load_update_active(rq);
|
|
calc_global_load_tick(rq);
|
|
raw_spin_unlock(&rq->lock);
|
|
|
|
perf_event_task_tick();
|
|
|
|
#ifdef CONFIG_SMP
|
|
rq->idle_balance = idle_cpu(cpu);
|
|
trigger_load_balance(rq);
|
|
#endif
|
|
rq_last_tick_reset(rq);
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
/**
|
|
* scheduler_tick_max_deferment
|
|
*
|
|
* Keep at least one tick per second when a single
|
|
* active task is running because the scheduler doesn't
|
|
* yet completely support full dynticks environment.
|
|
*
|
|
* This makes sure that uptime, CFS vruntime, load
|
|
* balancing, etc... continue to move forward, even
|
|
* with a very low granularity.
|
|
*
|
|
* Return: Maximum deferment in nanoseconds.
|
|
*/
|
|
u64 scheduler_tick_max_deferment(void)
|
|
{
|
|
struct rq *rq = this_rq();
|
|
unsigned long next, now = READ_ONCE(jiffies);
|
|
|
|
next = rq->last_sched_tick + HZ;
|
|
|
|
if (time_before_eq(next, now))
|
|
return 0;
|
|
|
|
return jiffies_to_nsecs(next - now);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
|
|
defined(CONFIG_PREEMPT_TRACER))
|
|
/*
|
|
* If the value passed in is equal to the current preempt count
|
|
* then we just disabled preemption. Start timing the latency.
|
|
*/
|
|
static inline void preempt_latency_start(int val)
|
|
{
|
|
if (preempt_count() == val) {
|
|
unsigned long ip = get_lock_parent_ip();
|
|
#ifdef CONFIG_DEBUG_PREEMPT
|
|
current->preempt_disable_ip = ip;
|
|
#endif
|
|
trace_preempt_off(CALLER_ADDR0, ip);
|
|
}
|
|
}
|
|
|
|
void preempt_count_add(int val)
|
|
{
|
|
#ifdef CONFIG_DEBUG_PREEMPT
|
|
/*
|
|
* Underflow?
|
|
*/
|
|
if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
|
|
return;
|
|
#endif
|
|
__preempt_count_add(val);
|
|
#ifdef CONFIG_DEBUG_PREEMPT
|
|
/*
|
|
* Spinlock count overflowing soon?
|
|
*/
|
|
DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
|
|
PREEMPT_MASK - 10);
|
|
#endif
|
|
preempt_latency_start(val);
|
|
}
|
|
EXPORT_SYMBOL(preempt_count_add);
|
|
NOKPROBE_SYMBOL(preempt_count_add);
|
|
|
|
/*
|
|
* If the value passed in equals to the current preempt count
|
|
* then we just enabled preemption. Stop timing the latency.
|
|
*/
|
|
static inline void preempt_latency_stop(int val)
|
|
{
|
|
if (preempt_count() == val)
|
|
trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
|
|
}
|
|
|
|
void preempt_count_sub(int val)
|
|
{
|
|
#ifdef CONFIG_DEBUG_PREEMPT
|
|
/*
|
|
* Underflow?
|
|
*/
|
|
if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
|
|
return;
|
|
/*
|
|
* Is the spinlock portion underflowing?
|
|
*/
|
|
if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
|
|
!(preempt_count() & PREEMPT_MASK)))
|
|
return;
|
|
#endif
|
|
|
|
preempt_latency_stop(val);
|
|
__preempt_count_sub(val);
|
|
}
|
|
EXPORT_SYMBOL(preempt_count_sub);
|
|
NOKPROBE_SYMBOL(preempt_count_sub);
|
|
|
|
#else
|
|
static inline void preempt_latency_start(int val) { }
|
|
static inline void preempt_latency_stop(int val) { }
|
|
#endif
|
|
|
|
/*
|
|
* Print scheduling while atomic bug:
|
|
*/
|
|
static noinline void __schedule_bug(struct task_struct *prev)
|
|
{
|
|
/* Save this before calling printk(), since that will clobber it */
|
|
unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
|
|
|
|
if (oops_in_progress)
|
|
return;
|
|
|
|
printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
|
|
prev->comm, prev->pid, preempt_count());
|
|
|
|
debug_show_held_locks(prev);
|
|
print_modules();
|
|
if (irqs_disabled())
|
|
print_irqtrace_events(prev);
|
|
if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
|
|
&& in_atomic_preempt_off()) {
|
|
pr_err("Preemption disabled at:");
|
|
print_ip_sym(preempt_disable_ip);
|
|
pr_cont("\n");
|
|
}
|
|
if (panic_on_warn)
|
|
panic("scheduling while atomic\n");
|
|
|
|
dump_stack();
|
|
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
|
|
}
|
|
|
|
/*
|
|
* Various schedule()-time debugging checks and statistics:
|
|
*/
|
|
static inline void schedule_debug(struct task_struct *prev)
|
|
{
|
|
#ifdef CONFIG_SCHED_STACK_END_CHECK
|
|
if (task_stack_end_corrupted(prev))
|
|
panic("corrupted stack end detected inside scheduler\n");
|
|
#endif
|
|
|
|
if (unlikely(in_atomic_preempt_off())) {
|
|
__schedule_bug(prev);
|
|
preempt_count_set(PREEMPT_DISABLED);
|
|
}
|
|
rcu_sleep_check();
|
|
|
|
profile_hit(SCHED_PROFILING, __builtin_return_address(0));
|
|
|
|
schedstat_inc(this_rq()->sched_count);
|
|
}
|
|
|
|
/*
|
|
* Pick up the highest-prio task:
|
|
*/
|
|
static inline struct task_struct *
|
|
pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
|
|
{
|
|
const struct sched_class *class = &fair_sched_class;
|
|
struct task_struct *p;
|
|
|
|
/*
|
|
* Optimization: we know that if all tasks are in
|
|
* the fair class we can call that function directly:
|
|
*/
|
|
if (likely(prev->sched_class == class &&
|
|
rq->nr_running == rq->cfs.h_nr_running)) {
|
|
p = fair_sched_class.pick_next_task(rq, prev, cookie);
|
|
if (unlikely(p == RETRY_TASK))
|
|
goto again;
|
|
|
|
/* assumes fair_sched_class->next == idle_sched_class */
|
|
if (unlikely(!p))
|
|
p = idle_sched_class.pick_next_task(rq, prev, cookie);
|
|
|
|
return p;
|
|
}
|
|
|
|
again:
|
|
for_each_class(class) {
|
|
p = class->pick_next_task(rq, prev, cookie);
|
|
if (p) {
|
|
if (unlikely(p == RETRY_TASK))
|
|
goto again;
|
|
return p;
|
|
}
|
|
}
|
|
|
|
BUG(); /* the idle class will always have a runnable task */
|
|
}
|
|
|
|
/*
|
|
* __schedule() is the main scheduler function.
|
|
*
|
|
* The main means of driving the scheduler and thus entering this function are:
|
|
*
|
|
* 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
|
|
*
|
|
* 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
|
|
* paths. For example, see arch/x86/entry_64.S.
|
|
*
|
|
* To drive preemption between tasks, the scheduler sets the flag in timer
|
|
* interrupt handler scheduler_tick().
|
|
*
|
|
* 3. Wakeups don't really cause entry into schedule(). They add a
|
|
* task to the run-queue and that's it.
|
|
*
|
|
* Now, if the new task added to the run-queue preempts the current
|
|
* task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
|
|
* called on the nearest possible occasion:
|
|
*
|
|
* - If the kernel is preemptible (CONFIG_PREEMPT=y):
|
|
*
|
|
* - in syscall or exception context, at the next outmost
|
|
* preempt_enable(). (this might be as soon as the wake_up()'s
|
|
* spin_unlock()!)
|
|
*
|
|
* - in IRQ context, return from interrupt-handler to
|
|
* preemptible context
|
|
*
|
|
* - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
|
|
* then at the next:
|
|
*
|
|
* - cond_resched() call
|
|
* - explicit schedule() call
|
|
* - return from syscall or exception to user-space
|
|
* - return from interrupt-handler to user-space
|
|
*
|
|
* WARNING: must be called with preemption disabled!
|
|
*/
|
|
static void __sched notrace __schedule(bool preempt)
|
|
{
|
|
struct task_struct *prev, *next;
|
|
unsigned long *switch_count;
|
|
struct pin_cookie cookie;
|
|
struct rq *rq;
|
|
int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
rq = cpu_rq(cpu);
|
|
prev = rq->curr;
|
|
|
|
schedule_debug(prev);
|
|
|
|
if (sched_feat(HRTICK))
|
|
hrtick_clear(rq);
|
|
|
|
local_irq_disable();
|
|
rcu_note_context_switch();
|
|
|
|
/*
|
|
* Make sure that signal_pending_state()->signal_pending() below
|
|
* can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
|
|
* done by the caller to avoid the race with signal_wake_up().
|
|
*/
|
|
smp_mb__before_spinlock();
|
|
raw_spin_lock(&rq->lock);
|
|
cookie = lockdep_pin_lock(&rq->lock);
|
|
|
|
rq->clock_skip_update <<= 1; /* promote REQ to ACT */
|
|
|
|
switch_count = &prev->nivcsw;
|
|
if (!preempt && prev->state) {
|
|
if (unlikely(signal_pending_state(prev->state, prev))) {
|
|
prev->state = TASK_RUNNING;
|
|
} else {
|
|
deactivate_task(rq, prev, DEQUEUE_SLEEP);
|
|
prev->on_rq = 0;
|
|
|
|
/*
|
|
* If a worker went to sleep, notify and ask workqueue
|
|
* whether it wants to wake up a task to maintain
|
|
* concurrency.
|
|
*/
|
|
if (prev->flags & PF_WQ_WORKER) {
|
|
struct task_struct *to_wakeup;
|
|
|
|
to_wakeup = wq_worker_sleeping(prev);
|
|
if (to_wakeup)
|
|
try_to_wake_up_local(to_wakeup, cookie);
|
|
}
|
|
}
|
|
switch_count = &prev->nvcsw;
|
|
}
|
|
|
|
if (task_on_rq_queued(prev))
|
|
update_rq_clock(rq);
|
|
|
|
next = pick_next_task(rq, prev, cookie);
|
|
clear_tsk_need_resched(prev);
|
|
clear_preempt_need_resched();
|
|
rq->clock_skip_update = 0;
|
|
|
|
if (likely(prev != next)) {
|
|
rq->nr_switches++;
|
|
rq->curr = next;
|
|
++*switch_count;
|
|
|
|
trace_sched_switch(preempt, prev, next);
|
|
rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
|
|
} else {
|
|
lockdep_unpin_lock(&rq->lock, cookie);
|
|
raw_spin_unlock_irq(&rq->lock);
|
|
}
|
|
|
|
balance_callback(rq);
|
|
}
|
|
|
|
void __noreturn do_task_dead(void)
|
|
{
|
|
/*
|
|
* The setting of TASK_RUNNING by try_to_wake_up() may be delayed
|
|
* when the following two conditions become true.
|
|
* - There is race condition of mmap_sem (It is acquired by
|
|
* exit_mm()), and
|
|
* - SMI occurs before setting TASK_RUNINNG.
|
|
* (or hypervisor of virtual machine switches to other guest)
|
|
* As a result, we may become TASK_RUNNING after becoming TASK_DEAD
|
|
*
|
|
* To avoid it, we have to wait for releasing tsk->pi_lock which
|
|
* is held by try_to_wake_up()
|
|
*/
|
|
smp_mb();
|
|
raw_spin_unlock_wait(¤t->pi_lock);
|
|
|
|
/* causes final put_task_struct in finish_task_switch(). */
|
|
__set_current_state(TASK_DEAD);
|
|
current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
|
|
__schedule(false);
|
|
BUG();
|
|
/* Avoid "noreturn function does return". */
|
|
for (;;)
|
|
cpu_relax(); /* For when BUG is null */
|
|
}
|
|
|
|
static inline void sched_submit_work(struct task_struct *tsk)
|
|
{
|
|
if (!tsk->state || tsk_is_pi_blocked(tsk))
|
|
return;
|
|
/*
|
|
* If we are going to sleep and we have plugged IO queued,
|
|
* make sure to submit it to avoid deadlocks.
|
|
*/
|
|
if (blk_needs_flush_plug(tsk))
|
|
blk_schedule_flush_plug(tsk);
|
|
}
|
|
|
|
asmlinkage __visible void __sched schedule(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
sched_submit_work(tsk);
|
|
do {
|
|
preempt_disable();
|
|
__schedule(false);
|
|
sched_preempt_enable_no_resched();
|
|
} while (need_resched());
|
|
}
|
|
EXPORT_SYMBOL(schedule);
|
|
|
|
#ifdef CONFIG_CONTEXT_TRACKING
|
|
asmlinkage __visible void __sched schedule_user(void)
|
|
{
|
|
/*
|
|
* If we come here after a random call to set_need_resched(),
|
|
* or we have been woken up remotely but the IPI has not yet arrived,
|
|
* we haven't yet exited the RCU idle mode. Do it here manually until
|
|
* we find a better solution.
|
|
*
|
|
* NB: There are buggy callers of this function. Ideally we
|
|
* should warn if prev_state != CONTEXT_USER, but that will trigger
|
|
* too frequently to make sense yet.
|
|
*/
|
|
enum ctx_state prev_state = exception_enter();
|
|
schedule();
|
|
exception_exit(prev_state);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* schedule_preempt_disabled - called with preemption disabled
|
|
*
|
|
* Returns with preemption disabled. Note: preempt_count must be 1
|
|
*/
|
|
void __sched schedule_preempt_disabled(void)
|
|
{
|
|
sched_preempt_enable_no_resched();
|
|
schedule();
|
|
preempt_disable();
|
|
}
|
|
|
|
static void __sched notrace preempt_schedule_common(void)
|
|
{
|
|
do {
|
|
/*
|
|
* Because the function tracer can trace preempt_count_sub()
|
|
* and it also uses preempt_enable/disable_notrace(), if
|
|
* NEED_RESCHED is set, the preempt_enable_notrace() called
|
|
* by the function tracer will call this function again and
|
|
* cause infinite recursion.
|
|
*
|
|
* Preemption must be disabled here before the function
|
|
* tracer can trace. Break up preempt_disable() into two
|
|
* calls. One to disable preemption without fear of being
|
|
* traced. The other to still record the preemption latency,
|
|
* which can also be traced by the function tracer.
|
|
*/
|
|
preempt_disable_notrace();
|
|
preempt_latency_start(1);
|
|
__schedule(true);
|
|
preempt_latency_stop(1);
|
|
preempt_enable_no_resched_notrace();
|
|
|
|
/*
|
|
* Check again in case we missed a preemption opportunity
|
|
* between schedule and now.
|
|
*/
|
|
} while (need_resched());
|
|
}
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
/*
|
|
* this is the entry point to schedule() from in-kernel preemption
|
|
* off of preempt_enable. Kernel preemptions off return from interrupt
|
|
* occur there and call schedule directly.
|
|
*/
|
|
asmlinkage __visible void __sched notrace preempt_schedule(void)
|
|
{
|
|
/*
|
|
* If there is a non-zero preempt_count or interrupts are disabled,
|
|
* we do not want to preempt the current task. Just return..
|
|
*/
|
|
if (likely(!preemptible()))
|
|
return;
|
|
|
|
preempt_schedule_common();
|
|
}
|
|
NOKPROBE_SYMBOL(preempt_schedule);
|
|
EXPORT_SYMBOL(preempt_schedule);
|
|
|
|
/**
|
|
* preempt_schedule_notrace - preempt_schedule called by tracing
|
|
*
|
|
* The tracing infrastructure uses preempt_enable_notrace to prevent
|
|
* recursion and tracing preempt enabling caused by the tracing
|
|
* infrastructure itself. But as tracing can happen in areas coming
|
|
* from userspace or just about to enter userspace, a preempt enable
|
|
* can occur before user_exit() is called. This will cause the scheduler
|
|
* to be called when the system is still in usermode.
|
|
*
|
|
* To prevent this, the preempt_enable_notrace will use this function
|
|
* instead of preempt_schedule() to exit user context if needed before
|
|
* calling the scheduler.
|
|
*/
|
|
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
|
|
{
|
|
enum ctx_state prev_ctx;
|
|
|
|
if (likely(!preemptible()))
|
|
return;
|
|
|
|
do {
|
|
/*
|
|
* Because the function tracer can trace preempt_count_sub()
|
|
* and it also uses preempt_enable/disable_notrace(), if
|
|
* NEED_RESCHED is set, the preempt_enable_notrace() called
|
|
* by the function tracer will call this function again and
|
|
* cause infinite recursion.
|
|
*
|
|
* Preemption must be disabled here before the function
|
|
* tracer can trace. Break up preempt_disable() into two
|
|
* calls. One to disable preemption without fear of being
|
|
* traced. The other to still record the preemption latency,
|
|
* which can also be traced by the function tracer.
|
|
*/
|
|
preempt_disable_notrace();
|
|
preempt_latency_start(1);
|
|
/*
|
|
* Needs preempt disabled in case user_exit() is traced
|
|
* and the tracer calls preempt_enable_notrace() causing
|
|
* an infinite recursion.
|
|
*/
|
|
prev_ctx = exception_enter();
|
|
__schedule(true);
|
|
exception_exit(prev_ctx);
|
|
|
|
preempt_latency_stop(1);
|
|
preempt_enable_no_resched_notrace();
|
|
} while (need_resched());
|
|
}
|
|
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
|
|
|
|
#endif /* CONFIG_PREEMPT */
|
|
|
|
/*
|
|
* this is the entry point to schedule() from kernel preemption
|
|
* off of irq context.
|
|
* Note, that this is called and return with irqs disabled. This will
|
|
* protect us against recursive calling from irq.
|
|
*/
|
|
asmlinkage __visible void __sched preempt_schedule_irq(void)
|
|
{
|
|
enum ctx_state prev_state;
|
|
|
|
/* Catch callers which need to be fixed */
|
|
BUG_ON(preempt_count() || !irqs_disabled());
|
|
|
|
prev_state = exception_enter();
|
|
|
|
do {
|
|
preempt_disable();
|
|
local_irq_enable();
|
|
__schedule(true);
|
|
local_irq_disable();
|
|
sched_preempt_enable_no_resched();
|
|
} while (need_resched());
|
|
|
|
exception_exit(prev_state);
|
|
}
|
|
|
|
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
|
|
void *key)
|
|
{
|
|
return try_to_wake_up(curr->private, mode, wake_flags);
|
|
}
|
|
EXPORT_SYMBOL(default_wake_function);
|
|
|
|
#ifdef CONFIG_RT_MUTEXES
|
|
|
|
/*
|
|
* rt_mutex_setprio - set the current priority of a task
|
|
* @p: task
|
|
* @prio: prio value (kernel-internal form)
|
|
*
|
|
* This function changes the 'effective' priority of a task. It does
|
|
* not touch ->normal_prio like __setscheduler().
|
|
*
|
|
* Used by the rt_mutex code to implement priority inheritance
|
|
* logic. Call site only calls if the priority of the task changed.
|
|
*/
|
|
void rt_mutex_setprio(struct task_struct *p, int prio)
|
|
{
|
|
int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
|
|
const struct sched_class *prev_class;
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
BUG_ON(prio > MAX_PRIO);
|
|
|
|
rq = __task_rq_lock(p, &rf);
|
|
|
|
/*
|
|
* Idle task boosting is a nono in general. There is one
|
|
* exception, when PREEMPT_RT and NOHZ is active:
|
|
*
|
|
* The idle task calls get_next_timer_interrupt() and holds
|
|
* the timer wheel base->lock on the CPU and another CPU wants
|
|
* to access the timer (probably to cancel it). We can safely
|
|
* ignore the boosting request, as the idle CPU runs this code
|
|
* with interrupts disabled and will complete the lock
|
|
* protected section without being interrupted. So there is no
|
|
* real need to boost.
|
|
*/
|
|
if (unlikely(p == rq->idle)) {
|
|
WARN_ON(p != rq->curr);
|
|
WARN_ON(p->pi_blocked_on);
|
|
goto out_unlock;
|
|
}
|
|
|
|
trace_sched_pi_setprio(p, prio);
|
|
oldprio = p->prio;
|
|
|
|
if (oldprio == prio)
|
|
queue_flag &= ~DEQUEUE_MOVE;
|
|
|
|
prev_class = p->sched_class;
|
|
queued = task_on_rq_queued(p);
|
|
running = task_current(rq, p);
|
|
if (queued)
|
|
dequeue_task(rq, p, queue_flag);
|
|
if (running)
|
|
put_prev_task(rq, p);
|
|
|
|
/*
|
|
* Boosting condition are:
|
|
* 1. -rt task is running and holds mutex A
|
|
* --> -dl task blocks on mutex A
|
|
*
|
|
* 2. -dl task is running and holds mutex A
|
|
* --> -dl task blocks on mutex A and could preempt the
|
|
* running task
|
|
*/
|
|
if (dl_prio(prio)) {
|
|
struct task_struct *pi_task = rt_mutex_get_top_task(p);
|
|
if (!dl_prio(p->normal_prio) ||
|
|
(pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
|
|
p->dl.dl_boosted = 1;
|
|
queue_flag |= ENQUEUE_REPLENISH;
|
|
} else
|
|
p->dl.dl_boosted = 0;
|
|
p->sched_class = &dl_sched_class;
|
|
} else if (rt_prio(prio)) {
|
|
if (dl_prio(oldprio))
|
|
p->dl.dl_boosted = 0;
|
|
if (oldprio < prio)
|
|
queue_flag |= ENQUEUE_HEAD;
|
|
p->sched_class = &rt_sched_class;
|
|
} else {
|
|
if (dl_prio(oldprio))
|
|
p->dl.dl_boosted = 0;
|
|
if (rt_prio(oldprio))
|
|
p->rt.timeout = 0;
|
|
p->sched_class = &fair_sched_class;
|
|
}
|
|
|
|
p->prio = prio;
|
|
|
|
if (queued)
|
|
enqueue_task(rq, p, queue_flag);
|
|
if (running)
|
|
set_curr_task(rq, p);
|
|
|
|
check_class_changed(rq, p, prev_class, oldprio);
|
|
out_unlock:
|
|
preempt_disable(); /* avoid rq from going away on us */
|
|
__task_rq_unlock(rq, &rf);
|
|
|
|
balance_callback(rq);
|
|
preempt_enable();
|
|
}
|
|
#endif
|
|
|
|
void set_user_nice(struct task_struct *p, long nice)
|
|
{
|
|
bool queued, running;
|
|
int old_prio, delta;
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
|
|
return;
|
|
/*
|
|
* We have to be careful, if called from sys_setpriority(),
|
|
* the task might be in the middle of scheduling on another CPU.
|
|
*/
|
|
rq = task_rq_lock(p, &rf);
|
|
/*
|
|
* The RT priorities are set via sched_setscheduler(), but we still
|
|
* allow the 'normal' nice value to be set - but as expected
|
|
* it wont have any effect on scheduling until the task is
|
|
* SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
|
|
*/
|
|
if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
|
|
p->static_prio = NICE_TO_PRIO(nice);
|
|
goto out_unlock;
|
|
}
|
|
queued = task_on_rq_queued(p);
|
|
running = task_current(rq, p);
|
|
if (queued)
|
|
dequeue_task(rq, p, DEQUEUE_SAVE);
|
|
if (running)
|
|
put_prev_task(rq, p);
|
|
|
|
p->static_prio = NICE_TO_PRIO(nice);
|
|
set_load_weight(p);
|
|
old_prio = p->prio;
|
|
p->prio = effective_prio(p);
|
|
delta = p->prio - old_prio;
|
|
|
|
if (queued) {
|
|
enqueue_task(rq, p, ENQUEUE_RESTORE);
|
|
/*
|
|
* If the task increased its priority or is running and
|
|
* lowered its priority, then reschedule its CPU:
|
|
*/
|
|
if (delta < 0 || (delta > 0 && task_running(rq, p)))
|
|
resched_curr(rq);
|
|
}
|
|
if (running)
|
|
set_curr_task(rq, p);
|
|
out_unlock:
|
|
task_rq_unlock(rq, p, &rf);
|
|
}
|
|
EXPORT_SYMBOL(set_user_nice);
|
|
|
|
/*
|
|
* can_nice - check if a task can reduce its nice value
|
|
* @p: task
|
|
* @nice: nice value
|
|
*/
|
|
int can_nice(const struct task_struct *p, const int nice)
|
|
{
|
|
/* convert nice value [19,-20] to rlimit style value [1,40] */
|
|
int nice_rlim = nice_to_rlimit(nice);
|
|
|
|
return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
|
|
capable(CAP_SYS_NICE));
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_NICE
|
|
|
|
/*
|
|
* sys_nice - change the priority of the current process.
|
|
* @increment: priority increment
|
|
*
|
|
* sys_setpriority is a more generic, but much slower function that
|
|
* does similar things.
|
|
*/
|
|
SYSCALL_DEFINE1(nice, int, increment)
|
|
{
|
|
long nice, retval;
|
|
|
|
/*
|
|
* Setpriority might change our priority at the same moment.
|
|
* We don't have to worry. Conceptually one call occurs first
|
|
* and we have a single winner.
|
|
*/
|
|
increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
|
|
nice = task_nice(current) + increment;
|
|
|
|
nice = clamp_val(nice, MIN_NICE, MAX_NICE);
|
|
if (increment < 0 && !can_nice(current, nice))
|
|
return -EPERM;
|
|
|
|
retval = security_task_setnice(current, nice);
|
|
if (retval)
|
|
return retval;
|
|
|
|
set_user_nice(current, nice);
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* task_prio - return the priority value of a given task.
|
|
* @p: the task in question.
|
|
*
|
|
* Return: The priority value as seen by users in /proc.
|
|
* RT tasks are offset by -200. Normal tasks are centered
|
|
* around 0, value goes from -16 to +15.
|
|
*/
|
|
int task_prio(const struct task_struct *p)
|
|
{
|
|
return p->prio - MAX_RT_PRIO;
|
|
}
|
|
|
|
/**
|
|
* idle_cpu - is a given cpu idle currently?
|
|
* @cpu: the processor in question.
|
|
*
|
|
* Return: 1 if the CPU is currently idle. 0 otherwise.
|
|
*/
|
|
int idle_cpu(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
if (rq->curr != rq->idle)
|
|
return 0;
|
|
|
|
if (rq->nr_running)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (!llist_empty(&rq->wake_list))
|
|
return 0;
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* idle_task - return the idle task for a given cpu.
|
|
* @cpu: the processor in question.
|
|
*
|
|
* Return: The idle task for the cpu @cpu.
|
|
*/
|
|
struct task_struct *idle_task(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->idle;
|
|
}
|
|
|
|
/**
|
|
* find_process_by_pid - find a process with a matching PID value.
|
|
* @pid: the pid in question.
|
|
*
|
|
* The task of @pid, if found. %NULL otherwise.
|
|
*/
|
|
static struct task_struct *find_process_by_pid(pid_t pid)
|
|
{
|
|
return pid ? find_task_by_vpid(pid) : current;
|
|
}
|
|
|
|
/*
|
|
* This function initializes the sched_dl_entity of a newly becoming
|
|
* SCHED_DEADLINE task.
|
|
*
|
|
* Only the static values are considered here, the actual runtime and the
|
|
* absolute deadline will be properly calculated when the task is enqueued
|
|
* for the first time with its new policy.
|
|
*/
|
|
static void
|
|
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
|
|
{
|
|
struct sched_dl_entity *dl_se = &p->dl;
|
|
|
|
dl_se->dl_runtime = attr->sched_runtime;
|
|
dl_se->dl_deadline = attr->sched_deadline;
|
|
dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
|
|
dl_se->flags = attr->sched_flags;
|
|
dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
|
|
|
|
/*
|
|
* Changing the parameters of a task is 'tricky' and we're not doing
|
|
* the correct thing -- also see task_dead_dl() and switched_from_dl().
|
|
*
|
|
* What we SHOULD do is delay the bandwidth release until the 0-lag
|
|
* point. This would include retaining the task_struct until that time
|
|
* and change dl_overflow() to not immediately decrement the current
|
|
* amount.
|
|
*
|
|
* Instead we retain the current runtime/deadline and let the new
|
|
* parameters take effect after the current reservation period lapses.
|
|
* This is safe (albeit pessimistic) because the 0-lag point is always
|
|
* before the current scheduling deadline.
|
|
*
|
|
* We can still have temporary overloads because we do not delay the
|
|
* change in bandwidth until that time; so admission control is
|
|
* not on the safe side. It does however guarantee tasks will never
|
|
* consume more than promised.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* sched_setparam() passes in -1 for its policy, to let the functions
|
|
* it calls know not to change it.
|
|
*/
|
|
#define SETPARAM_POLICY -1
|
|
|
|
static void __setscheduler_params(struct task_struct *p,
|
|
const struct sched_attr *attr)
|
|
{
|
|
int policy = attr->sched_policy;
|
|
|
|
if (policy == SETPARAM_POLICY)
|
|
policy = p->policy;
|
|
|
|
p->policy = policy;
|
|
|
|
if (dl_policy(policy))
|
|
__setparam_dl(p, attr);
|
|
else if (fair_policy(policy))
|
|
p->static_prio = NICE_TO_PRIO(attr->sched_nice);
|
|
|
|
/*
|
|
* __sched_setscheduler() ensures attr->sched_priority == 0 when
|
|
* !rt_policy. Always setting this ensures that things like
|
|
* getparam()/getattr() don't report silly values for !rt tasks.
|
|
*/
|
|
p->rt_priority = attr->sched_priority;
|
|
p->normal_prio = normal_prio(p);
|
|
set_load_weight(p);
|
|
}
|
|
|
|
/* Actually do priority change: must hold pi & rq lock. */
|
|
static void __setscheduler(struct rq *rq, struct task_struct *p,
|
|
const struct sched_attr *attr, bool keep_boost)
|
|
{
|
|
__setscheduler_params(p, attr);
|
|
|
|
/*
|
|
* Keep a potential priority boosting if called from
|
|
* sched_setscheduler().
|
|
*/
|
|
if (keep_boost)
|
|
p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
|
|
else
|
|
p->prio = normal_prio(p);
|
|
|
|
if (dl_prio(p->prio))
|
|
p->sched_class = &dl_sched_class;
|
|
else if (rt_prio(p->prio))
|
|
p->sched_class = &rt_sched_class;
|
|
else
|
|
p->sched_class = &fair_sched_class;
|
|
}
|
|
|
|
static void
|
|
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
|
|
{
|
|
struct sched_dl_entity *dl_se = &p->dl;
|
|
|
|
attr->sched_priority = p->rt_priority;
|
|
attr->sched_runtime = dl_se->dl_runtime;
|
|
attr->sched_deadline = dl_se->dl_deadline;
|
|
attr->sched_period = dl_se->dl_period;
|
|
attr->sched_flags = dl_se->flags;
|
|
}
|
|
|
|
/*
|
|
* This function validates the new parameters of a -deadline task.
|
|
* We ask for the deadline not being zero, and greater or equal
|
|
* than the runtime, as well as the period of being zero or
|
|
* greater than deadline. Furthermore, we have to be sure that
|
|
* user parameters are above the internal resolution of 1us (we
|
|
* check sched_runtime only since it is always the smaller one) and
|
|
* below 2^63 ns (we have to check both sched_deadline and
|
|
* sched_period, as the latter can be zero).
|
|
*/
|
|
static bool
|
|
__checkparam_dl(const struct sched_attr *attr)
|
|
{
|
|
/* deadline != 0 */
|
|
if (attr->sched_deadline == 0)
|
|
return false;
|
|
|
|
/*
|
|
* Since we truncate DL_SCALE bits, make sure we're at least
|
|
* that big.
|
|
*/
|
|
if (attr->sched_runtime < (1ULL << DL_SCALE))
|
|
return false;
|
|
|
|
/*
|
|
* Since we use the MSB for wrap-around and sign issues, make
|
|
* sure it's not set (mind that period can be equal to zero).
|
|
*/
|
|
if (attr->sched_deadline & (1ULL << 63) ||
|
|
attr->sched_period & (1ULL << 63))
|
|
return false;
|
|
|
|
/* runtime <= deadline <= period (if period != 0) */
|
|
if ((attr->sched_period != 0 &&
|
|
attr->sched_period < attr->sched_deadline) ||
|
|
attr->sched_deadline < attr->sched_runtime)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* check the target process has a UID that matches the current process's
|
|
*/
|
|
static bool check_same_owner(struct task_struct *p)
|
|
{
|
|
const struct cred *cred = current_cred(), *pcred;
|
|
bool match;
|
|
|
|
rcu_read_lock();
|
|
pcred = __task_cred(p);
|
|
match = (uid_eq(cred->euid, pcred->euid) ||
|
|
uid_eq(cred->euid, pcred->uid));
|
|
rcu_read_unlock();
|
|
return match;
|
|
}
|
|
|
|
static bool dl_param_changed(struct task_struct *p,
|
|
const struct sched_attr *attr)
|
|
{
|
|
struct sched_dl_entity *dl_se = &p->dl;
|
|
|
|
if (dl_se->dl_runtime != attr->sched_runtime ||
|
|
dl_se->dl_deadline != attr->sched_deadline ||
|
|
dl_se->dl_period != attr->sched_period ||
|
|
dl_se->flags != attr->sched_flags)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int __sched_setscheduler(struct task_struct *p,
|
|
const struct sched_attr *attr,
|
|
bool user, bool pi)
|
|
{
|
|
int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
|
|
MAX_RT_PRIO - 1 - attr->sched_priority;
|
|
int retval, oldprio, oldpolicy = -1, queued, running;
|
|
int new_effective_prio, policy = attr->sched_policy;
|
|
const struct sched_class *prev_class;
|
|
struct rq_flags rf;
|
|
int reset_on_fork;
|
|
int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
|
|
struct rq *rq;
|
|
|
|
/* may grab non-irq protected spin_locks */
|
|
BUG_ON(in_interrupt());
|
|
recheck:
|
|
/* double check policy once rq lock held */
|
|
if (policy < 0) {
|
|
reset_on_fork = p->sched_reset_on_fork;
|
|
policy = oldpolicy = p->policy;
|
|
} else {
|
|
reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
|
|
|
|
if (!valid_policy(policy))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Valid priorities for SCHED_FIFO and SCHED_RR are
|
|
* 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
|
|
* SCHED_BATCH and SCHED_IDLE is 0.
|
|
*/
|
|
if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
|
|
(!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
|
|
return -EINVAL;
|
|
if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
|
|
(rt_policy(policy) != (attr->sched_priority != 0)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Allow unprivileged RT tasks to decrease priority:
|
|
*/
|
|
if (user && !capable(CAP_SYS_NICE)) {
|
|
if (fair_policy(policy)) {
|
|
if (attr->sched_nice < task_nice(p) &&
|
|
!can_nice(p, attr->sched_nice))
|
|
return -EPERM;
|
|
}
|
|
|
|
if (rt_policy(policy)) {
|
|
unsigned long rlim_rtprio =
|
|
task_rlimit(p, RLIMIT_RTPRIO);
|
|
|
|
/* can't set/change the rt policy */
|
|
if (policy != p->policy && !rlim_rtprio)
|
|
return -EPERM;
|
|
|
|
/* can't increase priority */
|
|
if (attr->sched_priority > p->rt_priority &&
|
|
attr->sched_priority > rlim_rtprio)
|
|
return -EPERM;
|
|
}
|
|
|
|
/*
|
|
* Can't set/change SCHED_DEADLINE policy at all for now
|
|
* (safest behavior); in the future we would like to allow
|
|
* unprivileged DL tasks to increase their relative deadline
|
|
* or reduce their runtime (both ways reducing utilization)
|
|
*/
|
|
if (dl_policy(policy))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Treat SCHED_IDLE as nice 20. Only allow a switch to
|
|
* SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
|
|
*/
|
|
if (idle_policy(p->policy) && !idle_policy(policy)) {
|
|
if (!can_nice(p, task_nice(p)))
|
|
return -EPERM;
|
|
}
|
|
|
|
/* can't change other user's priorities */
|
|
if (!check_same_owner(p))
|
|
return -EPERM;
|
|
|
|
/* Normal users shall not reset the sched_reset_on_fork flag */
|
|
if (p->sched_reset_on_fork && !reset_on_fork)
|
|
return -EPERM;
|
|
}
|
|
|
|
if (user) {
|
|
retval = security_task_setscheduler(p);
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* make sure no PI-waiters arrive (or leave) while we are
|
|
* changing the priority of the task:
|
|
*
|
|
* To be able to change p->policy safely, the appropriate
|
|
* runqueue lock must be held.
|
|
*/
|
|
rq = task_rq_lock(p, &rf);
|
|
|
|
/*
|
|
* Changing the policy of the stop threads its a very bad idea
|
|
*/
|
|
if (p == rq->stop) {
|
|
task_rq_unlock(rq, p, &rf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If not changing anything there's no need to proceed further,
|
|
* but store a possible modification of reset_on_fork.
|
|
*/
|
|
if (unlikely(policy == p->policy)) {
|
|
if (fair_policy(policy) && attr->sched_nice != task_nice(p))
|
|
goto change;
|
|
if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
|
|
goto change;
|
|
if (dl_policy(policy) && dl_param_changed(p, attr))
|
|
goto change;
|
|
|
|
p->sched_reset_on_fork = reset_on_fork;
|
|
task_rq_unlock(rq, p, &rf);
|
|
return 0;
|
|
}
|
|
change:
|
|
|
|
if (user) {
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Do not allow realtime tasks into groups that have no runtime
|
|
* assigned.
|
|
*/
|
|
if (rt_bandwidth_enabled() && rt_policy(policy) &&
|
|
task_group(p)->rt_bandwidth.rt_runtime == 0 &&
|
|
!task_group_is_autogroup(task_group(p))) {
|
|
task_rq_unlock(rq, p, &rf);
|
|
return -EPERM;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_SMP
|
|
if (dl_bandwidth_enabled() && dl_policy(policy)) {
|
|
cpumask_t *span = rq->rd->span;
|
|
|
|
/*
|
|
* Don't allow tasks with an affinity mask smaller than
|
|
* the entire root_domain to become SCHED_DEADLINE. We
|
|
* will also fail if there's no bandwidth available.
|
|
*/
|
|
if (!cpumask_subset(span, &p->cpus_allowed) ||
|
|
rq->rd->dl_bw.bw == 0) {
|
|
task_rq_unlock(rq, p, &rf);
|
|
return -EPERM;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* recheck policy now with rq lock held */
|
|
if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
|
|
policy = oldpolicy = -1;
|
|
task_rq_unlock(rq, p, &rf);
|
|
goto recheck;
|
|
}
|
|
|
|
/*
|
|
* If setscheduling to SCHED_DEADLINE (or changing the parameters
|
|
* of a SCHED_DEADLINE task) we need to check if enough bandwidth
|
|
* is available.
|
|
*/
|
|
if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
|
|
task_rq_unlock(rq, p, &rf);
|
|
return -EBUSY;
|
|
}
|
|
|
|
p->sched_reset_on_fork = reset_on_fork;
|
|
oldprio = p->prio;
|
|
|
|
if (pi) {
|
|
/*
|
|
* Take priority boosted tasks into account. If the new
|
|
* effective priority is unchanged, we just store the new
|
|
* normal parameters and do not touch the scheduler class and
|
|
* the runqueue. This will be done when the task deboost
|
|
* itself.
|
|
*/
|
|
new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
|
|
if (new_effective_prio == oldprio)
|
|
queue_flags &= ~DEQUEUE_MOVE;
|
|
}
|
|
|
|
queued = task_on_rq_queued(p);
|
|
running = task_current(rq, p);
|
|
if (queued)
|
|
dequeue_task(rq, p, queue_flags);
|
|
if (running)
|
|
put_prev_task(rq, p);
|
|
|
|
prev_class = p->sched_class;
|
|
__setscheduler(rq, p, attr, pi);
|
|
|
|
if (queued) {
|
|
/*
|
|
* We enqueue to tail when the priority of a task is
|
|
* increased (user space view).
|
|
*/
|
|
if (oldprio < p->prio)
|
|
queue_flags |= ENQUEUE_HEAD;
|
|
|
|
enqueue_task(rq, p, queue_flags);
|
|
}
|
|
if (running)
|
|
set_curr_task(rq, p);
|
|
|
|
check_class_changed(rq, p, prev_class, oldprio);
|
|
preempt_disable(); /* avoid rq from going away on us */
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
if (pi)
|
|
rt_mutex_adjust_pi(p);
|
|
|
|
/*
|
|
* Run balance callbacks after we've adjusted the PI chain.
|
|
*/
|
|
balance_callback(rq);
|
|
preempt_enable();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _sched_setscheduler(struct task_struct *p, int policy,
|
|
const struct sched_param *param, bool check)
|
|
{
|
|
struct sched_attr attr = {
|
|
.sched_policy = policy,
|
|
.sched_priority = param->sched_priority,
|
|
.sched_nice = PRIO_TO_NICE(p->static_prio),
|
|
};
|
|
|
|
/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
|
|
if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
|
|
attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
|
|
policy &= ~SCHED_RESET_ON_FORK;
|
|
attr.sched_policy = policy;
|
|
}
|
|
|
|
return __sched_setscheduler(p, &attr, check, true);
|
|
}
|
|
/**
|
|
* sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
|
|
* @p: the task in question.
|
|
* @policy: new policy.
|
|
* @param: structure containing the new RT priority.
|
|
*
|
|
* Return: 0 on success. An error code otherwise.
|
|
*
|
|
* NOTE that the task may be already dead.
|
|
*/
|
|
int sched_setscheduler(struct task_struct *p, int policy,
|
|
const struct sched_param *param)
|
|
{
|
|
return _sched_setscheduler(p, policy, param, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sched_setscheduler);
|
|
|
|
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
|
|
{
|
|
return __sched_setscheduler(p, attr, true, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sched_setattr);
|
|
|
|
/**
|
|
* sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
|
|
* @p: the task in question.
|
|
* @policy: new policy.
|
|
* @param: structure containing the new RT priority.
|
|
*
|
|
* Just like sched_setscheduler, only don't bother checking if the
|
|
* current context has permission. For example, this is needed in
|
|
* stop_machine(): we create temporary high priority worker threads,
|
|
* but our caller might not have that capability.
|
|
*
|
|
* Return: 0 on success. An error code otherwise.
|
|
*/
|
|
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
|
|
const struct sched_param *param)
|
|
{
|
|
return _sched_setscheduler(p, policy, param, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
|
|
|
|
static int
|
|
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
|
|
{
|
|
struct sched_param lparam;
|
|
struct task_struct *p;
|
|
int retval;
|
|
|
|
if (!param || pid < 0)
|
|
return -EINVAL;
|
|
if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
|
|
return -EFAULT;
|
|
|
|
rcu_read_lock();
|
|
retval = -ESRCH;
|
|
p = find_process_by_pid(pid);
|
|
if (p != NULL)
|
|
retval = sched_setscheduler(p, policy, &lparam);
|
|
rcu_read_unlock();
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Mimics kernel/events/core.c perf_copy_attr().
|
|
*/
|
|
static int sched_copy_attr(struct sched_attr __user *uattr,
|
|
struct sched_attr *attr)
|
|
{
|
|
u32 size;
|
|
int ret;
|
|
|
|
if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* zero the full structure, so that a short copy will be nice.
|
|
*/
|
|
memset(attr, 0, sizeof(*attr));
|
|
|
|
ret = get_user(size, &uattr->size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (size > PAGE_SIZE) /* silly large */
|
|
goto err_size;
|
|
|
|
if (!size) /* abi compat */
|
|
size = SCHED_ATTR_SIZE_VER0;
|
|
|
|
if (size < SCHED_ATTR_SIZE_VER0)
|
|
goto err_size;
|
|
|
|
/*
|
|
* If we're handed a bigger struct than we know of,
|
|
* ensure all the unknown bits are 0 - i.e. new
|
|
* user-space does not rely on any kernel feature
|
|
* extensions we dont know about yet.
|
|
*/
|
|
if (size > sizeof(*attr)) {
|
|
unsigned char __user *addr;
|
|
unsigned char __user *end;
|
|
unsigned char val;
|
|
|
|
addr = (void __user *)uattr + sizeof(*attr);
|
|
end = (void __user *)uattr + size;
|
|
|
|
for (; addr < end; addr++) {
|
|
ret = get_user(val, addr);
|
|
if (ret)
|
|
return ret;
|
|
if (val)
|
|
goto err_size;
|
|
}
|
|
size = sizeof(*attr);
|
|
}
|
|
|
|
ret = copy_from_user(attr, uattr, size);
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* XXX: do we want to be lenient like existing syscalls; or do we want
|
|
* to be strict and return an error on out-of-bounds values?
|
|
*/
|
|
attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
|
|
|
|
return 0;
|
|
|
|
err_size:
|
|
put_user(sizeof(*attr), &uattr->size);
|
|
return -E2BIG;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_setscheduler - set/change the scheduler policy and RT priority
|
|
* @pid: the pid in question.
|
|
* @policy: new policy.
|
|
* @param: structure containing the new RT priority.
|
|
*
|
|
* Return: 0 on success. An error code otherwise.
|
|
*/
|
|
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
|
|
struct sched_param __user *, param)
|
|
{
|
|
/* negative values for policy are not valid */
|
|
if (policy < 0)
|
|
return -EINVAL;
|
|
|
|
return do_sched_setscheduler(pid, policy, param);
|
|
}
|
|
|
|
/**
|
|
* sys_sched_setparam - set/change the RT priority of a thread
|
|
* @pid: the pid in question.
|
|
* @param: structure containing the new RT priority.
|
|
*
|
|
* Return: 0 on success. An error code otherwise.
|
|
*/
|
|
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
|
|
{
|
|
return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
|
|
}
|
|
|
|
/**
|
|
* sys_sched_setattr - same as above, but with extended sched_attr
|
|
* @pid: the pid in question.
|
|
* @uattr: structure containing the extended parameters.
|
|
* @flags: for future extension.
|
|
*/
|
|
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
|
|
unsigned int, flags)
|
|
{
|
|
struct sched_attr attr;
|
|
struct task_struct *p;
|
|
int retval;
|
|
|
|
if (!uattr || pid < 0 || flags)
|
|
return -EINVAL;
|
|
|
|
retval = sched_copy_attr(uattr, &attr);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if ((int)attr.sched_policy < 0)
|
|
return -EINVAL;
|
|
|
|
rcu_read_lock();
|
|
retval = -ESRCH;
|
|
p = find_process_by_pid(pid);
|
|
if (p != NULL)
|
|
retval = sched_setattr(p, &attr);
|
|
rcu_read_unlock();
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_getscheduler - get the policy (scheduling class) of a thread
|
|
* @pid: the pid in question.
|
|
*
|
|
* Return: On success, the policy of the thread. Otherwise, a negative error
|
|
* code.
|
|
*/
|
|
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
|
|
{
|
|
struct task_struct *p;
|
|
int retval;
|
|
|
|
if (pid < 0)
|
|
return -EINVAL;
|
|
|
|
retval = -ESRCH;
|
|
rcu_read_lock();
|
|
p = find_process_by_pid(pid);
|
|
if (p) {
|
|
retval = security_task_getscheduler(p);
|
|
if (!retval)
|
|
retval = p->policy
|
|
| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
|
|
}
|
|
rcu_read_unlock();
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_getparam - get the RT priority of a thread
|
|
* @pid: the pid in question.
|
|
* @param: structure containing the RT priority.
|
|
*
|
|
* Return: On success, 0 and the RT priority is in @param. Otherwise, an error
|
|
* code.
|
|
*/
|
|
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
|
|
{
|
|
struct sched_param lp = { .sched_priority = 0 };
|
|
struct task_struct *p;
|
|
int retval;
|
|
|
|
if (!param || pid < 0)
|
|
return -EINVAL;
|
|
|
|
rcu_read_lock();
|
|
p = find_process_by_pid(pid);
|
|
retval = -ESRCH;
|
|
if (!p)
|
|
goto out_unlock;
|
|
|
|
retval = security_task_getscheduler(p);
|
|
if (retval)
|
|
goto out_unlock;
|
|
|
|
if (task_has_rt_policy(p))
|
|
lp.sched_priority = p->rt_priority;
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* This one might sleep, we cannot do it with a spinlock held ...
|
|
*/
|
|
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
|
|
|
|
return retval;
|
|
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
return retval;
|
|
}
|
|
|
|
static int sched_read_attr(struct sched_attr __user *uattr,
|
|
struct sched_attr *attr,
|
|
unsigned int usize)
|
|
{
|
|
int ret;
|
|
|
|
if (!access_ok(VERIFY_WRITE, uattr, usize))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* If we're handed a smaller struct than we know of,
|
|
* ensure all the unknown bits are 0 - i.e. old
|
|
* user-space does not get uncomplete information.
|
|
*/
|
|
if (usize < sizeof(*attr)) {
|
|
unsigned char *addr;
|
|
unsigned char *end;
|
|
|
|
addr = (void *)attr + usize;
|
|
end = (void *)attr + sizeof(*attr);
|
|
|
|
for (; addr < end; addr++) {
|
|
if (*addr)
|
|
return -EFBIG;
|
|
}
|
|
|
|
attr->size = usize;
|
|
}
|
|
|
|
ret = copy_to_user(uattr, attr, attr->size);
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_getattr - similar to sched_getparam, but with sched_attr
|
|
* @pid: the pid in question.
|
|
* @uattr: structure containing the extended parameters.
|
|
* @size: sizeof(attr) for fwd/bwd comp.
|
|
* @flags: for future extension.
|
|
*/
|
|
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
|
|
unsigned int, size, unsigned int, flags)
|
|
{
|
|
struct sched_attr attr = {
|
|
.size = sizeof(struct sched_attr),
|
|
};
|
|
struct task_struct *p;
|
|
int retval;
|
|
|
|
if (!uattr || pid < 0 || size > PAGE_SIZE ||
|
|
size < SCHED_ATTR_SIZE_VER0 || flags)
|
|
return -EINVAL;
|
|
|
|
rcu_read_lock();
|
|
p = find_process_by_pid(pid);
|
|
retval = -ESRCH;
|
|
if (!p)
|
|
goto out_unlock;
|
|
|
|
retval = security_task_getscheduler(p);
|
|
if (retval)
|
|
goto out_unlock;
|
|
|
|
attr.sched_policy = p->policy;
|
|
if (p->sched_reset_on_fork)
|
|
attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
|
|
if (task_has_dl_policy(p))
|
|
__getparam_dl(p, &attr);
|
|
else if (task_has_rt_policy(p))
|
|
attr.sched_priority = p->rt_priority;
|
|
else
|
|
attr.sched_nice = task_nice(p);
|
|
|
|
rcu_read_unlock();
|
|
|
|
retval = sched_read_attr(uattr, &attr, size);
|
|
return retval;
|
|
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
return retval;
|
|
}
|
|
|
|
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
|
|
{
|
|
cpumask_var_t cpus_allowed, new_mask;
|
|
struct task_struct *p;
|
|
int retval;
|
|
|
|
rcu_read_lock();
|
|
|
|
p = find_process_by_pid(pid);
|
|
if (!p) {
|
|
rcu_read_unlock();
|
|
return -ESRCH;
|
|
}
|
|
|
|
/* Prevent p going away */
|
|
get_task_struct(p);
|
|
rcu_read_unlock();
|
|
|
|
if (p->flags & PF_NO_SETAFFINITY) {
|
|
retval = -EINVAL;
|
|
goto out_put_task;
|
|
}
|
|
if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
|
|
retval = -ENOMEM;
|
|
goto out_put_task;
|
|
}
|
|
if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
|
|
retval = -ENOMEM;
|
|
goto out_free_cpus_allowed;
|
|
}
|
|
retval = -EPERM;
|
|
if (!check_same_owner(p)) {
|
|
rcu_read_lock();
|
|
if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
|
|
rcu_read_unlock();
|
|
goto out_free_new_mask;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
retval = security_task_setscheduler(p);
|
|
if (retval)
|
|
goto out_free_new_mask;
|
|
|
|
|
|
cpuset_cpus_allowed(p, cpus_allowed);
|
|
cpumask_and(new_mask, in_mask, cpus_allowed);
|
|
|
|
/*
|
|
* Since bandwidth control happens on root_domain basis,
|
|
* if admission test is enabled, we only admit -deadline
|
|
* tasks allowed to run on all the CPUs in the task's
|
|
* root_domain.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
|
|
rcu_read_lock();
|
|
if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
|
|
retval = -EBUSY;
|
|
rcu_read_unlock();
|
|
goto out_free_new_mask;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
again:
|
|
retval = __set_cpus_allowed_ptr(p, new_mask, true);
|
|
|
|
if (!retval) {
|
|
cpuset_cpus_allowed(p, cpus_allowed);
|
|
if (!cpumask_subset(new_mask, cpus_allowed)) {
|
|
/*
|
|
* We must have raced with a concurrent cpuset
|
|
* update. Just reset the cpus_allowed to the
|
|
* cpuset's cpus_allowed
|
|
*/
|
|
cpumask_copy(new_mask, cpus_allowed);
|
|
goto again;
|
|
}
|
|
}
|
|
out_free_new_mask:
|
|
free_cpumask_var(new_mask);
|
|
out_free_cpus_allowed:
|
|
free_cpumask_var(cpus_allowed);
|
|
out_put_task:
|
|
put_task_struct(p);
|
|
return retval;
|
|
}
|
|
|
|
static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
|
|
struct cpumask *new_mask)
|
|
{
|
|
if (len < cpumask_size())
|
|
cpumask_clear(new_mask);
|
|
else if (len > cpumask_size())
|
|
len = cpumask_size();
|
|
|
|
return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_setaffinity - set the cpu affinity of a process
|
|
* @pid: pid of the process
|
|
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
* @user_mask_ptr: user-space pointer to the new cpu mask
|
|
*
|
|
* Return: 0 on success. An error code otherwise.
|
|
*/
|
|
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
|
|
unsigned long __user *, user_mask_ptr)
|
|
{
|
|
cpumask_var_t new_mask;
|
|
int retval;
|
|
|
|
if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
|
|
if (retval == 0)
|
|
retval = sched_setaffinity(pid, new_mask);
|
|
free_cpumask_var(new_mask);
|
|
return retval;
|
|
}
|
|
|
|
long sched_getaffinity(pid_t pid, struct cpumask *mask)
|
|
{
|
|
struct task_struct *p;
|
|
unsigned long flags;
|
|
int retval;
|
|
|
|
rcu_read_lock();
|
|
|
|
retval = -ESRCH;
|
|
p = find_process_by_pid(pid);
|
|
if (!p)
|
|
goto out_unlock;
|
|
|
|
retval = security_task_getscheduler(p);
|
|
if (retval)
|
|
goto out_unlock;
|
|
|
|
raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_getaffinity - get the cpu affinity of a process
|
|
* @pid: pid of the process
|
|
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
* @user_mask_ptr: user-space pointer to hold the current cpu mask
|
|
*
|
|
* Return: size of CPU mask copied to user_mask_ptr on success. An
|
|
* error code otherwise.
|
|
*/
|
|
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
|
|
unsigned long __user *, user_mask_ptr)
|
|
{
|
|
int ret;
|
|
cpumask_var_t mask;
|
|
|
|
if ((len * BITS_PER_BYTE) < nr_cpu_ids)
|
|
return -EINVAL;
|
|
if (len & (sizeof(unsigned long)-1))
|
|
return -EINVAL;
|
|
|
|
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
ret = sched_getaffinity(pid, mask);
|
|
if (ret == 0) {
|
|
size_t retlen = min_t(size_t, len, cpumask_size());
|
|
|
|
if (copy_to_user(user_mask_ptr, mask, retlen))
|
|
ret = -EFAULT;
|
|
else
|
|
ret = retlen;
|
|
}
|
|
free_cpumask_var(mask);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_yield - yield the current processor to other threads.
|
|
*
|
|
* This function yields the current CPU to other tasks. If there are no
|
|
* other threads running on this CPU then this function will return.
|
|
*
|
|
* Return: 0.
|
|
*/
|
|
SYSCALL_DEFINE0(sched_yield)
|
|
{
|
|
struct rq *rq = this_rq_lock();
|
|
|
|
schedstat_inc(rq->yld_count);
|
|
current->sched_class->yield_task(rq);
|
|
|
|
/*
|
|
* Since we are going to call schedule() anyway, there's
|
|
* no need to preempt or enable interrupts:
|
|
*/
|
|
__release(rq->lock);
|
|
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
|
|
do_raw_spin_unlock(&rq->lock);
|
|
sched_preempt_enable_no_resched();
|
|
|
|
schedule();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_PREEMPT
|
|
int __sched _cond_resched(void)
|
|
{
|
|
if (should_resched(0)) {
|
|
preempt_schedule_common();
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(_cond_resched);
|
|
#endif
|
|
|
|
/*
|
|
* __cond_resched_lock() - if a reschedule is pending, drop the given lock,
|
|
* call schedule, and on return reacquire the lock.
|
|
*
|
|
* This works OK both with and without CONFIG_PREEMPT. We do strange low-level
|
|
* operations here to prevent schedule() from being called twice (once via
|
|
* spin_unlock(), once by hand).
|
|
*/
|
|
int __cond_resched_lock(spinlock_t *lock)
|
|
{
|
|
int resched = should_resched(PREEMPT_LOCK_OFFSET);
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(lock);
|
|
|
|
if (spin_needbreak(lock) || resched) {
|
|
spin_unlock(lock);
|
|
if (resched)
|
|
preempt_schedule_common();
|
|
else
|
|
cpu_relax();
|
|
ret = 1;
|
|
spin_lock(lock);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__cond_resched_lock);
|
|
|
|
int __sched __cond_resched_softirq(void)
|
|
{
|
|
BUG_ON(!in_softirq());
|
|
|
|
if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
|
|
local_bh_enable();
|
|
preempt_schedule_common();
|
|
local_bh_disable();
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(__cond_resched_softirq);
|
|
|
|
/**
|
|
* yield - yield the current processor to other threads.
|
|
*
|
|
* Do not ever use this function, there's a 99% chance you're doing it wrong.
|
|
*
|
|
* The scheduler is at all times free to pick the calling task as the most
|
|
* eligible task to run, if removing the yield() call from your code breaks
|
|
* it, its already broken.
|
|
*
|
|
* Typical broken usage is:
|
|
*
|
|
* while (!event)
|
|
* yield();
|
|
*
|
|
* where one assumes that yield() will let 'the other' process run that will
|
|
* make event true. If the current task is a SCHED_FIFO task that will never
|
|
* happen. Never use yield() as a progress guarantee!!
|
|
*
|
|
* If you want to use yield() to wait for something, use wait_event().
|
|
* If you want to use yield() to be 'nice' for others, use cond_resched().
|
|
* If you still want to use yield(), do not!
|
|
*/
|
|
void __sched yield(void)
|
|
{
|
|
set_current_state(TASK_RUNNING);
|
|
sys_sched_yield();
|
|
}
|
|
EXPORT_SYMBOL(yield);
|
|
|
|
/**
|
|
* yield_to - yield the current processor to another thread in
|
|
* your thread group, or accelerate that thread toward the
|
|
* processor it's on.
|
|
* @p: target task
|
|
* @preempt: whether task preemption is allowed or not
|
|
*
|
|
* It's the caller's job to ensure that the target task struct
|
|
* can't go away on us before we can do any checks.
|
|
*
|
|
* Return:
|
|
* true (>0) if we indeed boosted the target task.
|
|
* false (0) if we failed to boost the target.
|
|
* -ESRCH if there's no task to yield to.
|
|
*/
|
|
int __sched yield_to(struct task_struct *p, bool preempt)
|
|
{
|
|
struct task_struct *curr = current;
|
|
struct rq *rq, *p_rq;
|
|
unsigned long flags;
|
|
int yielded = 0;
|
|
|
|
local_irq_save(flags);
|
|
rq = this_rq();
|
|
|
|
again:
|
|
p_rq = task_rq(p);
|
|
/*
|
|
* If we're the only runnable task on the rq and target rq also
|
|
* has only one task, there's absolutely no point in yielding.
|
|
*/
|
|
if (rq->nr_running == 1 && p_rq->nr_running == 1) {
|
|
yielded = -ESRCH;
|
|
goto out_irq;
|
|
}
|
|
|
|
double_rq_lock(rq, p_rq);
|
|
if (task_rq(p) != p_rq) {
|
|
double_rq_unlock(rq, p_rq);
|
|
goto again;
|
|
}
|
|
|
|
if (!curr->sched_class->yield_to_task)
|
|
goto out_unlock;
|
|
|
|
if (curr->sched_class != p->sched_class)
|
|
goto out_unlock;
|
|
|
|
if (task_running(p_rq, p) || p->state)
|
|
goto out_unlock;
|
|
|
|
yielded = curr->sched_class->yield_to_task(rq, p, preempt);
|
|
if (yielded) {
|
|
schedstat_inc(rq->yld_count);
|
|
/*
|
|
* Make p's CPU reschedule; pick_next_entity takes care of
|
|
* fairness.
|
|
*/
|
|
if (preempt && rq != p_rq)
|
|
resched_curr(p_rq);
|
|
}
|
|
|
|
out_unlock:
|
|
double_rq_unlock(rq, p_rq);
|
|
out_irq:
|
|
local_irq_restore(flags);
|
|
|
|
if (yielded > 0)
|
|
schedule();
|
|
|
|
return yielded;
|
|
}
|
|
EXPORT_SYMBOL_GPL(yield_to);
|
|
|
|
/*
|
|
* This task is about to go to sleep on IO. Increment rq->nr_iowait so
|
|
* that process accounting knows that this is a task in IO wait state.
|
|
*/
|
|
long __sched io_schedule_timeout(long timeout)
|
|
{
|
|
int old_iowait = current->in_iowait;
|
|
struct rq *rq;
|
|
long ret;
|
|
|
|
current->in_iowait = 1;
|
|
blk_schedule_flush_plug(current);
|
|
|
|
delayacct_blkio_start();
|
|
rq = raw_rq();
|
|
atomic_inc(&rq->nr_iowait);
|
|
ret = schedule_timeout(timeout);
|
|
current->in_iowait = old_iowait;
|
|
atomic_dec(&rq->nr_iowait);
|
|
delayacct_blkio_end();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(io_schedule_timeout);
|
|
|
|
/**
|
|
* sys_sched_get_priority_max - return maximum RT priority.
|
|
* @policy: scheduling class.
|
|
*
|
|
* Return: On success, this syscall returns the maximum
|
|
* rt_priority that can be used by a given scheduling class.
|
|
* On failure, a negative error code is returned.
|
|
*/
|
|
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
switch (policy) {
|
|
case SCHED_FIFO:
|
|
case SCHED_RR:
|
|
ret = MAX_USER_RT_PRIO-1;
|
|
break;
|
|
case SCHED_DEADLINE:
|
|
case SCHED_NORMAL:
|
|
case SCHED_BATCH:
|
|
case SCHED_IDLE:
|
|
ret = 0;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_get_priority_min - return minimum RT priority.
|
|
* @policy: scheduling class.
|
|
*
|
|
* Return: On success, this syscall returns the minimum
|
|
* rt_priority that can be used by a given scheduling class.
|
|
* On failure, a negative error code is returned.
|
|
*/
|
|
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
switch (policy) {
|
|
case SCHED_FIFO:
|
|
case SCHED_RR:
|
|
ret = 1;
|
|
break;
|
|
case SCHED_DEADLINE:
|
|
case SCHED_NORMAL:
|
|
case SCHED_BATCH:
|
|
case SCHED_IDLE:
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_rr_get_interval - return the default timeslice of a process.
|
|
* @pid: pid of the process.
|
|
* @interval: userspace pointer to the timeslice value.
|
|
*
|
|
* this syscall writes the default timeslice value of a given process
|
|
* into the user-space timespec buffer. A value of '0' means infinity.
|
|
*
|
|
* Return: On success, 0 and the timeslice is in @interval. Otherwise,
|
|
* an error code.
|
|
*/
|
|
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
|
|
struct timespec __user *, interval)
|
|
{
|
|
struct task_struct *p;
|
|
unsigned int time_slice;
|
|
struct rq_flags rf;
|
|
struct timespec t;
|
|
struct rq *rq;
|
|
int retval;
|
|
|
|
if (pid < 0)
|
|
return -EINVAL;
|
|
|
|
retval = -ESRCH;
|
|
rcu_read_lock();
|
|
p = find_process_by_pid(pid);
|
|
if (!p)
|
|
goto out_unlock;
|
|
|
|
retval = security_task_getscheduler(p);
|
|
if (retval)
|
|
goto out_unlock;
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
time_slice = 0;
|
|
if (p->sched_class->get_rr_interval)
|
|
time_slice = p->sched_class->get_rr_interval(rq, p);
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
rcu_read_unlock();
|
|
jiffies_to_timespec(time_slice, &t);
|
|
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
|
|
return retval;
|
|
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
return retval;
|
|
}
|
|
|
|
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
|
|
|
|
void sched_show_task(struct task_struct *p)
|
|
{
|
|
unsigned long free = 0;
|
|
int ppid;
|
|
unsigned long state = p->state;
|
|
|
|
if (!try_get_task_stack(p))
|
|
return;
|
|
if (state)
|
|
state = __ffs(state) + 1;
|
|
printk(KERN_INFO "%-15.15s %c", p->comm,
|
|
state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
|
|
if (state == TASK_RUNNING)
|
|
printk(KERN_CONT " running task ");
|
|
#ifdef CONFIG_DEBUG_STACK_USAGE
|
|
free = stack_not_used(p);
|
|
#endif
|
|
ppid = 0;
|
|
rcu_read_lock();
|
|
if (pid_alive(p))
|
|
ppid = task_pid_nr(rcu_dereference(p->real_parent));
|
|
rcu_read_unlock();
|
|
printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
|
|
task_pid_nr(p), ppid,
|
|
(unsigned long)task_thread_info(p)->flags);
|
|
|
|
print_worker_info(KERN_INFO, p);
|
|
show_stack(p, NULL);
|
|
put_task_stack(p);
|
|
}
|
|
|
|
void show_state_filter(unsigned long state_filter)
|
|
{
|
|
struct task_struct *g, *p;
|
|
|
|
#if BITS_PER_LONG == 32
|
|
printk(KERN_INFO
|
|
" task PC stack pid father\n");
|
|
#else
|
|
printk(KERN_INFO
|
|
" task PC stack pid father\n");
|
|
#endif
|
|
rcu_read_lock();
|
|
for_each_process_thread(g, p) {
|
|
/*
|
|
* reset the NMI-timeout, listing all files on a slow
|
|
* console might take a lot of time:
|
|
* Also, reset softlockup watchdogs on all CPUs, because
|
|
* another CPU might be blocked waiting for us to process
|
|
* an IPI.
|
|
*/
|
|
touch_nmi_watchdog();
|
|
touch_all_softlockup_watchdogs();
|
|
if (!state_filter || (p->state & state_filter))
|
|
sched_show_task(p);
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
if (!state_filter)
|
|
sysrq_sched_debug_show();
|
|
#endif
|
|
rcu_read_unlock();
|
|
/*
|
|
* Only show locks if all tasks are dumped:
|
|
*/
|
|
if (!state_filter)
|
|
debug_show_all_locks();
|
|
}
|
|
|
|
void init_idle_bootup_task(struct task_struct *idle)
|
|
{
|
|
idle->sched_class = &idle_sched_class;
|
|
}
|
|
|
|
/**
|
|
* init_idle - set up an idle thread for a given CPU
|
|
* @idle: task in question
|
|
* @cpu: cpu the idle task belongs to
|
|
*
|
|
* NOTE: this function does not set the idle thread's NEED_RESCHED
|
|
* flag, to make booting more robust.
|
|
*/
|
|
void init_idle(struct task_struct *idle, int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&idle->pi_lock, flags);
|
|
raw_spin_lock(&rq->lock);
|
|
|
|
__sched_fork(0, idle);
|
|
idle->state = TASK_RUNNING;
|
|
idle->se.exec_start = sched_clock();
|
|
idle->flags |= PF_IDLE;
|
|
|
|
kasan_unpoison_task_stack(idle);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Its possible that init_idle() gets called multiple times on a task,
|
|
* in that case do_set_cpus_allowed() will not do the right thing.
|
|
*
|
|
* And since this is boot we can forgo the serialization.
|
|
*/
|
|
set_cpus_allowed_common(idle, cpumask_of(cpu));
|
|
#endif
|
|
/*
|
|
* We're having a chicken and egg problem, even though we are
|
|
* holding rq->lock, the cpu isn't yet set to this cpu so the
|
|
* lockdep check in task_group() will fail.
|
|
*
|
|
* Similar case to sched_fork(). / Alternatively we could
|
|
* use task_rq_lock() here and obtain the other rq->lock.
|
|
*
|
|
* Silence PROVE_RCU
|
|
*/
|
|
rcu_read_lock();
|
|
__set_task_cpu(idle, cpu);
|
|
rcu_read_unlock();
|
|
|
|
rq->curr = rq->idle = idle;
|
|
idle->on_rq = TASK_ON_RQ_QUEUED;
|
|
#ifdef CONFIG_SMP
|
|
idle->on_cpu = 1;
|
|
#endif
|
|
raw_spin_unlock(&rq->lock);
|
|
raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
|
|
|
|
/* Set the preempt count _outside_ the spinlocks! */
|
|
init_idle_preempt_count(idle, cpu);
|
|
|
|
/*
|
|
* The idle tasks have their own, simple scheduling class:
|
|
*/
|
|
idle->sched_class = &idle_sched_class;
|
|
ftrace_graph_init_idle_task(idle, cpu);
|
|
vtime_init_idle(idle, cpu);
|
|
#ifdef CONFIG_SMP
|
|
sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
|
|
#endif
|
|
}
|
|
|
|
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
|
|
const struct cpumask *trial)
|
|
{
|
|
int ret = 1, trial_cpus;
|
|
struct dl_bw *cur_dl_b;
|
|
unsigned long flags;
|
|
|
|
if (!cpumask_weight(cur))
|
|
return ret;
|
|
|
|
rcu_read_lock_sched();
|
|
cur_dl_b = dl_bw_of(cpumask_any(cur));
|
|
trial_cpus = cpumask_weight(trial);
|
|
|
|
raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
|
|
if (cur_dl_b->bw != -1 &&
|
|
cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
|
|
ret = 0;
|
|
raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
|
|
rcu_read_unlock_sched();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int task_can_attach(struct task_struct *p,
|
|
const struct cpumask *cs_cpus_allowed)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Kthreads which disallow setaffinity shouldn't be moved
|
|
* to a new cpuset; we don't want to change their cpu
|
|
* affinity and isolating such threads by their set of
|
|
* allowed nodes is unnecessary. Thus, cpusets are not
|
|
* applicable for such threads. This prevents checking for
|
|
* success of set_cpus_allowed_ptr() on all attached tasks
|
|
* before cpus_allowed may be changed.
|
|
*/
|
|
if (p->flags & PF_NO_SETAFFINITY) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
|
|
cs_cpus_allowed)) {
|
|
unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
|
|
cs_cpus_allowed);
|
|
struct dl_bw *dl_b;
|
|
bool overflow;
|
|
int cpus;
|
|
unsigned long flags;
|
|
|
|
rcu_read_lock_sched();
|
|
dl_b = dl_bw_of(dest_cpu);
|
|
raw_spin_lock_irqsave(&dl_b->lock, flags);
|
|
cpus = dl_bw_cpus(dest_cpu);
|
|
overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
|
|
if (overflow)
|
|
ret = -EBUSY;
|
|
else {
|
|
/*
|
|
* We reserve space for this task in the destination
|
|
* root_domain, as we can't fail after this point.
|
|
* We will free resources in the source root_domain
|
|
* later on (see set_cpus_allowed_dl()).
|
|
*/
|
|
__dl_add(dl_b, p->dl.dl_bw);
|
|
}
|
|
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
|
|
rcu_read_unlock_sched();
|
|
|
|
}
|
|
#endif
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static bool sched_smp_initialized __read_mostly;
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/* Migrate current task p to target_cpu */
|
|
int migrate_task_to(struct task_struct *p, int target_cpu)
|
|
{
|
|
struct migration_arg arg = { p, target_cpu };
|
|
int curr_cpu = task_cpu(p);
|
|
|
|
if (curr_cpu == target_cpu)
|
|
return 0;
|
|
|
|
if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
|
|
return -EINVAL;
|
|
|
|
/* TODO: This is not properly updating schedstats */
|
|
|
|
trace_sched_move_numa(p, curr_cpu, target_cpu);
|
|
return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
|
|
}
|
|
|
|
/*
|
|
* Requeue a task on a given node and accurately track the number of NUMA
|
|
* tasks on the runqueues
|
|
*/
|
|
void sched_setnuma(struct task_struct *p, int nid)
|
|
{
|
|
bool queued, running;
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
queued = task_on_rq_queued(p);
|
|
running = task_current(rq, p);
|
|
|
|
if (queued)
|
|
dequeue_task(rq, p, DEQUEUE_SAVE);
|
|
if (running)
|
|
put_prev_task(rq, p);
|
|
|
|
p->numa_preferred_nid = nid;
|
|
|
|
if (queued)
|
|
enqueue_task(rq, p, ENQUEUE_RESTORE);
|
|
if (running)
|
|
set_curr_task(rq, p);
|
|
task_rq_unlock(rq, p, &rf);
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* Ensures that the idle task is using init_mm right before its cpu goes
|
|
* offline.
|
|
*/
|
|
void idle_task_exit(void)
|
|
{
|
|
struct mm_struct *mm = current->active_mm;
|
|
|
|
BUG_ON(cpu_online(smp_processor_id()));
|
|
|
|
if (mm != &init_mm) {
|
|
switch_mm_irqs_off(mm, &init_mm, current);
|
|
finish_arch_post_lock_switch();
|
|
}
|
|
mmdrop(mm);
|
|
}
|
|
|
|
/*
|
|
* Since this CPU is going 'away' for a while, fold any nr_active delta
|
|
* we might have. Assumes we're called after migrate_tasks() so that the
|
|
* nr_active count is stable. We need to take the teardown thread which
|
|
* is calling this into account, so we hand in adjust = 1 to the load
|
|
* calculation.
|
|
*
|
|
* Also see the comment "Global load-average calculations".
|
|
*/
|
|
static void calc_load_migrate(struct rq *rq)
|
|
{
|
|
long delta = calc_load_fold_active(rq, 1);
|
|
if (delta)
|
|
atomic_long_add(delta, &calc_load_tasks);
|
|
}
|
|
|
|
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
}
|
|
|
|
static const struct sched_class fake_sched_class = {
|
|
.put_prev_task = put_prev_task_fake,
|
|
};
|
|
|
|
static struct task_struct fake_task = {
|
|
/*
|
|
* Avoid pull_{rt,dl}_task()
|
|
*/
|
|
.prio = MAX_PRIO + 1,
|
|
.sched_class = &fake_sched_class,
|
|
};
|
|
|
|
/*
|
|
* Migrate all tasks from the rq, sleeping tasks will be migrated by
|
|
* try_to_wake_up()->select_task_rq().
|
|
*
|
|
* Called with rq->lock held even though we'er in stop_machine() and
|
|
* there's no concurrency possible, we hold the required locks anyway
|
|
* because of lock validation efforts.
|
|
*/
|
|
static void migrate_tasks(struct rq *dead_rq)
|
|
{
|
|
struct rq *rq = dead_rq;
|
|
struct task_struct *next, *stop = rq->stop;
|
|
struct pin_cookie cookie;
|
|
int dest_cpu;
|
|
|
|
/*
|
|
* Fudge the rq selection such that the below task selection loop
|
|
* doesn't get stuck on the currently eligible stop task.
|
|
*
|
|
* We're currently inside stop_machine() and the rq is either stuck
|
|
* in the stop_machine_cpu_stop() loop, or we're executing this code,
|
|
* either way we should never end up calling schedule() until we're
|
|
* done here.
|
|
*/
|
|
rq->stop = NULL;
|
|
|
|
/*
|
|
* put_prev_task() and pick_next_task() sched
|
|
* class method both need to have an up-to-date
|
|
* value of rq->clock[_task]
|
|
*/
|
|
update_rq_clock(rq);
|
|
|
|
for (;;) {
|
|
/*
|
|
* There's this thread running, bail when that's the only
|
|
* remaining thread.
|
|
*/
|
|
if (rq->nr_running == 1)
|
|
break;
|
|
|
|
/*
|
|
* pick_next_task assumes pinned rq->lock.
|
|
*/
|
|
cookie = lockdep_pin_lock(&rq->lock);
|
|
next = pick_next_task(rq, &fake_task, cookie);
|
|
BUG_ON(!next);
|
|
next->sched_class->put_prev_task(rq, next);
|
|
|
|
/*
|
|
* Rules for changing task_struct::cpus_allowed are holding
|
|
* both pi_lock and rq->lock, such that holding either
|
|
* stabilizes the mask.
|
|
*
|
|
* Drop rq->lock is not quite as disastrous as it usually is
|
|
* because !cpu_active at this point, which means load-balance
|
|
* will not interfere. Also, stop-machine.
|
|
*/
|
|
lockdep_unpin_lock(&rq->lock, cookie);
|
|
raw_spin_unlock(&rq->lock);
|
|
raw_spin_lock(&next->pi_lock);
|
|
raw_spin_lock(&rq->lock);
|
|
|
|
/*
|
|
* Since we're inside stop-machine, _nothing_ should have
|
|
* changed the task, WARN if weird stuff happened, because in
|
|
* that case the above rq->lock drop is a fail too.
|
|
*/
|
|
if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
|
|
raw_spin_unlock(&next->pi_lock);
|
|
continue;
|
|
}
|
|
|
|
/* Find suitable destination for @next, with force if needed. */
|
|
dest_cpu = select_fallback_rq(dead_rq->cpu, next);
|
|
|
|
rq = __migrate_task(rq, next, dest_cpu);
|
|
if (rq != dead_rq) {
|
|
raw_spin_unlock(&rq->lock);
|
|
rq = dead_rq;
|
|
raw_spin_lock(&rq->lock);
|
|
}
|
|
raw_spin_unlock(&next->pi_lock);
|
|
}
|
|
|
|
rq->stop = stop;
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static void set_rq_online(struct rq *rq)
|
|
{
|
|
if (!rq->online) {
|
|
const struct sched_class *class;
|
|
|
|
cpumask_set_cpu(rq->cpu, rq->rd->online);
|
|
rq->online = 1;
|
|
|
|
for_each_class(class) {
|
|
if (class->rq_online)
|
|
class->rq_online(rq);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_rq_offline(struct rq *rq)
|
|
{
|
|
if (rq->online) {
|
|
const struct sched_class *class;
|
|
|
|
for_each_class(class) {
|
|
if (class->rq_offline)
|
|
class->rq_offline(rq);
|
|
}
|
|
|
|
cpumask_clear_cpu(rq->cpu, rq->rd->online);
|
|
rq->online = 0;
|
|
}
|
|
}
|
|
|
|
static void set_cpu_rq_start_time(unsigned int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
rq->age_stamp = sched_clock_cpu(cpu);
|
|
}
|
|
|
|
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
|
|
static __read_mostly int sched_debug_enabled;
|
|
|
|
static int __init sched_debug_setup(char *str)
|
|
{
|
|
sched_debug_enabled = 1;
|
|
|
|
return 0;
|
|
}
|
|
early_param("sched_debug", sched_debug_setup);
|
|
|
|
static inline bool sched_debug(void)
|
|
{
|
|
return sched_debug_enabled;
|
|
}
|
|
|
|
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
|
|
struct cpumask *groupmask)
|
|
{
|
|
struct sched_group *group = sd->groups;
|
|
|
|
cpumask_clear(groupmask);
|
|
|
|
printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
|
|
|
|
if (!(sd->flags & SD_LOAD_BALANCE)) {
|
|
printk("does not load-balance\n");
|
|
if (sd->parent)
|
|
printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
|
|
" has parent");
|
|
return -1;
|
|
}
|
|
|
|
printk(KERN_CONT "span %*pbl level %s\n",
|
|
cpumask_pr_args(sched_domain_span(sd)), sd->name);
|
|
|
|
if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
|
|
printk(KERN_ERR "ERROR: domain->span does not contain "
|
|
"CPU%d\n", cpu);
|
|
}
|
|
if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
|
|
printk(KERN_ERR "ERROR: domain->groups does not contain"
|
|
" CPU%d\n", cpu);
|
|
}
|
|
|
|
printk(KERN_DEBUG "%*s groups:", level + 1, "");
|
|
do {
|
|
if (!group) {
|
|
printk("\n");
|
|
printk(KERN_ERR "ERROR: group is NULL\n");
|
|
break;
|
|
}
|
|
|
|
if (!cpumask_weight(sched_group_cpus(group))) {
|
|
printk(KERN_CONT "\n");
|
|
printk(KERN_ERR "ERROR: empty group\n");
|
|
break;
|
|
}
|
|
|
|
if (!(sd->flags & SD_OVERLAP) &&
|
|
cpumask_intersects(groupmask, sched_group_cpus(group))) {
|
|
printk(KERN_CONT "\n");
|
|
printk(KERN_ERR "ERROR: repeated CPUs\n");
|
|
break;
|
|
}
|
|
|
|
cpumask_or(groupmask, groupmask, sched_group_cpus(group));
|
|
|
|
printk(KERN_CONT " %*pbl",
|
|
cpumask_pr_args(sched_group_cpus(group)));
|
|
if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
|
|
printk(KERN_CONT " (cpu_capacity = %lu)",
|
|
group->sgc->capacity);
|
|
}
|
|
|
|
group = group->next;
|
|
} while (group != sd->groups);
|
|
printk(KERN_CONT "\n");
|
|
|
|
if (!cpumask_equal(sched_domain_span(sd), groupmask))
|
|
printk(KERN_ERR "ERROR: groups don't span domain->span\n");
|
|
|
|
if (sd->parent &&
|
|
!cpumask_subset(groupmask, sched_domain_span(sd->parent)))
|
|
printk(KERN_ERR "ERROR: parent span is not a superset "
|
|
"of domain->span\n");
|
|
return 0;
|
|
}
|
|
|
|
static void sched_domain_debug(struct sched_domain *sd, int cpu)
|
|
{
|
|
int level = 0;
|
|
|
|
if (!sched_debug_enabled)
|
|
return;
|
|
|
|
if (!sd) {
|
|
printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
|
|
return;
|
|
}
|
|
|
|
printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
|
|
|
|
for (;;) {
|
|
if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
|
|
break;
|
|
level++;
|
|
sd = sd->parent;
|
|
if (!sd)
|
|
break;
|
|
}
|
|
}
|
|
#else /* !CONFIG_SCHED_DEBUG */
|
|
|
|
# define sched_debug_enabled 0
|
|
# define sched_domain_debug(sd, cpu) do { } while (0)
|
|
static inline bool sched_debug(void)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_SCHED_DEBUG */
|
|
|
|
static int sd_degenerate(struct sched_domain *sd)
|
|
{
|
|
if (cpumask_weight(sched_domain_span(sd)) == 1)
|
|
return 1;
|
|
|
|
/* Following flags need at least 2 groups */
|
|
if (sd->flags & (SD_LOAD_BALANCE |
|
|
SD_BALANCE_NEWIDLE |
|
|
SD_BALANCE_FORK |
|
|
SD_BALANCE_EXEC |
|
|
SD_SHARE_CPUCAPACITY |
|
|
SD_ASYM_CPUCAPACITY |
|
|
SD_SHARE_PKG_RESOURCES |
|
|
SD_SHARE_POWERDOMAIN)) {
|
|
if (sd->groups != sd->groups->next)
|
|
return 0;
|
|
}
|
|
|
|
/* Following flags don't use groups */
|
|
if (sd->flags & (SD_WAKE_AFFINE))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
|
|
{
|
|
unsigned long cflags = sd->flags, pflags = parent->flags;
|
|
|
|
if (sd_degenerate(parent))
|
|
return 1;
|
|
|
|
if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
|
|
return 0;
|
|
|
|
/* Flags needing groups don't count if only 1 group in parent */
|
|
if (parent->groups == parent->groups->next) {
|
|
pflags &= ~(SD_LOAD_BALANCE |
|
|
SD_BALANCE_NEWIDLE |
|
|
SD_BALANCE_FORK |
|
|
SD_BALANCE_EXEC |
|
|
SD_ASYM_CPUCAPACITY |
|
|
SD_SHARE_CPUCAPACITY |
|
|
SD_SHARE_PKG_RESOURCES |
|
|
SD_PREFER_SIBLING |
|
|
SD_SHARE_POWERDOMAIN);
|
|
if (nr_node_ids == 1)
|
|
pflags &= ~SD_SERIALIZE;
|
|
}
|
|
if (~cflags & pflags)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void free_rootdomain(struct rcu_head *rcu)
|
|
{
|
|
struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
|
|
|
|
cpupri_cleanup(&rd->cpupri);
|
|
cpudl_cleanup(&rd->cpudl);
|
|
free_cpumask_var(rd->dlo_mask);
|
|
free_cpumask_var(rd->rto_mask);
|
|
free_cpumask_var(rd->online);
|
|
free_cpumask_var(rd->span);
|
|
kfree(rd);
|
|
}
|
|
|
|
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
|
|
{
|
|
struct root_domain *old_rd = NULL;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
|
|
if (rq->rd) {
|
|
old_rd = rq->rd;
|
|
|
|
if (cpumask_test_cpu(rq->cpu, old_rd->online))
|
|
set_rq_offline(rq);
|
|
|
|
cpumask_clear_cpu(rq->cpu, old_rd->span);
|
|
|
|
/*
|
|
* If we dont want to free the old_rd yet then
|
|
* set old_rd to NULL to skip the freeing later
|
|
* in this function:
|
|
*/
|
|
if (!atomic_dec_and_test(&old_rd->refcount))
|
|
old_rd = NULL;
|
|
}
|
|
|
|
atomic_inc(&rd->refcount);
|
|
rq->rd = rd;
|
|
|
|
cpumask_set_cpu(rq->cpu, rd->span);
|
|
if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
|
|
set_rq_online(rq);
|
|
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
|
if (old_rd)
|
|
call_rcu_sched(&old_rd->rcu, free_rootdomain);
|
|
}
|
|
|
|
static int init_rootdomain(struct root_domain *rd)
|
|
{
|
|
memset(rd, 0, sizeof(*rd));
|
|
|
|
if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
|
|
goto out;
|
|
if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
|
|
goto free_span;
|
|
if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
|
|
goto free_online;
|
|
if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
|
|
goto free_dlo_mask;
|
|
|
|
init_dl_bw(&rd->dl_bw);
|
|
if (cpudl_init(&rd->cpudl) != 0)
|
|
goto free_dlo_mask;
|
|
|
|
if (cpupri_init(&rd->cpupri) != 0)
|
|
goto free_rto_mask;
|
|
return 0;
|
|
|
|
free_rto_mask:
|
|
free_cpumask_var(rd->rto_mask);
|
|
free_dlo_mask:
|
|
free_cpumask_var(rd->dlo_mask);
|
|
free_online:
|
|
free_cpumask_var(rd->online);
|
|
free_span:
|
|
free_cpumask_var(rd->span);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* By default the system creates a single root-domain with all cpus as
|
|
* members (mimicking the global state we have today).
|
|
*/
|
|
struct root_domain def_root_domain;
|
|
|
|
static void init_defrootdomain(void)
|
|
{
|
|
init_rootdomain(&def_root_domain);
|
|
|
|
atomic_set(&def_root_domain.refcount, 1);
|
|
}
|
|
|
|
static struct root_domain *alloc_rootdomain(void)
|
|
{
|
|
struct root_domain *rd;
|
|
|
|
rd = kmalloc(sizeof(*rd), GFP_KERNEL);
|
|
if (!rd)
|
|
return NULL;
|
|
|
|
if (init_rootdomain(rd) != 0) {
|
|
kfree(rd);
|
|
return NULL;
|
|
}
|
|
|
|
return rd;
|
|
}
|
|
|
|
static void free_sched_groups(struct sched_group *sg, int free_sgc)
|
|
{
|
|
struct sched_group *tmp, *first;
|
|
|
|
if (!sg)
|
|
return;
|
|
|
|
first = sg;
|
|
do {
|
|
tmp = sg->next;
|
|
|
|
if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
|
|
kfree(sg->sgc);
|
|
|
|
kfree(sg);
|
|
sg = tmp;
|
|
} while (sg != first);
|
|
}
|
|
|
|
static void destroy_sched_domain(struct sched_domain *sd)
|
|
{
|
|
/*
|
|
* If its an overlapping domain it has private groups, iterate and
|
|
* nuke them all.
|
|
*/
|
|
if (sd->flags & SD_OVERLAP) {
|
|
free_sched_groups(sd->groups, 1);
|
|
} else if (atomic_dec_and_test(&sd->groups->ref)) {
|
|
kfree(sd->groups->sgc);
|
|
kfree(sd->groups);
|
|
}
|
|
if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
|
|
kfree(sd->shared);
|
|
kfree(sd);
|
|
}
|
|
|
|
static void destroy_sched_domains_rcu(struct rcu_head *rcu)
|
|
{
|
|
struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
|
|
|
|
while (sd) {
|
|
struct sched_domain *parent = sd->parent;
|
|
destroy_sched_domain(sd);
|
|
sd = parent;
|
|
}
|
|
}
|
|
|
|
static void destroy_sched_domains(struct sched_domain *sd)
|
|
{
|
|
if (sd)
|
|
call_rcu(&sd->rcu, destroy_sched_domains_rcu);
|
|
}
|
|
|
|
/*
|
|
* Keep a special pointer to the highest sched_domain that has
|
|
* SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
|
|
* allows us to avoid some pointer chasing select_idle_sibling().
|
|
*
|
|
* Also keep a unique ID per domain (we use the first cpu number in
|
|
* the cpumask of the domain), this allows us to quickly tell if
|
|
* two cpus are in the same cache domain, see cpus_share_cache().
|
|
*/
|
|
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
|
|
DEFINE_PER_CPU(int, sd_llc_size);
|
|
DEFINE_PER_CPU(int, sd_llc_id);
|
|
DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
|
|
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
|
|
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
|
|
|
|
static void update_top_cache_domain(int cpu)
|
|
{
|
|
struct sched_domain_shared *sds = NULL;
|
|
struct sched_domain *sd;
|
|
int id = cpu;
|
|
int size = 1;
|
|
|
|
sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
|
|
if (sd) {
|
|
id = cpumask_first(sched_domain_span(sd));
|
|
size = cpumask_weight(sched_domain_span(sd));
|
|
sds = sd->shared;
|
|
}
|
|
|
|
rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
|
|
per_cpu(sd_llc_size, cpu) = size;
|
|
per_cpu(sd_llc_id, cpu) = id;
|
|
rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
|
|
|
|
sd = lowest_flag_domain(cpu, SD_NUMA);
|
|
rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
|
|
|
|
sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
|
|
rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
|
|
}
|
|
|
|
/*
|
|
* Attach the domain 'sd' to 'cpu' as its base domain. Callers must
|
|
* hold the hotplug lock.
|
|
*/
|
|
static void
|
|
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
struct sched_domain *tmp;
|
|
|
|
/* Remove the sched domains which do not contribute to scheduling. */
|
|
for (tmp = sd; tmp; ) {
|
|
struct sched_domain *parent = tmp->parent;
|
|
if (!parent)
|
|
break;
|
|
|
|
if (sd_parent_degenerate(tmp, parent)) {
|
|
tmp->parent = parent->parent;
|
|
if (parent->parent)
|
|
parent->parent->child = tmp;
|
|
/*
|
|
* Transfer SD_PREFER_SIBLING down in case of a
|
|
* degenerate parent; the spans match for this
|
|
* so the property transfers.
|
|
*/
|
|
if (parent->flags & SD_PREFER_SIBLING)
|
|
tmp->flags |= SD_PREFER_SIBLING;
|
|
destroy_sched_domain(parent);
|
|
} else
|
|
tmp = tmp->parent;
|
|
}
|
|
|
|
if (sd && sd_degenerate(sd)) {
|
|
tmp = sd;
|
|
sd = sd->parent;
|
|
destroy_sched_domain(tmp);
|
|
if (sd)
|
|
sd->child = NULL;
|
|
}
|
|
|
|
sched_domain_debug(sd, cpu);
|
|
|
|
rq_attach_root(rq, rd);
|
|
tmp = rq->sd;
|
|
rcu_assign_pointer(rq->sd, sd);
|
|
destroy_sched_domains(tmp);
|
|
|
|
update_top_cache_domain(cpu);
|
|
}
|
|
|
|
/* Setup the mask of cpus configured for isolated domains */
|
|
static int __init isolated_cpu_setup(char *str)
|
|
{
|
|
int ret;
|
|
|
|
alloc_bootmem_cpumask_var(&cpu_isolated_map);
|
|
ret = cpulist_parse(str, cpu_isolated_map);
|
|
if (ret) {
|
|
pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
__setup("isolcpus=", isolated_cpu_setup);
|
|
|
|
struct s_data {
|
|
struct sched_domain ** __percpu sd;
|
|
struct root_domain *rd;
|
|
};
|
|
|
|
enum s_alloc {
|
|
sa_rootdomain,
|
|
sa_sd,
|
|
sa_sd_storage,
|
|
sa_none,
|
|
};
|
|
|
|
/*
|
|
* Build an iteration mask that can exclude certain CPUs from the upwards
|
|
* domain traversal.
|
|
*
|
|
* Asymmetric node setups can result in situations where the domain tree is of
|
|
* unequal depth, make sure to skip domains that already cover the entire
|
|
* range.
|
|
*
|
|
* In that case build_sched_domains() will have terminated the iteration early
|
|
* and our sibling sd spans will be empty. Domains should always include the
|
|
* cpu they're built on, so check that.
|
|
*
|
|
*/
|
|
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
|
|
{
|
|
const struct cpumask *span = sched_domain_span(sd);
|
|
struct sd_data *sdd = sd->private;
|
|
struct sched_domain *sibling;
|
|
int i;
|
|
|
|
for_each_cpu(i, span) {
|
|
sibling = *per_cpu_ptr(sdd->sd, i);
|
|
if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
|
|
continue;
|
|
|
|
cpumask_set_cpu(i, sched_group_mask(sg));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the canonical balance cpu for this group, this is the first cpu
|
|
* of this group that's also in the iteration mask.
|
|
*/
|
|
int group_balance_cpu(struct sched_group *sg)
|
|
{
|
|
return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
|
|
}
|
|
|
|
static int
|
|
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
|
|
{
|
|
struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
|
|
const struct cpumask *span = sched_domain_span(sd);
|
|
struct cpumask *covered = sched_domains_tmpmask;
|
|
struct sd_data *sdd = sd->private;
|
|
struct sched_domain *sibling;
|
|
int i;
|
|
|
|
cpumask_clear(covered);
|
|
|
|
for_each_cpu(i, span) {
|
|
struct cpumask *sg_span;
|
|
|
|
if (cpumask_test_cpu(i, covered))
|
|
continue;
|
|
|
|
sibling = *per_cpu_ptr(sdd->sd, i);
|
|
|
|
/* See the comment near build_group_mask(). */
|
|
if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
|
|
continue;
|
|
|
|
sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
|
|
if (!sg)
|
|
goto fail;
|
|
|
|
sg_span = sched_group_cpus(sg);
|
|
if (sibling->child)
|
|
cpumask_copy(sg_span, sched_domain_span(sibling->child));
|
|
else
|
|
cpumask_set_cpu(i, sg_span);
|
|
|
|
cpumask_or(covered, covered, sg_span);
|
|
|
|
sg->sgc = *per_cpu_ptr(sdd->sgc, i);
|
|
if (atomic_inc_return(&sg->sgc->ref) == 1)
|
|
build_group_mask(sd, sg);
|
|
|
|
/*
|
|
* Initialize sgc->capacity such that even if we mess up the
|
|
* domains and no possible iteration will get us here, we won't
|
|
* die on a /0 trap.
|
|
*/
|
|
sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
|
|
sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
|
|
|
|
/*
|
|
* Make sure the first group of this domain contains the
|
|
* canonical balance cpu. Otherwise the sched_domain iteration
|
|
* breaks. See update_sg_lb_stats().
|
|
*/
|
|
if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
|
|
group_balance_cpu(sg) == cpu)
|
|
groups = sg;
|
|
|
|
if (!first)
|
|
first = sg;
|
|
if (last)
|
|
last->next = sg;
|
|
last = sg;
|
|
last->next = first;
|
|
}
|
|
sd->groups = groups;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
free_sched_groups(first, 0);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
|
|
{
|
|
struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
|
|
struct sched_domain *child = sd->child;
|
|
|
|
if (child)
|
|
cpu = cpumask_first(sched_domain_span(child));
|
|
|
|
if (sg) {
|
|
*sg = *per_cpu_ptr(sdd->sg, cpu);
|
|
(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
|
|
atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
|
|
}
|
|
|
|
return cpu;
|
|
}
|
|
|
|
/*
|
|
* build_sched_groups will build a circular linked list of the groups
|
|
* covered by the given span, and will set each group's ->cpumask correctly,
|
|
* and ->cpu_capacity to 0.
|
|
*
|
|
* Assumes the sched_domain tree is fully constructed
|
|
*/
|
|
static int
|
|
build_sched_groups(struct sched_domain *sd, int cpu)
|
|
{
|
|
struct sched_group *first = NULL, *last = NULL;
|
|
struct sd_data *sdd = sd->private;
|
|
const struct cpumask *span = sched_domain_span(sd);
|
|
struct cpumask *covered;
|
|
int i;
|
|
|
|
get_group(cpu, sdd, &sd->groups);
|
|
atomic_inc(&sd->groups->ref);
|
|
|
|
if (cpu != cpumask_first(span))
|
|
return 0;
|
|
|
|
lockdep_assert_held(&sched_domains_mutex);
|
|
covered = sched_domains_tmpmask;
|
|
|
|
cpumask_clear(covered);
|
|
|
|
for_each_cpu(i, span) {
|
|
struct sched_group *sg;
|
|
int group, j;
|
|
|
|
if (cpumask_test_cpu(i, covered))
|
|
continue;
|
|
|
|
group = get_group(i, sdd, &sg);
|
|
cpumask_setall(sched_group_mask(sg));
|
|
|
|
for_each_cpu(j, span) {
|
|
if (get_group(j, sdd, NULL) != group)
|
|
continue;
|
|
|
|
cpumask_set_cpu(j, covered);
|
|
cpumask_set_cpu(j, sched_group_cpus(sg));
|
|
}
|
|
|
|
if (!first)
|
|
first = sg;
|
|
if (last)
|
|
last->next = sg;
|
|
last = sg;
|
|
}
|
|
last->next = first;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize sched groups cpu_capacity.
|
|
*
|
|
* cpu_capacity indicates the capacity of sched group, which is used while
|
|
* distributing the load between different sched groups in a sched domain.
|
|
* Typically cpu_capacity for all the groups in a sched domain will be same
|
|
* unless there are asymmetries in the topology. If there are asymmetries,
|
|
* group having more cpu_capacity will pickup more load compared to the
|
|
* group having less cpu_capacity.
|
|
*/
|
|
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
|
|
{
|
|
struct sched_group *sg = sd->groups;
|
|
|
|
WARN_ON(!sg);
|
|
|
|
do {
|
|
int cpu, max_cpu = -1;
|
|
|
|
sg->group_weight = cpumask_weight(sched_group_cpus(sg));
|
|
|
|
if (!(sd->flags & SD_ASYM_PACKING))
|
|
goto next;
|
|
|
|
for_each_cpu(cpu, sched_group_cpus(sg)) {
|
|
if (max_cpu < 0)
|
|
max_cpu = cpu;
|
|
else if (sched_asym_prefer(cpu, max_cpu))
|
|
max_cpu = cpu;
|
|
}
|
|
sg->asym_prefer_cpu = max_cpu;
|
|
|
|
next:
|
|
sg = sg->next;
|
|
} while (sg != sd->groups);
|
|
|
|
if (cpu != group_balance_cpu(sg))
|
|
return;
|
|
|
|
update_group_capacity(sd, cpu);
|
|
}
|
|
|
|
/*
|
|
* Initializers for schedule domains
|
|
* Non-inlined to reduce accumulated stack pressure in build_sched_domains()
|
|
*/
|
|
|
|
static int default_relax_domain_level = -1;
|
|
int sched_domain_level_max;
|
|
|
|
static int __init setup_relax_domain_level(char *str)
|
|
{
|
|
if (kstrtoint(str, 0, &default_relax_domain_level))
|
|
pr_warn("Unable to set relax_domain_level\n");
|
|
|
|
return 1;
|
|
}
|
|
__setup("relax_domain_level=", setup_relax_domain_level);
|
|
|
|
static void set_domain_attribute(struct sched_domain *sd,
|
|
struct sched_domain_attr *attr)
|
|
{
|
|
int request;
|
|
|
|
if (!attr || attr->relax_domain_level < 0) {
|
|
if (default_relax_domain_level < 0)
|
|
return;
|
|
else
|
|
request = default_relax_domain_level;
|
|
} else
|
|
request = attr->relax_domain_level;
|
|
if (request < sd->level) {
|
|
/* turn off idle balance on this domain */
|
|
sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
|
|
} else {
|
|
/* turn on idle balance on this domain */
|
|
sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
|
|
}
|
|
}
|
|
|
|
static void __sdt_free(const struct cpumask *cpu_map);
|
|
static int __sdt_alloc(const struct cpumask *cpu_map);
|
|
|
|
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
|
|
const struct cpumask *cpu_map)
|
|
{
|
|
switch (what) {
|
|
case sa_rootdomain:
|
|
if (!atomic_read(&d->rd->refcount))
|
|
free_rootdomain(&d->rd->rcu); /* fall through */
|
|
case sa_sd:
|
|
free_percpu(d->sd); /* fall through */
|
|
case sa_sd_storage:
|
|
__sdt_free(cpu_map); /* fall through */
|
|
case sa_none:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
|
|
const struct cpumask *cpu_map)
|
|
{
|
|
memset(d, 0, sizeof(*d));
|
|
|
|
if (__sdt_alloc(cpu_map))
|
|
return sa_sd_storage;
|
|
d->sd = alloc_percpu(struct sched_domain *);
|
|
if (!d->sd)
|
|
return sa_sd_storage;
|
|
d->rd = alloc_rootdomain();
|
|
if (!d->rd)
|
|
return sa_sd;
|
|
return sa_rootdomain;
|
|
}
|
|
|
|
/*
|
|
* NULL the sd_data elements we've used to build the sched_domain and
|
|
* sched_group structure so that the subsequent __free_domain_allocs()
|
|
* will not free the data we're using.
|
|
*/
|
|
static void claim_allocations(int cpu, struct sched_domain *sd)
|
|
{
|
|
struct sd_data *sdd = sd->private;
|
|
|
|
WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
|
|
*per_cpu_ptr(sdd->sd, cpu) = NULL;
|
|
|
|
if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
|
|
*per_cpu_ptr(sdd->sds, cpu) = NULL;
|
|
|
|
if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
|
|
*per_cpu_ptr(sdd->sg, cpu) = NULL;
|
|
|
|
if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
|
|
*per_cpu_ptr(sdd->sgc, cpu) = NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static int sched_domains_numa_levels;
|
|
enum numa_topology_type sched_numa_topology_type;
|
|
static int *sched_domains_numa_distance;
|
|
int sched_max_numa_distance;
|
|
static struct cpumask ***sched_domains_numa_masks;
|
|
static int sched_domains_curr_level;
|
|
#endif
|
|
|
|
/*
|
|
* SD_flags allowed in topology descriptions.
|
|
*
|
|
* These flags are purely descriptive of the topology and do not prescribe
|
|
* behaviour. Behaviour is artificial and mapped in the below sd_init()
|
|
* function:
|
|
*
|
|
* SD_SHARE_CPUCAPACITY - describes SMT topologies
|
|
* SD_SHARE_PKG_RESOURCES - describes shared caches
|
|
* SD_NUMA - describes NUMA topologies
|
|
* SD_SHARE_POWERDOMAIN - describes shared power domain
|
|
* SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
|
|
*
|
|
* Odd one out, which beside describing the topology has a quirk also
|
|
* prescribes the desired behaviour that goes along with it:
|
|
*
|
|
* SD_ASYM_PACKING - describes SMT quirks
|
|
*/
|
|
#define TOPOLOGY_SD_FLAGS \
|
|
(SD_SHARE_CPUCAPACITY | \
|
|
SD_SHARE_PKG_RESOURCES | \
|
|
SD_NUMA | \
|
|
SD_ASYM_PACKING | \
|
|
SD_ASYM_CPUCAPACITY | \
|
|
SD_SHARE_POWERDOMAIN)
|
|
|
|
static struct sched_domain *
|
|
sd_init(struct sched_domain_topology_level *tl,
|
|
const struct cpumask *cpu_map,
|
|
struct sched_domain *child, int cpu)
|
|
{
|
|
struct sd_data *sdd = &tl->data;
|
|
struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
|
|
int sd_id, sd_weight, sd_flags = 0;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Ugly hack to pass state to sd_numa_mask()...
|
|
*/
|
|
sched_domains_curr_level = tl->numa_level;
|
|
#endif
|
|
|
|
sd_weight = cpumask_weight(tl->mask(cpu));
|
|
|
|
if (tl->sd_flags)
|
|
sd_flags = (*tl->sd_flags)();
|
|
if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
|
|
"wrong sd_flags in topology description\n"))
|
|
sd_flags &= ~TOPOLOGY_SD_FLAGS;
|
|
|
|
*sd = (struct sched_domain){
|
|
.min_interval = sd_weight,
|
|
.max_interval = 2*sd_weight,
|
|
.busy_factor = 32,
|
|
.imbalance_pct = 125,
|
|
|
|
.cache_nice_tries = 0,
|
|
.busy_idx = 0,
|
|
.idle_idx = 0,
|
|
.newidle_idx = 0,
|
|
.wake_idx = 0,
|
|
.forkexec_idx = 0,
|
|
|
|
.flags = 1*SD_LOAD_BALANCE
|
|
| 1*SD_BALANCE_NEWIDLE
|
|
| 1*SD_BALANCE_EXEC
|
|
| 1*SD_BALANCE_FORK
|
|
| 0*SD_BALANCE_WAKE
|
|
| 1*SD_WAKE_AFFINE
|
|
| 0*SD_SHARE_CPUCAPACITY
|
|
| 0*SD_SHARE_PKG_RESOURCES
|
|
| 0*SD_SERIALIZE
|
|
| 0*SD_PREFER_SIBLING
|
|
| 0*SD_NUMA
|
|
| sd_flags
|
|
,
|
|
|
|
.last_balance = jiffies,
|
|
.balance_interval = sd_weight,
|
|
.smt_gain = 0,
|
|
.max_newidle_lb_cost = 0,
|
|
.next_decay_max_lb_cost = jiffies,
|
|
.child = child,
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
.name = tl->name,
|
|
#endif
|
|
};
|
|
|
|
cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
|
|
sd_id = cpumask_first(sched_domain_span(sd));
|
|
|
|
/*
|
|
* Convert topological properties into behaviour.
|
|
*/
|
|
|
|
if (sd->flags & SD_ASYM_CPUCAPACITY) {
|
|
struct sched_domain *t = sd;
|
|
|
|
for_each_lower_domain(t)
|
|
t->flags |= SD_BALANCE_WAKE;
|
|
}
|
|
|
|
if (sd->flags & SD_SHARE_CPUCAPACITY) {
|
|
sd->flags |= SD_PREFER_SIBLING;
|
|
sd->imbalance_pct = 110;
|
|
sd->smt_gain = 1178; /* ~15% */
|
|
|
|
} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
|
|
sd->imbalance_pct = 117;
|
|
sd->cache_nice_tries = 1;
|
|
sd->busy_idx = 2;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
} else if (sd->flags & SD_NUMA) {
|
|
sd->cache_nice_tries = 2;
|
|
sd->busy_idx = 3;
|
|
sd->idle_idx = 2;
|
|
|
|
sd->flags |= SD_SERIALIZE;
|
|
if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
|
|
sd->flags &= ~(SD_BALANCE_EXEC |
|
|
SD_BALANCE_FORK |
|
|
SD_WAKE_AFFINE);
|
|
}
|
|
|
|
#endif
|
|
} else {
|
|
sd->flags |= SD_PREFER_SIBLING;
|
|
sd->cache_nice_tries = 1;
|
|
sd->busy_idx = 2;
|
|
sd->idle_idx = 1;
|
|
}
|
|
|
|
/*
|
|
* For all levels sharing cache; connect a sched_domain_shared
|
|
* instance.
|
|
*/
|
|
if (sd->flags & SD_SHARE_PKG_RESOURCES) {
|
|
sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
|
|
atomic_inc(&sd->shared->ref);
|
|
atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
|
|
}
|
|
|
|
sd->private = sdd;
|
|
|
|
return sd;
|
|
}
|
|
|
|
/*
|
|
* Topology list, bottom-up.
|
|
*/
|
|
static struct sched_domain_topology_level default_topology[] = {
|
|
#ifdef CONFIG_SCHED_SMT
|
|
{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
|
|
#endif
|
|
#ifdef CONFIG_SCHED_MC
|
|
{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
|
|
#endif
|
|
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
|
|
{ NULL, },
|
|
};
|
|
|
|
static struct sched_domain_topology_level *sched_domain_topology =
|
|
default_topology;
|
|
|
|
#define for_each_sd_topology(tl) \
|
|
for (tl = sched_domain_topology; tl->mask; tl++)
|
|
|
|
void set_sched_topology(struct sched_domain_topology_level *tl)
|
|
{
|
|
if (WARN_ON_ONCE(sched_smp_initialized))
|
|
return;
|
|
|
|
sched_domain_topology = tl;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
static const struct cpumask *sd_numa_mask(int cpu)
|
|
{
|
|
return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
|
|
}
|
|
|
|
static void sched_numa_warn(const char *str)
|
|
{
|
|
static int done = false;
|
|
int i,j;
|
|
|
|
if (done)
|
|
return;
|
|
|
|
done = true;
|
|
|
|
printk(KERN_WARNING "ERROR: %s\n\n", str);
|
|
|
|
for (i = 0; i < nr_node_ids; i++) {
|
|
printk(KERN_WARNING " ");
|
|
for (j = 0; j < nr_node_ids; j++)
|
|
printk(KERN_CONT "%02d ", node_distance(i,j));
|
|
printk(KERN_CONT "\n");
|
|
}
|
|
printk(KERN_WARNING "\n");
|
|
}
|
|
|
|
bool find_numa_distance(int distance)
|
|
{
|
|
int i;
|
|
|
|
if (distance == node_distance(0, 0))
|
|
return true;
|
|
|
|
for (i = 0; i < sched_domains_numa_levels; i++) {
|
|
if (sched_domains_numa_distance[i] == distance)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* A system can have three types of NUMA topology:
|
|
* NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
|
|
* NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
|
|
* NUMA_BACKPLANE: nodes can reach other nodes through a backplane
|
|
*
|
|
* The difference between a glueless mesh topology and a backplane
|
|
* topology lies in whether communication between not directly
|
|
* connected nodes goes through intermediary nodes (where programs
|
|
* could run), or through backplane controllers. This affects
|
|
* placement of programs.
|
|
*
|
|
* The type of topology can be discerned with the following tests:
|
|
* - If the maximum distance between any nodes is 1 hop, the system
|
|
* is directly connected.
|
|
* - If for two nodes A and B, located N > 1 hops away from each other,
|
|
* there is an intermediary node C, which is < N hops away from both
|
|
* nodes A and B, the system is a glueless mesh.
|
|
*/
|
|
static void init_numa_topology_type(void)
|
|
{
|
|
int a, b, c, n;
|
|
|
|
n = sched_max_numa_distance;
|
|
|
|
if (sched_domains_numa_levels <= 1) {
|
|
sched_numa_topology_type = NUMA_DIRECT;
|
|
return;
|
|
}
|
|
|
|
for_each_online_node(a) {
|
|
for_each_online_node(b) {
|
|
/* Find two nodes furthest removed from each other. */
|
|
if (node_distance(a, b) < n)
|
|
continue;
|
|
|
|
/* Is there an intermediary node between a and b? */
|
|
for_each_online_node(c) {
|
|
if (node_distance(a, c) < n &&
|
|
node_distance(b, c) < n) {
|
|
sched_numa_topology_type =
|
|
NUMA_GLUELESS_MESH;
|
|
return;
|
|
}
|
|
}
|
|
|
|
sched_numa_topology_type = NUMA_BACKPLANE;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sched_init_numa(void)
|
|
{
|
|
int next_distance, curr_distance = node_distance(0, 0);
|
|
struct sched_domain_topology_level *tl;
|
|
int level = 0;
|
|
int i, j, k;
|
|
|
|
sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
|
|
if (!sched_domains_numa_distance)
|
|
return;
|
|
|
|
/*
|
|
* O(nr_nodes^2) deduplicating selection sort -- in order to find the
|
|
* unique distances in the node_distance() table.
|
|
*
|
|
* Assumes node_distance(0,j) includes all distances in
|
|
* node_distance(i,j) in order to avoid cubic time.
|
|
*/
|
|
next_distance = curr_distance;
|
|
for (i = 0; i < nr_node_ids; i++) {
|
|
for (j = 0; j < nr_node_ids; j++) {
|
|
for (k = 0; k < nr_node_ids; k++) {
|
|
int distance = node_distance(i, k);
|
|
|
|
if (distance > curr_distance &&
|
|
(distance < next_distance ||
|
|
next_distance == curr_distance))
|
|
next_distance = distance;
|
|
|
|
/*
|
|
* While not a strong assumption it would be nice to know
|
|
* about cases where if node A is connected to B, B is not
|
|
* equally connected to A.
|
|
*/
|
|
if (sched_debug() && node_distance(k, i) != distance)
|
|
sched_numa_warn("Node-distance not symmetric");
|
|
|
|
if (sched_debug() && i && !find_numa_distance(distance))
|
|
sched_numa_warn("Node-0 not representative");
|
|
}
|
|
if (next_distance != curr_distance) {
|
|
sched_domains_numa_distance[level++] = next_distance;
|
|
sched_domains_numa_levels = level;
|
|
curr_distance = next_distance;
|
|
} else break;
|
|
}
|
|
|
|
/*
|
|
* In case of sched_debug() we verify the above assumption.
|
|
*/
|
|
if (!sched_debug())
|
|
break;
|
|
}
|
|
|
|
if (!level)
|
|
return;
|
|
|
|
/*
|
|
* 'level' contains the number of unique distances, excluding the
|
|
* identity distance node_distance(i,i).
|
|
*
|
|
* The sched_domains_numa_distance[] array includes the actual distance
|
|
* numbers.
|
|
*/
|
|
|
|
/*
|
|
* Here, we should temporarily reset sched_domains_numa_levels to 0.
|
|
* If it fails to allocate memory for array sched_domains_numa_masks[][],
|
|
* the array will contain less then 'level' members. This could be
|
|
* dangerous when we use it to iterate array sched_domains_numa_masks[][]
|
|
* in other functions.
|
|
*
|
|
* We reset it to 'level' at the end of this function.
|
|
*/
|
|
sched_domains_numa_levels = 0;
|
|
|
|
sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
|
|
if (!sched_domains_numa_masks)
|
|
return;
|
|
|
|
/*
|
|
* Now for each level, construct a mask per node which contains all
|
|
* cpus of nodes that are that many hops away from us.
|
|
*/
|
|
for (i = 0; i < level; i++) {
|
|
sched_domains_numa_masks[i] =
|
|
kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
|
|
if (!sched_domains_numa_masks[i])
|
|
return;
|
|
|
|
for (j = 0; j < nr_node_ids; j++) {
|
|
struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
|
|
if (!mask)
|
|
return;
|
|
|
|
sched_domains_numa_masks[i][j] = mask;
|
|
|
|
for_each_node(k) {
|
|
if (node_distance(j, k) > sched_domains_numa_distance[i])
|
|
continue;
|
|
|
|
cpumask_or(mask, mask, cpumask_of_node(k));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute default topology size */
|
|
for (i = 0; sched_domain_topology[i].mask; i++);
|
|
|
|
tl = kzalloc((i + level + 1) *
|
|
sizeof(struct sched_domain_topology_level), GFP_KERNEL);
|
|
if (!tl)
|
|
return;
|
|
|
|
/*
|
|
* Copy the default topology bits..
|
|
*/
|
|
for (i = 0; sched_domain_topology[i].mask; i++)
|
|
tl[i] = sched_domain_topology[i];
|
|
|
|
/*
|
|
* .. and append 'j' levels of NUMA goodness.
|
|
*/
|
|
for (j = 0; j < level; i++, j++) {
|
|
tl[i] = (struct sched_domain_topology_level){
|
|
.mask = sd_numa_mask,
|
|
.sd_flags = cpu_numa_flags,
|
|
.flags = SDTL_OVERLAP,
|
|
.numa_level = j,
|
|
SD_INIT_NAME(NUMA)
|
|
};
|
|
}
|
|
|
|
sched_domain_topology = tl;
|
|
|
|
sched_domains_numa_levels = level;
|
|
sched_max_numa_distance = sched_domains_numa_distance[level - 1];
|
|
|
|
init_numa_topology_type();
|
|
}
|
|
|
|
static void sched_domains_numa_masks_set(unsigned int cpu)
|
|
{
|
|
int node = cpu_to_node(cpu);
|
|
int i, j;
|
|
|
|
for (i = 0; i < sched_domains_numa_levels; i++) {
|
|
for (j = 0; j < nr_node_ids; j++) {
|
|
if (node_distance(j, node) <= sched_domains_numa_distance[i])
|
|
cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sched_domains_numa_masks_clear(unsigned int cpu)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < sched_domains_numa_levels; i++) {
|
|
for (j = 0; j < nr_node_ids; j++)
|
|
cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
|
|
}
|
|
}
|
|
|
|
#else
|
|
static inline void sched_init_numa(void) { }
|
|
static void sched_domains_numa_masks_set(unsigned int cpu) { }
|
|
static void sched_domains_numa_masks_clear(unsigned int cpu) { }
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
static int __sdt_alloc(const struct cpumask *cpu_map)
|
|
{
|
|
struct sched_domain_topology_level *tl;
|
|
int j;
|
|
|
|
for_each_sd_topology(tl) {
|
|
struct sd_data *sdd = &tl->data;
|
|
|
|
sdd->sd = alloc_percpu(struct sched_domain *);
|
|
if (!sdd->sd)
|
|
return -ENOMEM;
|
|
|
|
sdd->sds = alloc_percpu(struct sched_domain_shared *);
|
|
if (!sdd->sds)
|
|
return -ENOMEM;
|
|
|
|
sdd->sg = alloc_percpu(struct sched_group *);
|
|
if (!sdd->sg)
|
|
return -ENOMEM;
|
|
|
|
sdd->sgc = alloc_percpu(struct sched_group_capacity *);
|
|
if (!sdd->sgc)
|
|
return -ENOMEM;
|
|
|
|
for_each_cpu(j, cpu_map) {
|
|
struct sched_domain *sd;
|
|
struct sched_domain_shared *sds;
|
|
struct sched_group *sg;
|
|
struct sched_group_capacity *sgc;
|
|
|
|
sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
|
|
GFP_KERNEL, cpu_to_node(j));
|
|
if (!sd)
|
|
return -ENOMEM;
|
|
|
|
*per_cpu_ptr(sdd->sd, j) = sd;
|
|
|
|
sds = kzalloc_node(sizeof(struct sched_domain_shared),
|
|
GFP_KERNEL, cpu_to_node(j));
|
|
if (!sds)
|
|
return -ENOMEM;
|
|
|
|
*per_cpu_ptr(sdd->sds, j) = sds;
|
|
|
|
sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
|
|
GFP_KERNEL, cpu_to_node(j));
|
|
if (!sg)
|
|
return -ENOMEM;
|
|
|
|
sg->next = sg;
|
|
|
|
*per_cpu_ptr(sdd->sg, j) = sg;
|
|
|
|
sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
|
|
GFP_KERNEL, cpu_to_node(j));
|
|
if (!sgc)
|
|
return -ENOMEM;
|
|
|
|
*per_cpu_ptr(sdd->sgc, j) = sgc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __sdt_free(const struct cpumask *cpu_map)
|
|
{
|
|
struct sched_domain_topology_level *tl;
|
|
int j;
|
|
|
|
for_each_sd_topology(tl) {
|
|
struct sd_data *sdd = &tl->data;
|
|
|
|
for_each_cpu(j, cpu_map) {
|
|
struct sched_domain *sd;
|
|
|
|
if (sdd->sd) {
|
|
sd = *per_cpu_ptr(sdd->sd, j);
|
|
if (sd && (sd->flags & SD_OVERLAP))
|
|
free_sched_groups(sd->groups, 0);
|
|
kfree(*per_cpu_ptr(sdd->sd, j));
|
|
}
|
|
|
|
if (sdd->sds)
|
|
kfree(*per_cpu_ptr(sdd->sds, j));
|
|
if (sdd->sg)
|
|
kfree(*per_cpu_ptr(sdd->sg, j));
|
|
if (sdd->sgc)
|
|
kfree(*per_cpu_ptr(sdd->sgc, j));
|
|
}
|
|
free_percpu(sdd->sd);
|
|
sdd->sd = NULL;
|
|
free_percpu(sdd->sds);
|
|
sdd->sds = NULL;
|
|
free_percpu(sdd->sg);
|
|
sdd->sg = NULL;
|
|
free_percpu(sdd->sgc);
|
|
sdd->sgc = NULL;
|
|
}
|
|
}
|
|
|
|
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
|
|
const struct cpumask *cpu_map, struct sched_domain_attr *attr,
|
|
struct sched_domain *child, int cpu)
|
|
{
|
|
struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
|
|
|
|
if (child) {
|
|
sd->level = child->level + 1;
|
|
sched_domain_level_max = max(sched_domain_level_max, sd->level);
|
|
child->parent = sd;
|
|
|
|
if (!cpumask_subset(sched_domain_span(child),
|
|
sched_domain_span(sd))) {
|
|
pr_err("BUG: arch topology borken\n");
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
pr_err(" the %s domain not a subset of the %s domain\n",
|
|
child->name, sd->name);
|
|
#endif
|
|
/* Fixup, ensure @sd has at least @child cpus. */
|
|
cpumask_or(sched_domain_span(sd),
|
|
sched_domain_span(sd),
|
|
sched_domain_span(child));
|
|
}
|
|
|
|
}
|
|
set_domain_attribute(sd, attr);
|
|
|
|
return sd;
|
|
}
|
|
|
|
/*
|
|
* Build sched domains for a given set of cpus and attach the sched domains
|
|
* to the individual cpus
|
|
*/
|
|
static int build_sched_domains(const struct cpumask *cpu_map,
|
|
struct sched_domain_attr *attr)
|
|
{
|
|
enum s_alloc alloc_state;
|
|
struct sched_domain *sd;
|
|
struct s_data d;
|
|
struct rq *rq = NULL;
|
|
int i, ret = -ENOMEM;
|
|
|
|
alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
|
|
if (alloc_state != sa_rootdomain)
|
|
goto error;
|
|
|
|
/* Set up domains for cpus specified by the cpu_map. */
|
|
for_each_cpu(i, cpu_map) {
|
|
struct sched_domain_topology_level *tl;
|
|
|
|
sd = NULL;
|
|
for_each_sd_topology(tl) {
|
|
sd = build_sched_domain(tl, cpu_map, attr, sd, i);
|
|
if (tl == sched_domain_topology)
|
|
*per_cpu_ptr(d.sd, i) = sd;
|
|
if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
|
|
sd->flags |= SD_OVERLAP;
|
|
if (cpumask_equal(cpu_map, sched_domain_span(sd)))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Build the groups for the domains */
|
|
for_each_cpu(i, cpu_map) {
|
|
for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
|
|
sd->span_weight = cpumask_weight(sched_domain_span(sd));
|
|
if (sd->flags & SD_OVERLAP) {
|
|
if (build_overlap_sched_groups(sd, i))
|
|
goto error;
|
|
} else {
|
|
if (build_sched_groups(sd, i))
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate CPU capacity for physical packages and nodes */
|
|
for (i = nr_cpumask_bits-1; i >= 0; i--) {
|
|
if (!cpumask_test_cpu(i, cpu_map))
|
|
continue;
|
|
|
|
for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
|
|
claim_allocations(i, sd);
|
|
init_sched_groups_capacity(i, sd);
|
|
}
|
|
}
|
|
|
|
/* Attach the domains */
|
|
rcu_read_lock();
|
|
for_each_cpu(i, cpu_map) {
|
|
rq = cpu_rq(i);
|
|
sd = *per_cpu_ptr(d.sd, i);
|
|
|
|
/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
|
|
if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
|
|
WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
|
|
|
|
cpu_attach_domain(sd, d.rd, i);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (rq && sched_debug_enabled) {
|
|
pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
|
|
cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
|
|
}
|
|
|
|
ret = 0;
|
|
error:
|
|
__free_domain_allocs(&d, alloc_state, cpu_map);
|
|
return ret;
|
|
}
|
|
|
|
static cpumask_var_t *doms_cur; /* current sched domains */
|
|
static int ndoms_cur; /* number of sched domains in 'doms_cur' */
|
|
static struct sched_domain_attr *dattr_cur;
|
|
/* attribues of custom domains in 'doms_cur' */
|
|
|
|
/*
|
|
* Special case: If a kmalloc of a doms_cur partition (array of
|
|
* cpumask) fails, then fallback to a single sched domain,
|
|
* as determined by the single cpumask fallback_doms.
|
|
*/
|
|
static cpumask_var_t fallback_doms;
|
|
|
|
/*
|
|
* arch_update_cpu_topology lets virtualized architectures update the
|
|
* cpu core maps. It is supposed to return 1 if the topology changed
|
|
* or 0 if it stayed the same.
|
|
*/
|
|
int __weak arch_update_cpu_topology(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
|
|
{
|
|
int i;
|
|
cpumask_var_t *doms;
|
|
|
|
doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
|
|
if (!doms)
|
|
return NULL;
|
|
for (i = 0; i < ndoms; i++) {
|
|
if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
|
|
free_sched_domains(doms, i);
|
|
return NULL;
|
|
}
|
|
}
|
|
return doms;
|
|
}
|
|
|
|
void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < ndoms; i++)
|
|
free_cpumask_var(doms[i]);
|
|
kfree(doms);
|
|
}
|
|
|
|
/*
|
|
* Set up scheduler domains and groups. Callers must hold the hotplug lock.
|
|
* For now this just excludes isolated cpus, but could be used to
|
|
* exclude other special cases in the future.
|
|
*/
|
|
static int init_sched_domains(const struct cpumask *cpu_map)
|
|
{
|
|
int err;
|
|
|
|
arch_update_cpu_topology();
|
|
ndoms_cur = 1;
|
|
doms_cur = alloc_sched_domains(ndoms_cur);
|
|
if (!doms_cur)
|
|
doms_cur = &fallback_doms;
|
|
cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
|
|
err = build_sched_domains(doms_cur[0], NULL);
|
|
register_sched_domain_sysctl();
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Detach sched domains from a group of cpus specified in cpu_map
|
|
* These cpus will now be attached to the NULL domain
|
|
*/
|
|
static void detach_destroy_domains(const struct cpumask *cpu_map)
|
|
{
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
for_each_cpu(i, cpu_map)
|
|
cpu_attach_domain(NULL, &def_root_domain, i);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* handle null as "default" */
|
|
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
|
|
struct sched_domain_attr *new, int idx_new)
|
|
{
|
|
struct sched_domain_attr tmp;
|
|
|
|
/* fast path */
|
|
if (!new && !cur)
|
|
return 1;
|
|
|
|
tmp = SD_ATTR_INIT;
|
|
return !memcmp(cur ? (cur + idx_cur) : &tmp,
|
|
new ? (new + idx_new) : &tmp,
|
|
sizeof(struct sched_domain_attr));
|
|
}
|
|
|
|
/*
|
|
* Partition sched domains as specified by the 'ndoms_new'
|
|
* cpumasks in the array doms_new[] of cpumasks. This compares
|
|
* doms_new[] to the current sched domain partitioning, doms_cur[].
|
|
* It destroys each deleted domain and builds each new domain.
|
|
*
|
|
* 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
|
|
* The masks don't intersect (don't overlap.) We should setup one
|
|
* sched domain for each mask. CPUs not in any of the cpumasks will
|
|
* not be load balanced. If the same cpumask appears both in the
|
|
* current 'doms_cur' domains and in the new 'doms_new', we can leave
|
|
* it as it is.
|
|
*
|
|
* The passed in 'doms_new' should be allocated using
|
|
* alloc_sched_domains. This routine takes ownership of it and will
|
|
* free_sched_domains it when done with it. If the caller failed the
|
|
* alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
|
|
* and partition_sched_domains() will fallback to the single partition
|
|
* 'fallback_doms', it also forces the domains to be rebuilt.
|
|
*
|
|
* If doms_new == NULL it will be replaced with cpu_online_mask.
|
|
* ndoms_new == 0 is a special case for destroying existing domains,
|
|
* and it will not create the default domain.
|
|
*
|
|
* Call with hotplug lock held
|
|
*/
|
|
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
|
|
struct sched_domain_attr *dattr_new)
|
|
{
|
|
int i, j, n;
|
|
int new_topology;
|
|
|
|
mutex_lock(&sched_domains_mutex);
|
|
|
|
/* always unregister in case we don't destroy any domains */
|
|
unregister_sched_domain_sysctl();
|
|
|
|
/* Let architecture update cpu core mappings. */
|
|
new_topology = arch_update_cpu_topology();
|
|
|
|
n = doms_new ? ndoms_new : 0;
|
|
|
|
/* Destroy deleted domains */
|
|
for (i = 0; i < ndoms_cur; i++) {
|
|
for (j = 0; j < n && !new_topology; j++) {
|
|
if (cpumask_equal(doms_cur[i], doms_new[j])
|
|
&& dattrs_equal(dattr_cur, i, dattr_new, j))
|
|
goto match1;
|
|
}
|
|
/* no match - a current sched domain not in new doms_new[] */
|
|
detach_destroy_domains(doms_cur[i]);
|
|
match1:
|
|
;
|
|
}
|
|
|
|
n = ndoms_cur;
|
|
if (doms_new == NULL) {
|
|
n = 0;
|
|
doms_new = &fallback_doms;
|
|
cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
|
|
WARN_ON_ONCE(dattr_new);
|
|
}
|
|
|
|
/* Build new domains */
|
|
for (i = 0; i < ndoms_new; i++) {
|
|
for (j = 0; j < n && !new_topology; j++) {
|
|
if (cpumask_equal(doms_new[i], doms_cur[j])
|
|
&& dattrs_equal(dattr_new, i, dattr_cur, j))
|
|
goto match2;
|
|
}
|
|
/* no match - add a new doms_new */
|
|
build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
|
|
match2:
|
|
;
|
|
}
|
|
|
|
/* Remember the new sched domains */
|
|
if (doms_cur != &fallback_doms)
|
|
free_sched_domains(doms_cur, ndoms_cur);
|
|
kfree(dattr_cur); /* kfree(NULL) is safe */
|
|
doms_cur = doms_new;
|
|
dattr_cur = dattr_new;
|
|
ndoms_cur = ndoms_new;
|
|
|
|
register_sched_domain_sysctl();
|
|
|
|
mutex_unlock(&sched_domains_mutex);
|
|
}
|
|
|
|
static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
|
|
|
|
/*
|
|
* Update cpusets according to cpu_active mask. If cpusets are
|
|
* disabled, cpuset_update_active_cpus() becomes a simple wrapper
|
|
* around partition_sched_domains().
|
|
*
|
|
* If we come here as part of a suspend/resume, don't touch cpusets because we
|
|
* want to restore it back to its original state upon resume anyway.
|
|
*/
|
|
static void cpuset_cpu_active(void)
|
|
{
|
|
if (cpuhp_tasks_frozen) {
|
|
/*
|
|
* num_cpus_frozen tracks how many CPUs are involved in suspend
|
|
* resume sequence. As long as this is not the last online
|
|
* operation in the resume sequence, just build a single sched
|
|
* domain, ignoring cpusets.
|
|
*/
|
|
num_cpus_frozen--;
|
|
if (likely(num_cpus_frozen)) {
|
|
partition_sched_domains(1, NULL, NULL);
|
|
return;
|
|
}
|
|
/*
|
|
* This is the last CPU online operation. So fall through and
|
|
* restore the original sched domains by considering the
|
|
* cpuset configurations.
|
|
*/
|
|
}
|
|
cpuset_update_active_cpus(true);
|
|
}
|
|
|
|
static int cpuset_cpu_inactive(unsigned int cpu)
|
|
{
|
|
unsigned long flags;
|
|
struct dl_bw *dl_b;
|
|
bool overflow;
|
|
int cpus;
|
|
|
|
if (!cpuhp_tasks_frozen) {
|
|
rcu_read_lock_sched();
|
|
dl_b = dl_bw_of(cpu);
|
|
|
|
raw_spin_lock_irqsave(&dl_b->lock, flags);
|
|
cpus = dl_bw_cpus(cpu);
|
|
overflow = __dl_overflow(dl_b, cpus, 0, 0);
|
|
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
|
|
|
|
rcu_read_unlock_sched();
|
|
|
|
if (overflow)
|
|
return -EBUSY;
|
|
cpuset_update_active_cpus(false);
|
|
} else {
|
|
num_cpus_frozen++;
|
|
partition_sched_domains(1, NULL, NULL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int sched_cpu_activate(unsigned int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
set_cpu_active(cpu, true);
|
|
|
|
if (sched_smp_initialized) {
|
|
sched_domains_numa_masks_set(cpu);
|
|
cpuset_cpu_active();
|
|
}
|
|
|
|
/*
|
|
* Put the rq online, if not already. This happens:
|
|
*
|
|
* 1) In the early boot process, because we build the real domains
|
|
* after all cpus have been brought up.
|
|
*
|
|
* 2) At runtime, if cpuset_cpu_active() fails to rebuild the
|
|
* domains.
|
|
*/
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
if (rq->rd) {
|
|
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
|
|
set_rq_online(rq);
|
|
}
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
|
update_max_interval();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sched_cpu_deactivate(unsigned int cpu)
|
|
{
|
|
int ret;
|
|
|
|
set_cpu_active(cpu, false);
|
|
/*
|
|
* We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
|
|
* users of this state to go away such that all new such users will
|
|
* observe it.
|
|
*
|
|
* For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
|
|
* not imply sync_sched(), so wait for both.
|
|
*
|
|
* Do sync before park smpboot threads to take care the rcu boost case.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_PREEMPT))
|
|
synchronize_rcu_mult(call_rcu, call_rcu_sched);
|
|
else
|
|
synchronize_rcu();
|
|
|
|
if (!sched_smp_initialized)
|
|
return 0;
|
|
|
|
ret = cpuset_cpu_inactive(cpu);
|
|
if (ret) {
|
|
set_cpu_active(cpu, true);
|
|
return ret;
|
|
}
|
|
sched_domains_numa_masks_clear(cpu);
|
|
return 0;
|
|
}
|
|
|
|
static void sched_rq_cpu_starting(unsigned int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
rq->calc_load_update = calc_load_update;
|
|
update_max_interval();
|
|
}
|
|
|
|
int sched_cpu_starting(unsigned int cpu)
|
|
{
|
|
set_cpu_rq_start_time(cpu);
|
|
sched_rq_cpu_starting(cpu);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
int sched_cpu_dying(unsigned int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
/* Handle pending wakeups and then migrate everything off */
|
|
sched_ttwu_pending();
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
if (rq->rd) {
|
|
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
|
|
set_rq_offline(rq);
|
|
}
|
|
migrate_tasks(rq);
|
|
BUG_ON(rq->nr_running != 1);
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
calc_load_migrate(rq);
|
|
update_max_interval();
|
|
nohz_balance_exit_idle(cpu);
|
|
hrtick_clear(rq);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
DEFINE_STATIC_KEY_FALSE(sched_smt_present);
|
|
|
|
static void sched_init_smt(void)
|
|
{
|
|
/*
|
|
* We've enumerated all CPUs and will assume that if any CPU
|
|
* has SMT siblings, CPU0 will too.
|
|
*/
|
|
if (cpumask_weight(cpu_smt_mask(0)) > 1)
|
|
static_branch_enable(&sched_smt_present);
|
|
}
|
|
#else
|
|
static inline void sched_init_smt(void) { }
|
|
#endif
|
|
|
|
void __init sched_init_smp(void)
|
|
{
|
|
cpumask_var_t non_isolated_cpus;
|
|
|
|
alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
|
|
alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
|
|
|
|
sched_init_numa();
|
|
|
|
/*
|
|
* There's no userspace yet to cause hotplug operations; hence all the
|
|
* cpu masks are stable and all blatant races in the below code cannot
|
|
* happen.
|
|
*/
|
|
mutex_lock(&sched_domains_mutex);
|
|
init_sched_domains(cpu_active_mask);
|
|
cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
|
|
if (cpumask_empty(non_isolated_cpus))
|
|
cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
|
|
mutex_unlock(&sched_domains_mutex);
|
|
|
|
/* Move init over to a non-isolated CPU */
|
|
if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
|
|
BUG();
|
|
sched_init_granularity();
|
|
free_cpumask_var(non_isolated_cpus);
|
|
|
|
init_sched_rt_class();
|
|
init_sched_dl_class();
|
|
|
|
sched_init_smt();
|
|
|
|
sched_smp_initialized = true;
|
|
}
|
|
|
|
static int __init migration_init(void)
|
|
{
|
|
sched_rq_cpu_starting(smp_processor_id());
|
|
return 0;
|
|
}
|
|
early_initcall(migration_init);
|
|
|
|
#else
|
|
void __init sched_init_smp(void)
|
|
{
|
|
sched_init_granularity();
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
int in_sched_functions(unsigned long addr)
|
|
{
|
|
return in_lock_functions(addr) ||
|
|
(addr >= (unsigned long)__sched_text_start
|
|
&& addr < (unsigned long)__sched_text_end);
|
|
}
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
/*
|
|
* Default task group.
|
|
* Every task in system belongs to this group at bootup.
|
|
*/
|
|
struct task_group root_task_group;
|
|
LIST_HEAD(task_groups);
|
|
|
|
/* Cacheline aligned slab cache for task_group */
|
|
static struct kmem_cache *task_group_cache __read_mostly;
|
|
#endif
|
|
|
|
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
|
|
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
|
|
|
|
#define WAIT_TABLE_BITS 8
|
|
#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
|
|
static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
|
|
|
|
wait_queue_head_t *bit_waitqueue(void *word, int bit)
|
|
{
|
|
const int shift = BITS_PER_LONG == 32 ? 5 : 6;
|
|
unsigned long val = (unsigned long)word << shift | bit;
|
|
|
|
return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
|
|
}
|
|
EXPORT_SYMBOL(bit_waitqueue);
|
|
|
|
void __init sched_init(void)
|
|
{
|
|
int i, j;
|
|
unsigned long alloc_size = 0, ptr;
|
|
|
|
for (i = 0; i < WAIT_TABLE_SIZE; i++)
|
|
init_waitqueue_head(bit_wait_table + i);
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
alloc_size += 2 * nr_cpu_ids * sizeof(void **);
|
|
#endif
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
alloc_size += 2 * nr_cpu_ids * sizeof(void **);
|
|
#endif
|
|
if (alloc_size) {
|
|
ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
root_task_group.se = (struct sched_entity **)ptr;
|
|
ptr += nr_cpu_ids * sizeof(void **);
|
|
|
|
root_task_group.cfs_rq = (struct cfs_rq **)ptr;
|
|
ptr += nr_cpu_ids * sizeof(void **);
|
|
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
root_task_group.rt_se = (struct sched_rt_entity **)ptr;
|
|
ptr += nr_cpu_ids * sizeof(void **);
|
|
|
|
root_task_group.rt_rq = (struct rt_rq **)ptr;
|
|
ptr += nr_cpu_ids * sizeof(void **);
|
|
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
}
|
|
#ifdef CONFIG_CPUMASK_OFFSTACK
|
|
for_each_possible_cpu(i) {
|
|
per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
|
|
cpumask_size(), GFP_KERNEL, cpu_to_node(i));
|
|
per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
|
|
cpumask_size(), GFP_KERNEL, cpu_to_node(i));
|
|
}
|
|
#endif /* CONFIG_CPUMASK_OFFSTACK */
|
|
|
|
init_rt_bandwidth(&def_rt_bandwidth,
|
|
global_rt_period(), global_rt_runtime());
|
|
init_dl_bandwidth(&def_dl_bandwidth,
|
|
global_rt_period(), global_rt_runtime());
|
|
|
|
#ifdef CONFIG_SMP
|
|
init_defrootdomain();
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
init_rt_bandwidth(&root_task_group.rt_bandwidth,
|
|
global_rt_period(), global_rt_runtime());
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
task_group_cache = KMEM_CACHE(task_group, 0);
|
|
|
|
list_add(&root_task_group.list, &task_groups);
|
|
INIT_LIST_HEAD(&root_task_group.children);
|
|
INIT_LIST_HEAD(&root_task_group.siblings);
|
|
autogroup_init(&init_task);
|
|
#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct rq *rq;
|
|
|
|
rq = cpu_rq(i);
|
|
raw_spin_lock_init(&rq->lock);
|
|
rq->nr_running = 0;
|
|
rq->calc_load_active = 0;
|
|
rq->calc_load_update = jiffies + LOAD_FREQ;
|
|
init_cfs_rq(&rq->cfs);
|
|
init_rt_rq(&rq->rt);
|
|
init_dl_rq(&rq->dl);
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
root_task_group.shares = ROOT_TASK_GROUP_LOAD;
|
|
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
|
|
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
|
|
/*
|
|
* How much cpu bandwidth does root_task_group get?
|
|
*
|
|
* In case of task-groups formed thr' the cgroup filesystem, it
|
|
* gets 100% of the cpu resources in the system. This overall
|
|
* system cpu resource is divided among the tasks of
|
|
* root_task_group and its child task-groups in a fair manner,
|
|
* based on each entity's (task or task-group's) weight
|
|
* (se->load.weight).
|
|
*
|
|
* In other words, if root_task_group has 10 tasks of weight
|
|
* 1024) and two child groups A0 and A1 (of weight 1024 each),
|
|
* then A0's share of the cpu resource is:
|
|
*
|
|
* A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
|
|
*
|
|
* We achieve this by letting root_task_group's tasks sit
|
|
* directly in rq->cfs (i.e root_task_group->se[] = NULL).
|
|
*/
|
|
init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
|
|
init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
|
|
#endif
|
|
|
|
for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
|
|
rq->cpu_load[j] = 0;
|
|
|
|
#ifdef CONFIG_SMP
|
|
rq->sd = NULL;
|
|
rq->rd = NULL;
|
|
rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
|
|
rq->balance_callback = NULL;
|
|
rq->active_balance = 0;
|
|
rq->next_balance = jiffies;
|
|
rq->push_cpu = 0;
|
|
rq->cpu = i;
|
|
rq->online = 0;
|
|
rq->idle_stamp = 0;
|
|
rq->avg_idle = 2*sysctl_sched_migration_cost;
|
|
rq->max_idle_balance_cost = sysctl_sched_migration_cost;
|
|
|
|
INIT_LIST_HEAD(&rq->cfs_tasks);
|
|
|
|
rq_attach_root(rq, &def_root_domain);
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
rq->last_load_update_tick = jiffies;
|
|
rq->nohz_flags = 0;
|
|
#endif
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
rq->last_sched_tick = 0;
|
|
#endif
|
|
#endif /* CONFIG_SMP */
|
|
init_rq_hrtick(rq);
|
|
atomic_set(&rq->nr_iowait, 0);
|
|
}
|
|
|
|
set_load_weight(&init_task);
|
|
|
|
/*
|
|
* The boot idle thread does lazy MMU switching as well:
|
|
*/
|
|
atomic_inc(&init_mm.mm_count);
|
|
enter_lazy_tlb(&init_mm, current);
|
|
|
|
/*
|
|
* Make us the idle thread. Technically, schedule() should not be
|
|
* called from this thread, however somewhere below it might be,
|
|
* but because we are the idle thread, we just pick up running again
|
|
* when this runqueue becomes "idle".
|
|
*/
|
|
init_idle(current, smp_processor_id());
|
|
|
|
calc_load_update = jiffies + LOAD_FREQ;
|
|
|
|
#ifdef CONFIG_SMP
|
|
zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
|
|
/* May be allocated at isolcpus cmdline parse time */
|
|
if (cpu_isolated_map == NULL)
|
|
zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
|
|
idle_thread_set_boot_cpu();
|
|
set_cpu_rq_start_time(smp_processor_id());
|
|
#endif
|
|
init_sched_fair_class();
|
|
|
|
init_schedstats();
|
|
|
|
scheduler_running = 1;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
static inline int preempt_count_equals(int preempt_offset)
|
|
{
|
|
int nested = preempt_count() + rcu_preempt_depth();
|
|
|
|
return (nested == preempt_offset);
|
|
}
|
|
|
|
void __might_sleep(const char *file, int line, int preempt_offset)
|
|
{
|
|
/*
|
|
* Blocking primitives will set (and therefore destroy) current->state,
|
|
* since we will exit with TASK_RUNNING make sure we enter with it,
|
|
* otherwise we will destroy state.
|
|
*/
|
|
WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
|
|
"do not call blocking ops when !TASK_RUNNING; "
|
|
"state=%lx set at [<%p>] %pS\n",
|
|
current->state,
|
|
(void *)current->task_state_change,
|
|
(void *)current->task_state_change);
|
|
|
|
___might_sleep(file, line, preempt_offset);
|
|
}
|
|
EXPORT_SYMBOL(__might_sleep);
|
|
|
|
void ___might_sleep(const char *file, int line, int preempt_offset)
|
|
{
|
|
static unsigned long prev_jiffy; /* ratelimiting */
|
|
unsigned long preempt_disable_ip;
|
|
|
|
rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
|
|
if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
|
|
!is_idle_task(current)) ||
|
|
system_state != SYSTEM_RUNNING || oops_in_progress)
|
|
return;
|
|
if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
|
|
return;
|
|
prev_jiffy = jiffies;
|
|
|
|
/* Save this before calling printk(), since that will clobber it */
|
|
preempt_disable_ip = get_preempt_disable_ip(current);
|
|
|
|
printk(KERN_ERR
|
|
"BUG: sleeping function called from invalid context at %s:%d\n",
|
|
file, line);
|
|
printk(KERN_ERR
|
|
"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
|
|
in_atomic(), irqs_disabled(),
|
|
current->pid, current->comm);
|
|
|
|
if (task_stack_end_corrupted(current))
|
|
printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
|
|
|
|
debug_show_held_locks(current);
|
|
if (irqs_disabled())
|
|
print_irqtrace_events(current);
|
|
if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
|
|
&& !preempt_count_equals(preempt_offset)) {
|
|
pr_err("Preemption disabled at:");
|
|
print_ip_sym(preempt_disable_ip);
|
|
pr_cont("\n");
|
|
}
|
|
dump_stack();
|
|
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
|
|
}
|
|
EXPORT_SYMBOL(___might_sleep);
|
|
#endif
|
|
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
void normalize_rt_tasks(void)
|
|
{
|
|
struct task_struct *g, *p;
|
|
struct sched_attr attr = {
|
|
.sched_policy = SCHED_NORMAL,
|
|
};
|
|
|
|
read_lock(&tasklist_lock);
|
|
for_each_process_thread(g, p) {
|
|
/*
|
|
* Only normalize user tasks:
|
|
*/
|
|
if (p->flags & PF_KTHREAD)
|
|
continue;
|
|
|
|
p->se.exec_start = 0;
|
|
schedstat_set(p->se.statistics.wait_start, 0);
|
|
schedstat_set(p->se.statistics.sleep_start, 0);
|
|
schedstat_set(p->se.statistics.block_start, 0);
|
|
|
|
if (!dl_task(p) && !rt_task(p)) {
|
|
/*
|
|
* Renice negative nice level userspace
|
|
* tasks back to 0:
|
|
*/
|
|
if (task_nice(p) < 0)
|
|
set_user_nice(p, 0);
|
|
continue;
|
|
}
|
|
|
|
__sched_setscheduler(p, &attr, false, false);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
#endif /* CONFIG_MAGIC_SYSRQ */
|
|
|
|
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
|
|
/*
|
|
* These functions are only useful for the IA64 MCA handling, or kdb.
|
|
*
|
|
* They can only be called when the whole system has been
|
|
* stopped - every CPU needs to be quiescent, and no scheduling
|
|
* activity can take place. Using them for anything else would
|
|
* be a serious bug, and as a result, they aren't even visible
|
|
* under any other configuration.
|
|
*/
|
|
|
|
/**
|
|
* curr_task - return the current task for a given cpu.
|
|
* @cpu: the processor in question.
|
|
*
|
|
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
|
|
*
|
|
* Return: The current task for @cpu.
|
|
*/
|
|
struct task_struct *curr_task(int cpu)
|
|
{
|
|
return cpu_curr(cpu);
|
|
}
|
|
|
|
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
|
|
|
|
#ifdef CONFIG_IA64
|
|
/**
|
|
* set_curr_task - set the current task for a given cpu.
|
|
* @cpu: the processor in question.
|
|
* @p: the task pointer to set.
|
|
*
|
|
* Description: This function must only be used when non-maskable interrupts
|
|
* are serviced on a separate stack. It allows the architecture to switch the
|
|
* notion of the current task on a cpu in a non-blocking manner. This function
|
|
* must be called with all CPU's synchronized, and interrupts disabled, the
|
|
* and caller must save the original value of the current task (see
|
|
* curr_task() above) and restore that value before reenabling interrupts and
|
|
* re-starting the system.
|
|
*
|
|
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
|
|
*/
|
|
void ia64_set_curr_task(int cpu, struct task_struct *p)
|
|
{
|
|
cpu_curr(cpu) = p;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
/* task_group_lock serializes the addition/removal of task groups */
|
|
static DEFINE_SPINLOCK(task_group_lock);
|
|
|
|
static void sched_free_group(struct task_group *tg)
|
|
{
|
|
free_fair_sched_group(tg);
|
|
free_rt_sched_group(tg);
|
|
autogroup_free(tg);
|
|
kmem_cache_free(task_group_cache, tg);
|
|
}
|
|
|
|
/* allocate runqueue etc for a new task group */
|
|
struct task_group *sched_create_group(struct task_group *parent)
|
|
{
|
|
struct task_group *tg;
|
|
|
|
tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
|
|
if (!tg)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (!alloc_fair_sched_group(tg, parent))
|
|
goto err;
|
|
|
|
if (!alloc_rt_sched_group(tg, parent))
|
|
goto err;
|
|
|
|
return tg;
|
|
|
|
err:
|
|
sched_free_group(tg);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
void sched_online_group(struct task_group *tg, struct task_group *parent)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&task_group_lock, flags);
|
|
list_add_rcu(&tg->list, &task_groups);
|
|
|
|
WARN_ON(!parent); /* root should already exist */
|
|
|
|
tg->parent = parent;
|
|
INIT_LIST_HEAD(&tg->children);
|
|
list_add_rcu(&tg->siblings, &parent->children);
|
|
spin_unlock_irqrestore(&task_group_lock, flags);
|
|
|
|
online_fair_sched_group(tg);
|
|
}
|
|
|
|
/* rcu callback to free various structures associated with a task group */
|
|
static void sched_free_group_rcu(struct rcu_head *rhp)
|
|
{
|
|
/* now it should be safe to free those cfs_rqs */
|
|
sched_free_group(container_of(rhp, struct task_group, rcu));
|
|
}
|
|
|
|
void sched_destroy_group(struct task_group *tg)
|
|
{
|
|
/* wait for possible concurrent references to cfs_rqs complete */
|
|
call_rcu(&tg->rcu, sched_free_group_rcu);
|
|
}
|
|
|
|
void sched_offline_group(struct task_group *tg)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* end participation in shares distribution */
|
|
unregister_fair_sched_group(tg);
|
|
|
|
spin_lock_irqsave(&task_group_lock, flags);
|
|
list_del_rcu(&tg->list);
|
|
list_del_rcu(&tg->siblings);
|
|
spin_unlock_irqrestore(&task_group_lock, flags);
|
|
}
|
|
|
|
static void sched_change_group(struct task_struct *tsk, int type)
|
|
{
|
|
struct task_group *tg;
|
|
|
|
/*
|
|
* All callers are synchronized by task_rq_lock(); we do not use RCU
|
|
* which is pointless here. Thus, we pass "true" to task_css_check()
|
|
* to prevent lockdep warnings.
|
|
*/
|
|
tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
|
|
struct task_group, css);
|
|
tg = autogroup_task_group(tsk, tg);
|
|
tsk->sched_task_group = tg;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
if (tsk->sched_class->task_change_group)
|
|
tsk->sched_class->task_change_group(tsk, type);
|
|
else
|
|
#endif
|
|
set_task_rq(tsk, task_cpu(tsk));
|
|
}
|
|
|
|
/*
|
|
* Change task's runqueue when it moves between groups.
|
|
*
|
|
* The caller of this function should have put the task in its new group by
|
|
* now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
|
|
* its new group.
|
|
*/
|
|
void sched_move_task(struct task_struct *tsk)
|
|
{
|
|
int queued, running;
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
rq = task_rq_lock(tsk, &rf);
|
|
|
|
running = task_current(rq, tsk);
|
|
queued = task_on_rq_queued(tsk);
|
|
|
|
if (queued)
|
|
dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
|
|
if (unlikely(running))
|
|
put_prev_task(rq, tsk);
|
|
|
|
sched_change_group(tsk, TASK_MOVE_GROUP);
|
|
|
|
if (queued)
|
|
enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
|
|
if (unlikely(running))
|
|
set_curr_task(rq, tsk);
|
|
|
|
task_rq_unlock(rq, tsk, &rf);
|
|
}
|
|
#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Ensure that the real time constraints are schedulable.
|
|
*/
|
|
static DEFINE_MUTEX(rt_constraints_mutex);
|
|
|
|
/* Must be called with tasklist_lock held */
|
|
static inline int tg_has_rt_tasks(struct task_group *tg)
|
|
{
|
|
struct task_struct *g, *p;
|
|
|
|
/*
|
|
* Autogroups do not have RT tasks; see autogroup_create().
|
|
*/
|
|
if (task_group_is_autogroup(tg))
|
|
return 0;
|
|
|
|
for_each_process_thread(g, p) {
|
|
if (rt_task(p) && task_group(p) == tg)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct rt_schedulable_data {
|
|
struct task_group *tg;
|
|
u64 rt_period;
|
|
u64 rt_runtime;
|
|
};
|
|
|
|
static int tg_rt_schedulable(struct task_group *tg, void *data)
|
|
{
|
|
struct rt_schedulable_data *d = data;
|
|
struct task_group *child;
|
|
unsigned long total, sum = 0;
|
|
u64 period, runtime;
|
|
|
|
period = ktime_to_ns(tg->rt_bandwidth.rt_period);
|
|
runtime = tg->rt_bandwidth.rt_runtime;
|
|
|
|
if (tg == d->tg) {
|
|
period = d->rt_period;
|
|
runtime = d->rt_runtime;
|
|
}
|
|
|
|
/*
|
|
* Cannot have more runtime than the period.
|
|
*/
|
|
if (runtime > period && runtime != RUNTIME_INF)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Ensure we don't starve existing RT tasks.
|
|
*/
|
|
if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
|
|
return -EBUSY;
|
|
|
|
total = to_ratio(period, runtime);
|
|
|
|
/*
|
|
* Nobody can have more than the global setting allows.
|
|
*/
|
|
if (total > to_ratio(global_rt_period(), global_rt_runtime()))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The sum of our children's runtime should not exceed our own.
|
|
*/
|
|
list_for_each_entry_rcu(child, &tg->children, siblings) {
|
|
period = ktime_to_ns(child->rt_bandwidth.rt_period);
|
|
runtime = child->rt_bandwidth.rt_runtime;
|
|
|
|
if (child == d->tg) {
|
|
period = d->rt_period;
|
|
runtime = d->rt_runtime;
|
|
}
|
|
|
|
sum += to_ratio(period, runtime);
|
|
}
|
|
|
|
if (sum > total)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
|
|
{
|
|
int ret;
|
|
|
|
struct rt_schedulable_data data = {
|
|
.tg = tg,
|
|
.rt_period = period,
|
|
.rt_runtime = runtime,
|
|
};
|
|
|
|
rcu_read_lock();
|
|
ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tg_set_rt_bandwidth(struct task_group *tg,
|
|
u64 rt_period, u64 rt_runtime)
|
|
{
|
|
int i, err = 0;
|
|
|
|
/*
|
|
* Disallowing the root group RT runtime is BAD, it would disallow the
|
|
* kernel creating (and or operating) RT threads.
|
|
*/
|
|
if (tg == &root_task_group && rt_runtime == 0)
|
|
return -EINVAL;
|
|
|
|
/* No period doesn't make any sense. */
|
|
if (rt_period == 0)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rt_constraints_mutex);
|
|
read_lock(&tasklist_lock);
|
|
err = __rt_schedulable(tg, rt_period, rt_runtime);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
|
|
tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
|
|
tg->rt_bandwidth.rt_runtime = rt_runtime;
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct rt_rq *rt_rq = tg->rt_rq[i];
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_runtime = rt_runtime;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
|
|
unlock:
|
|
read_unlock(&tasklist_lock);
|
|
mutex_unlock(&rt_constraints_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
|
|
{
|
|
u64 rt_runtime, rt_period;
|
|
|
|
rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
|
|
rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
|
|
if (rt_runtime_us < 0)
|
|
rt_runtime = RUNTIME_INF;
|
|
|
|
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
|
|
}
|
|
|
|
static long sched_group_rt_runtime(struct task_group *tg)
|
|
{
|
|
u64 rt_runtime_us;
|
|
|
|
if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
|
|
return -1;
|
|
|
|
rt_runtime_us = tg->rt_bandwidth.rt_runtime;
|
|
do_div(rt_runtime_us, NSEC_PER_USEC);
|
|
return rt_runtime_us;
|
|
}
|
|
|
|
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
|
|
{
|
|
u64 rt_runtime, rt_period;
|
|
|
|
rt_period = rt_period_us * NSEC_PER_USEC;
|
|
rt_runtime = tg->rt_bandwidth.rt_runtime;
|
|
|
|
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
|
|
}
|
|
|
|
static long sched_group_rt_period(struct task_group *tg)
|
|
{
|
|
u64 rt_period_us;
|
|
|
|
rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
|
|
do_div(rt_period_us, NSEC_PER_USEC);
|
|
return rt_period_us;
|
|
}
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
static int sched_rt_global_constraints(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&rt_constraints_mutex);
|
|
read_lock(&tasklist_lock);
|
|
ret = __rt_schedulable(NULL, 0, 0);
|
|
read_unlock(&tasklist_lock);
|
|
mutex_unlock(&rt_constraints_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
|
|
{
|
|
/* Don't accept realtime tasks when there is no way for them to run */
|
|
if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else /* !CONFIG_RT_GROUP_SCHED */
|
|
static int sched_rt_global_constraints(void)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
for_each_possible_cpu(i) {
|
|
struct rt_rq *rt_rq = &cpu_rq(i)->rt;
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_runtime = global_rt_runtime();
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
static int sched_dl_global_validate(void)
|
|
{
|
|
u64 runtime = global_rt_runtime();
|
|
u64 period = global_rt_period();
|
|
u64 new_bw = to_ratio(period, runtime);
|
|
struct dl_bw *dl_b;
|
|
int cpu, ret = 0;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Here we want to check the bandwidth not being set to some
|
|
* value smaller than the currently allocated bandwidth in
|
|
* any of the root_domains.
|
|
*
|
|
* FIXME: Cycling on all the CPUs is overdoing, but simpler than
|
|
* cycling on root_domains... Discussion on different/better
|
|
* solutions is welcome!
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
rcu_read_lock_sched();
|
|
dl_b = dl_bw_of(cpu);
|
|
|
|
raw_spin_lock_irqsave(&dl_b->lock, flags);
|
|
if (new_bw < dl_b->total_bw)
|
|
ret = -EBUSY;
|
|
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
|
|
|
|
rcu_read_unlock_sched();
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sched_dl_do_global(void)
|
|
{
|
|
u64 new_bw = -1;
|
|
struct dl_bw *dl_b;
|
|
int cpu;
|
|
unsigned long flags;
|
|
|
|
def_dl_bandwidth.dl_period = global_rt_period();
|
|
def_dl_bandwidth.dl_runtime = global_rt_runtime();
|
|
|
|
if (global_rt_runtime() != RUNTIME_INF)
|
|
new_bw = to_ratio(global_rt_period(), global_rt_runtime());
|
|
|
|
/*
|
|
* FIXME: As above...
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
rcu_read_lock_sched();
|
|
dl_b = dl_bw_of(cpu);
|
|
|
|
raw_spin_lock_irqsave(&dl_b->lock, flags);
|
|
dl_b->bw = new_bw;
|
|
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
|
|
|
|
rcu_read_unlock_sched();
|
|
}
|
|
}
|
|
|
|
static int sched_rt_global_validate(void)
|
|
{
|
|
if (sysctl_sched_rt_period <= 0)
|
|
return -EINVAL;
|
|
|
|
if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
|
|
(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sched_rt_do_global(void)
|
|
{
|
|
def_rt_bandwidth.rt_runtime = global_rt_runtime();
|
|
def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
|
|
}
|
|
|
|
int sched_rt_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int old_period, old_runtime;
|
|
static DEFINE_MUTEX(mutex);
|
|
int ret;
|
|
|
|
mutex_lock(&mutex);
|
|
old_period = sysctl_sched_rt_period;
|
|
old_runtime = sysctl_sched_rt_runtime;
|
|
|
|
ret = proc_dointvec(table, write, buffer, lenp, ppos);
|
|
|
|
if (!ret && write) {
|
|
ret = sched_rt_global_validate();
|
|
if (ret)
|
|
goto undo;
|
|
|
|
ret = sched_dl_global_validate();
|
|
if (ret)
|
|
goto undo;
|
|
|
|
ret = sched_rt_global_constraints();
|
|
if (ret)
|
|
goto undo;
|
|
|
|
sched_rt_do_global();
|
|
sched_dl_do_global();
|
|
}
|
|
if (0) {
|
|
undo:
|
|
sysctl_sched_rt_period = old_period;
|
|
sysctl_sched_rt_runtime = old_runtime;
|
|
}
|
|
mutex_unlock(&mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sched_rr_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
static DEFINE_MUTEX(mutex);
|
|
|
|
mutex_lock(&mutex);
|
|
ret = proc_dointvec(table, write, buffer, lenp, ppos);
|
|
/* make sure that internally we keep jiffies */
|
|
/* also, writing zero resets timeslice to default */
|
|
if (!ret && write) {
|
|
sched_rr_timeslice = sched_rr_timeslice <= 0 ?
|
|
RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
|
|
}
|
|
mutex_unlock(&mutex);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
|
|
{
|
|
return css ? container_of(css, struct task_group, css) : NULL;
|
|
}
|
|
|
|
static struct cgroup_subsys_state *
|
|
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
|
|
{
|
|
struct task_group *parent = css_tg(parent_css);
|
|
struct task_group *tg;
|
|
|
|
if (!parent) {
|
|
/* This is early initialization for the top cgroup */
|
|
return &root_task_group.css;
|
|
}
|
|
|
|
tg = sched_create_group(parent);
|
|
if (IS_ERR(tg))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sched_online_group(tg, parent);
|
|
|
|
return &tg->css;
|
|
}
|
|
|
|
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
|
|
{
|
|
struct task_group *tg = css_tg(css);
|
|
|
|
sched_offline_group(tg);
|
|
}
|
|
|
|
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
|
|
{
|
|
struct task_group *tg = css_tg(css);
|
|
|
|
/*
|
|
* Relies on the RCU grace period between css_released() and this.
|
|
*/
|
|
sched_free_group(tg);
|
|
}
|
|
|
|
/*
|
|
* This is called before wake_up_new_task(), therefore we really only
|
|
* have to set its group bits, all the other stuff does not apply.
|
|
*/
|
|
static void cpu_cgroup_fork(struct task_struct *task)
|
|
{
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
rq = task_rq_lock(task, &rf);
|
|
|
|
sched_change_group(task, TASK_SET_GROUP);
|
|
|
|
task_rq_unlock(rq, task, &rf);
|
|
}
|
|
|
|
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
|
|
{
|
|
struct task_struct *task;
|
|
struct cgroup_subsys_state *css;
|
|
int ret = 0;
|
|
|
|
cgroup_taskset_for_each(task, css, tset) {
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
if (!sched_rt_can_attach(css_tg(css), task))
|
|
return -EINVAL;
|
|
#else
|
|
/* We don't support RT-tasks being in separate groups */
|
|
if (task->sched_class != &fair_sched_class)
|
|
return -EINVAL;
|
|
#endif
|
|
/*
|
|
* Serialize against wake_up_new_task() such that if its
|
|
* running, we're sure to observe its full state.
|
|
*/
|
|
raw_spin_lock_irq(&task->pi_lock);
|
|
/*
|
|
* Avoid calling sched_move_task() before wake_up_new_task()
|
|
* has happened. This would lead to problems with PELT, due to
|
|
* move wanting to detach+attach while we're not attached yet.
|
|
*/
|
|
if (task->state == TASK_NEW)
|
|
ret = -EINVAL;
|
|
raw_spin_unlock_irq(&task->pi_lock);
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
|
|
{
|
|
struct task_struct *task;
|
|
struct cgroup_subsys_state *css;
|
|
|
|
cgroup_taskset_for_each(task, css, tset)
|
|
sched_move_task(task);
|
|
}
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
|
|
struct cftype *cftype, u64 shareval)
|
|
{
|
|
return sched_group_set_shares(css_tg(css), scale_load(shareval));
|
|
}
|
|
|
|
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
|
|
struct cftype *cft)
|
|
{
|
|
struct task_group *tg = css_tg(css);
|
|
|
|
return (u64) scale_load_down(tg->shares);
|
|
}
|
|
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
static DEFINE_MUTEX(cfs_constraints_mutex);
|
|
|
|
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
|
|
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
|
|
|
|
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
|
|
|
|
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
|
|
{
|
|
int i, ret = 0, runtime_enabled, runtime_was_enabled;
|
|
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
|
|
|
|
if (tg == &root_task_group)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Ensure we have at some amount of bandwidth every period. This is
|
|
* to prevent reaching a state of large arrears when throttled via
|
|
* entity_tick() resulting in prolonged exit starvation.
|
|
*/
|
|
if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Likewise, bound things on the otherside by preventing insane quota
|
|
* periods. This also allows us to normalize in computing quota
|
|
* feasibility.
|
|
*/
|
|
if (period > max_cfs_quota_period)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Prevent race between setting of cfs_rq->runtime_enabled and
|
|
* unthrottle_offline_cfs_rqs().
|
|
*/
|
|
get_online_cpus();
|
|
mutex_lock(&cfs_constraints_mutex);
|
|
ret = __cfs_schedulable(tg, period, quota);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
runtime_enabled = quota != RUNTIME_INF;
|
|
runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
|
|
/*
|
|
* If we need to toggle cfs_bandwidth_used, off->on must occur
|
|
* before making related changes, and on->off must occur afterwards
|
|
*/
|
|
if (runtime_enabled && !runtime_was_enabled)
|
|
cfs_bandwidth_usage_inc();
|
|
raw_spin_lock_irq(&cfs_b->lock);
|
|
cfs_b->period = ns_to_ktime(period);
|
|
cfs_b->quota = quota;
|
|
|
|
__refill_cfs_bandwidth_runtime(cfs_b);
|
|
/* restart the period timer (if active) to handle new period expiry */
|
|
if (runtime_enabled)
|
|
start_cfs_bandwidth(cfs_b);
|
|
raw_spin_unlock_irq(&cfs_b->lock);
|
|
|
|
for_each_online_cpu(i) {
|
|
struct cfs_rq *cfs_rq = tg->cfs_rq[i];
|
|
struct rq *rq = cfs_rq->rq;
|
|
|
|
raw_spin_lock_irq(&rq->lock);
|
|
cfs_rq->runtime_enabled = runtime_enabled;
|
|
cfs_rq->runtime_remaining = 0;
|
|
|
|
if (cfs_rq->throttled)
|
|
unthrottle_cfs_rq(cfs_rq);
|
|
raw_spin_unlock_irq(&rq->lock);
|
|
}
|
|
if (runtime_was_enabled && !runtime_enabled)
|
|
cfs_bandwidth_usage_dec();
|
|
out_unlock:
|
|
mutex_unlock(&cfs_constraints_mutex);
|
|
put_online_cpus();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
|
|
{
|
|
u64 quota, period;
|
|
|
|
period = ktime_to_ns(tg->cfs_bandwidth.period);
|
|
if (cfs_quota_us < 0)
|
|
quota = RUNTIME_INF;
|
|
else
|
|
quota = (u64)cfs_quota_us * NSEC_PER_USEC;
|
|
|
|
return tg_set_cfs_bandwidth(tg, period, quota);
|
|
}
|
|
|
|
long tg_get_cfs_quota(struct task_group *tg)
|
|
{
|
|
u64 quota_us;
|
|
|
|
if (tg->cfs_bandwidth.quota == RUNTIME_INF)
|
|
return -1;
|
|
|
|
quota_us = tg->cfs_bandwidth.quota;
|
|
do_div(quota_us, NSEC_PER_USEC);
|
|
|
|
return quota_us;
|
|
}
|
|
|
|
int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
|
|
{
|
|
u64 quota, period;
|
|
|
|
period = (u64)cfs_period_us * NSEC_PER_USEC;
|
|
quota = tg->cfs_bandwidth.quota;
|
|
|
|
return tg_set_cfs_bandwidth(tg, period, quota);
|
|
}
|
|
|
|
long tg_get_cfs_period(struct task_group *tg)
|
|
{
|
|
u64 cfs_period_us;
|
|
|
|
cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
|
|
do_div(cfs_period_us, NSEC_PER_USEC);
|
|
|
|
return cfs_period_us;
|
|
}
|
|
|
|
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
|
|
struct cftype *cft)
|
|
{
|
|
return tg_get_cfs_quota(css_tg(css));
|
|
}
|
|
|
|
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
|
|
struct cftype *cftype, s64 cfs_quota_us)
|
|
{
|
|
return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
|
|
}
|
|
|
|
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
|
|
struct cftype *cft)
|
|
{
|
|
return tg_get_cfs_period(css_tg(css));
|
|
}
|
|
|
|
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
|
|
struct cftype *cftype, u64 cfs_period_us)
|
|
{
|
|
return tg_set_cfs_period(css_tg(css), cfs_period_us);
|
|
}
|
|
|
|
struct cfs_schedulable_data {
|
|
struct task_group *tg;
|
|
u64 period, quota;
|
|
};
|
|
|
|
/*
|
|
* normalize group quota/period to be quota/max_period
|
|
* note: units are usecs
|
|
*/
|
|
static u64 normalize_cfs_quota(struct task_group *tg,
|
|
struct cfs_schedulable_data *d)
|
|
{
|
|
u64 quota, period;
|
|
|
|
if (tg == d->tg) {
|
|
period = d->period;
|
|
quota = d->quota;
|
|
} else {
|
|
period = tg_get_cfs_period(tg);
|
|
quota = tg_get_cfs_quota(tg);
|
|
}
|
|
|
|
/* note: these should typically be equivalent */
|
|
if (quota == RUNTIME_INF || quota == -1)
|
|
return RUNTIME_INF;
|
|
|
|
return to_ratio(period, quota);
|
|
}
|
|
|
|
static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
|
|
{
|
|
struct cfs_schedulable_data *d = data;
|
|
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
|
|
s64 quota = 0, parent_quota = -1;
|
|
|
|
if (!tg->parent) {
|
|
quota = RUNTIME_INF;
|
|
} else {
|
|
struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
|
|
|
|
quota = normalize_cfs_quota(tg, d);
|
|
parent_quota = parent_b->hierarchical_quota;
|
|
|
|
/*
|
|
* ensure max(child_quota) <= parent_quota, inherit when no
|
|
* limit is set
|
|
*/
|
|
if (quota == RUNTIME_INF)
|
|
quota = parent_quota;
|
|
else if (parent_quota != RUNTIME_INF && quota > parent_quota)
|
|
return -EINVAL;
|
|
}
|
|
cfs_b->hierarchical_quota = quota;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
|
|
{
|
|
int ret;
|
|
struct cfs_schedulable_data data = {
|
|
.tg = tg,
|
|
.period = period,
|
|
.quota = quota,
|
|
};
|
|
|
|
if (quota != RUNTIME_INF) {
|
|
do_div(data.period, NSEC_PER_USEC);
|
|
do_div(data.quota, NSEC_PER_USEC);
|
|
}
|
|
|
|
rcu_read_lock();
|
|
ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cpu_stats_show(struct seq_file *sf, void *v)
|
|
{
|
|
struct task_group *tg = css_tg(seq_css(sf));
|
|
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
|
|
|
|
seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
|
|
seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
|
|
seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_CFS_BANDWIDTH */
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
|
|
struct cftype *cft, s64 val)
|
|
{
|
|
return sched_group_set_rt_runtime(css_tg(css), val);
|
|
}
|
|
|
|
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
|
|
struct cftype *cft)
|
|
{
|
|
return sched_group_rt_runtime(css_tg(css));
|
|
}
|
|
|
|
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
|
|
struct cftype *cftype, u64 rt_period_us)
|
|
{
|
|
return sched_group_set_rt_period(css_tg(css), rt_period_us);
|
|
}
|
|
|
|
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
|
|
struct cftype *cft)
|
|
{
|
|
return sched_group_rt_period(css_tg(css));
|
|
}
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
static struct cftype cpu_files[] = {
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
{
|
|
.name = "shares",
|
|
.read_u64 = cpu_shares_read_u64,
|
|
.write_u64 = cpu_shares_write_u64,
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
{
|
|
.name = "cfs_quota_us",
|
|
.read_s64 = cpu_cfs_quota_read_s64,
|
|
.write_s64 = cpu_cfs_quota_write_s64,
|
|
},
|
|
{
|
|
.name = "cfs_period_us",
|
|
.read_u64 = cpu_cfs_period_read_u64,
|
|
.write_u64 = cpu_cfs_period_write_u64,
|
|
},
|
|
{
|
|
.name = "stat",
|
|
.seq_show = cpu_stats_show,
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
{
|
|
.name = "rt_runtime_us",
|
|
.read_s64 = cpu_rt_runtime_read,
|
|
.write_s64 = cpu_rt_runtime_write,
|
|
},
|
|
{
|
|
.name = "rt_period_us",
|
|
.read_u64 = cpu_rt_period_read_uint,
|
|
.write_u64 = cpu_rt_period_write_uint,
|
|
},
|
|
#endif
|
|
{ } /* terminate */
|
|
};
|
|
|
|
struct cgroup_subsys cpu_cgrp_subsys = {
|
|
.css_alloc = cpu_cgroup_css_alloc,
|
|
.css_released = cpu_cgroup_css_released,
|
|
.css_free = cpu_cgroup_css_free,
|
|
.fork = cpu_cgroup_fork,
|
|
.can_attach = cpu_cgroup_can_attach,
|
|
.attach = cpu_cgroup_attach,
|
|
.legacy_cftypes = cpu_files,
|
|
.early_init = true,
|
|
};
|
|
|
|
#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
void dump_cpu_task(int cpu)
|
|
{
|
|
pr_info("Task dump for CPU %d:\n", cpu);
|
|
sched_show_task(cpu_curr(cpu));
|
|
}
|
|
|
|
/*
|
|
* Nice levels are multiplicative, with a gentle 10% change for every
|
|
* nice level changed. I.e. when a CPU-bound task goes from nice 0 to
|
|
* nice 1, it will get ~10% less CPU time than another CPU-bound task
|
|
* that remained on nice 0.
|
|
*
|
|
* The "10% effect" is relative and cumulative: from _any_ nice level,
|
|
* if you go up 1 level, it's -10% CPU usage, if you go down 1 level
|
|
* it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
|
|
* If a task goes up by ~10% and another task goes down by ~10% then
|
|
* the relative distance between them is ~25%.)
|
|
*/
|
|
const int sched_prio_to_weight[40] = {
|
|
/* -20 */ 88761, 71755, 56483, 46273, 36291,
|
|
/* -15 */ 29154, 23254, 18705, 14949, 11916,
|
|
/* -10 */ 9548, 7620, 6100, 4904, 3906,
|
|
/* -5 */ 3121, 2501, 1991, 1586, 1277,
|
|
/* 0 */ 1024, 820, 655, 526, 423,
|
|
/* 5 */ 335, 272, 215, 172, 137,
|
|
/* 10 */ 110, 87, 70, 56, 45,
|
|
/* 15 */ 36, 29, 23, 18, 15,
|
|
};
|
|
|
|
/*
|
|
* Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
|
|
*
|
|
* In cases where the weight does not change often, we can use the
|
|
* precalculated inverse to speed up arithmetics by turning divisions
|
|
* into multiplications:
|
|
*/
|
|
const u32 sched_prio_to_wmult[40] = {
|
|
/* -20 */ 48388, 59856, 76040, 92818, 118348,
|
|
/* -15 */ 147320, 184698, 229616, 287308, 360437,
|
|
/* -10 */ 449829, 563644, 704093, 875809, 1099582,
|
|
/* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
|
|
/* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
|
|
/* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
|
|
/* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
|
|
/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
|
|
};
|