linux-sg2042/fs/xfs/xfs_file.c

1177 lines
30 KiB
C

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
#include "xfs_iomap.h"
#include "xfs_reflink.h"
#include <linux/dcache.h>
#include <linux/falloc.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
static const struct vm_operations_struct xfs_file_vm_ops;
/*
* Clear the specified ranges to zero through either the pagecache or DAX.
* Holes and unwritten extents will be left as-is as they already are zeroed.
*/
int
xfs_zero_range(
struct xfs_inode *ip,
xfs_off_t pos,
xfs_off_t count,
bool *did_zero)
{
return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
}
int
xfs_update_prealloc_flags(
struct xfs_inode *ip,
enum xfs_prealloc_flags flags)
{
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
0, 0, 0, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
if (!(flags & XFS_PREALLOC_INVISIBLE)) {
VFS_I(ip)->i_mode &= ~S_ISUID;
if (VFS_I(ip)->i_mode & S_IXGRP)
VFS_I(ip)->i_mode &= ~S_ISGID;
xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
}
if (flags & XFS_PREALLOC_SET)
ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
if (flags & XFS_PREALLOC_CLEAR)
ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
if (flags & XFS_PREALLOC_SYNC)
xfs_trans_set_sync(tp);
return xfs_trans_commit(tp);
}
/*
* Fsync operations on directories are much simpler than on regular files,
* as there is no file data to flush, and thus also no need for explicit
* cache flush operations, and there are no non-transaction metadata updates
* on directories either.
*/
STATIC int
xfs_dir_fsync(
struct file *file,
loff_t start,
loff_t end,
int datasync)
{
struct xfs_inode *ip = XFS_I(file->f_mapping->host);
struct xfs_mount *mp = ip->i_mount;
xfs_lsn_t lsn = 0;
trace_xfs_dir_fsync(ip);
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (xfs_ipincount(ip))
lsn = ip->i_itemp->ili_last_lsn;
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (!lsn)
return 0;
return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
}
STATIC int
xfs_file_fsync(
struct file *file,
loff_t start,
loff_t end,
int datasync)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
int error = 0;
int log_flushed = 0;
xfs_lsn_t lsn = 0;
trace_xfs_file_fsync(ip);
error = file_write_and_wait_range(file, start, end);
if (error)
return error;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
xfs_iflags_clear(ip, XFS_ITRUNCATED);
/*
* If we have an RT and/or log subvolume we need to make sure to flush
* the write cache the device used for file data first. This is to
* ensure newly written file data make it to disk before logging the new
* inode size in case of an extending write.
*/
if (XFS_IS_REALTIME_INODE(ip))
xfs_blkdev_issue_flush(mp->m_rtdev_targp);
else if (mp->m_logdev_targp != mp->m_ddev_targp)
xfs_blkdev_issue_flush(mp->m_ddev_targp);
/*
* All metadata updates are logged, which means that we just have to
* flush the log up to the latest LSN that touched the inode. If we have
* concurrent fsync/fdatasync() calls, we need them to all block on the
* log force before we clear the ili_fsync_fields field. This ensures
* that we don't get a racing sync operation that does not wait for the
* metadata to hit the journal before returning. If we race with
* clearing the ili_fsync_fields, then all that will happen is the log
* force will do nothing as the lsn will already be on disk. We can't
* race with setting ili_fsync_fields because that is done under
* XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
* until after the ili_fsync_fields is cleared.
*/
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (xfs_ipincount(ip)) {
if (!datasync ||
(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
lsn = ip->i_itemp->ili_last_lsn;
}
if (lsn) {
error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
ip->i_itemp->ili_fsync_fields = 0;
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
/*
* If we only have a single device, and the log force about was
* a no-op we might have to flush the data device cache here.
* This can only happen for fdatasync/O_DSYNC if we were overwriting
* an already allocated file and thus do not have any metadata to
* commit.
*/
if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
mp->m_logdev_targp == mp->m_ddev_targp)
xfs_blkdev_issue_flush(mp->m_ddev_targp);
return error;
}
STATIC ssize_t
xfs_file_dio_aio_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
size_t count = iov_iter_count(to);
ssize_t ret;
trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
if (!count)
return 0; /* skip atime */
file_accessed(iocb->ki_filp);
xfs_ilock(ip, XFS_IOLOCK_SHARED);
ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
static noinline ssize_t
xfs_file_dax_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
size_t count = iov_iter_count(to);
ssize_t ret = 0;
trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
if (!count)
return 0; /* skip atime */
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
return -EAGAIN;
} else {
xfs_ilock(ip, XFS_IOLOCK_SHARED);
}
ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
file_accessed(iocb->ki_filp);
return ret;
}
STATIC ssize_t
xfs_file_buffered_aio_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
ssize_t ret;
trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
return -EAGAIN;
} else {
xfs_ilock(ip, XFS_IOLOCK_SHARED);
}
ret = generic_file_read_iter(iocb, to);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
STATIC ssize_t
xfs_file_read_iter(
struct kiocb *iocb,
struct iov_iter *to)
{
struct inode *inode = file_inode(iocb->ki_filp);
struct xfs_mount *mp = XFS_I(inode)->i_mount;
ssize_t ret = 0;
XFS_STATS_INC(mp, xs_read_calls);
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
if (IS_DAX(inode))
ret = xfs_file_dax_read(iocb, to);
else if (iocb->ki_flags & IOCB_DIRECT)
ret = xfs_file_dio_aio_read(iocb, to);
else
ret = xfs_file_buffered_aio_read(iocb, to);
if (ret > 0)
XFS_STATS_ADD(mp, xs_read_bytes, ret);
return ret;
}
/*
* Zero any on disk space between the current EOF and the new, larger EOF.
*
* This handles the normal case of zeroing the remainder of the last block in
* the file and the unusual case of zeroing blocks out beyond the size of the
* file. This second case only happens with fixed size extents and when the
* system crashes before the inode size was updated but after blocks were
* allocated.
*
* Expects the iolock to be held exclusive, and will take the ilock internally.
*/
int /* error (positive) */
xfs_zero_eof(
struct xfs_inode *ip,
xfs_off_t offset, /* starting I/O offset */
xfs_fsize_t isize, /* current inode size */
bool *did_zeroing)
{
ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ASSERT(offset > isize);
trace_xfs_zero_eof(ip, isize, offset - isize);
return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
}
/*
* Common pre-write limit and setup checks.
*
* Called with the iolocked held either shared and exclusive according to
* @iolock, and returns with it held. Might upgrade the iolock to exclusive
* if called for a direct write beyond i_size.
*/
STATIC ssize_t
xfs_file_aio_write_checks(
struct kiocb *iocb,
struct iov_iter *from,
int *iolock)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t error = 0;
size_t count = iov_iter_count(from);
bool drained_dio = false;
restart:
error = generic_write_checks(iocb, from);
if (error <= 0)
return error;
error = xfs_break_layouts(inode, iolock);
if (error)
return error;
/*
* For changing security info in file_remove_privs() we need i_rwsem
* exclusively.
*/
if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
xfs_iunlock(ip, *iolock);
*iolock = XFS_IOLOCK_EXCL;
xfs_ilock(ip, *iolock);
goto restart;
}
/*
* If the offset is beyond the size of the file, we need to zero any
* blocks that fall between the existing EOF and the start of this
* write. If zeroing is needed and we are currently holding the
* iolock shared, we need to update it to exclusive which implies
* having to redo all checks before.
*
* We need to serialise against EOF updates that occur in IO
* completions here. We want to make sure that nobody is changing the
* size while we do this check until we have placed an IO barrier (i.e.
* hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
* The spinlock effectively forms a memory barrier once we have the
* XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
* and hence be able to correctly determine if we need to run zeroing.
*/
spin_lock(&ip->i_flags_lock);
if (iocb->ki_pos > i_size_read(inode)) {
spin_unlock(&ip->i_flags_lock);
if (!drained_dio) {
if (*iolock == XFS_IOLOCK_SHARED) {
xfs_iunlock(ip, *iolock);
*iolock = XFS_IOLOCK_EXCL;
xfs_ilock(ip, *iolock);
iov_iter_reexpand(from, count);
}
/*
* We now have an IO submission barrier in place, but
* AIO can do EOF updates during IO completion and hence
* we now need to wait for all of them to drain. Non-AIO
* DIO will have drained before we are given the
* XFS_IOLOCK_EXCL, and so for most cases this wait is a
* no-op.
*/
inode_dio_wait(inode);
drained_dio = true;
goto restart;
}
error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL);
if (error)
return error;
} else
spin_unlock(&ip->i_flags_lock);
/*
* Updating the timestamps will grab the ilock again from
* xfs_fs_dirty_inode, so we have to call it after dropping the
* lock above. Eventually we should look into a way to avoid
* the pointless lock roundtrip.
*/
if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
error = file_update_time(file);
if (error)
return error;
}
/*
* If we're writing the file then make sure to clear the setuid and
* setgid bits if the process is not being run by root. This keeps
* people from modifying setuid and setgid binaries.
*/
if (!IS_NOSEC(inode))
return file_remove_privs(file);
return 0;
}
static int
xfs_dio_write_end_io(
struct kiocb *iocb,
ssize_t size,
unsigned flags)
{
struct inode *inode = file_inode(iocb->ki_filp);
struct xfs_inode *ip = XFS_I(inode);
loff_t offset = iocb->ki_pos;
int error = 0;
trace_xfs_end_io_direct_write(ip, offset, size);
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
if (size <= 0)
return size;
if (flags & IOMAP_DIO_COW) {
error = xfs_reflink_end_cow(ip, offset, size);
if (error)
return error;
}
/*
* Unwritten conversion updates the in-core isize after extent
* conversion but before updating the on-disk size. Updating isize any
* earlier allows a racing dio read to find unwritten extents before
* they are converted.
*/
if (flags & IOMAP_DIO_UNWRITTEN)
return xfs_iomap_write_unwritten(ip, offset, size, true);
/*
* We need to update the in-core inode size here so that we don't end up
* with the on-disk inode size being outside the in-core inode size. We
* have no other method of updating EOF for AIO, so always do it here
* if necessary.
*
* We need to lock the test/set EOF update as we can be racing with
* other IO completions here to update the EOF. Failing to serialise
* here can result in EOF moving backwards and Bad Things Happen when
* that occurs.
*/
spin_lock(&ip->i_flags_lock);
if (offset + size > i_size_read(inode)) {
i_size_write(inode, offset + size);
spin_unlock(&ip->i_flags_lock);
error = xfs_setfilesize(ip, offset, size);
} else {
spin_unlock(&ip->i_flags_lock);
}
return error;
}
/*
* xfs_file_dio_aio_write - handle direct IO writes
*
* Lock the inode appropriately to prepare for and issue a direct IO write.
* By separating it from the buffered write path we remove all the tricky to
* follow locking changes and looping.
*
* If there are cached pages or we're extending the file, we need IOLOCK_EXCL
* until we're sure the bytes at the new EOF have been zeroed and/or the cached
* pages are flushed out.
*
* In most cases the direct IO writes will be done holding IOLOCK_SHARED
* allowing them to be done in parallel with reads and other direct IO writes.
* However, if the IO is not aligned to filesystem blocks, the direct IO layer
* needs to do sub-block zeroing and that requires serialisation against other
* direct IOs to the same block. In this case we need to serialise the
* submission of the unaligned IOs so that we don't get racing block zeroing in
* the dio layer. To avoid the problem with aio, we also need to wait for
* outstanding IOs to complete so that unwritten extent conversion is completed
* before we try to map the overlapping block. This is currently implemented by
* hitting it with a big hammer (i.e. inode_dio_wait()).
*
* Returns with locks held indicated by @iolock and errors indicated by
* negative return values.
*/
STATIC ssize_t
xfs_file_dio_aio_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t ret = 0;
int unaligned_io = 0;
int iolock;
size_t count = iov_iter_count(from);
struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
/* DIO must be aligned to device logical sector size */
if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
return -EINVAL;
/*
* Don't take the exclusive iolock here unless the I/O is unaligned to
* the file system block size. We don't need to consider the EOF
* extension case here because xfs_file_aio_write_checks() will relock
* the inode as necessary for EOF zeroing cases and fill out the new
* inode size as appropriate.
*/
if ((iocb->ki_pos & mp->m_blockmask) ||
((iocb->ki_pos + count) & mp->m_blockmask)) {
unaligned_io = 1;
/*
* We can't properly handle unaligned direct I/O to reflink
* files yet, as we can't unshare a partial block.
*/
if (xfs_is_reflink_inode(ip)) {
trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
return -EREMCHG;
}
iolock = XFS_IOLOCK_EXCL;
} else {
iolock = XFS_IOLOCK_SHARED;
}
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!xfs_ilock_nowait(ip, iolock))
return -EAGAIN;
} else {
xfs_ilock(ip, iolock);
}
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
count = iov_iter_count(from);
/*
* If we are doing unaligned IO, wait for all other IO to drain,
* otherwise demote the lock if we had to take the exclusive lock
* for other reasons in xfs_file_aio_write_checks.
*/
if (unaligned_io) {
/* If we are going to wait for other DIO to finish, bail */
if (iocb->ki_flags & IOCB_NOWAIT) {
if (atomic_read(&inode->i_dio_count))
return -EAGAIN;
} else {
inode_dio_wait(inode);
}
} else if (iolock == XFS_IOLOCK_EXCL) {
xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
iolock = XFS_IOLOCK_SHARED;
}
trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
out:
xfs_iunlock(ip, iolock);
/*
* No fallback to buffered IO on errors for XFS, direct IO will either
* complete fully or fail.
*/
ASSERT(ret < 0 || ret == count);
return ret;
}
static noinline ssize_t
xfs_file_dax_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct inode *inode = iocb->ki_filp->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
int iolock = XFS_IOLOCK_EXCL;
ssize_t ret, error = 0;
size_t count;
loff_t pos;
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!xfs_ilock_nowait(ip, iolock))
return -EAGAIN;
} else {
xfs_ilock(ip, iolock);
}
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
pos = iocb->ki_pos;
count = iov_iter_count(from);
trace_xfs_file_dax_write(ip, count, pos);
ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
i_size_write(inode, iocb->ki_pos);
error = xfs_setfilesize(ip, pos, ret);
}
out:
xfs_iunlock(ip, iolock);
return error ? error : ret;
}
STATIC ssize_t
xfs_file_buffered_aio_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t ret;
int enospc = 0;
int iolock;
if (iocb->ki_flags & IOCB_NOWAIT)
return -EOPNOTSUPP;
write_retry:
iolock = XFS_IOLOCK_EXCL;
xfs_ilock(ip, iolock);
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
/* We can write back this queue in page reclaim */
current->backing_dev_info = inode_to_bdi(inode);
trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
if (likely(ret >= 0))
iocb->ki_pos += ret;
/*
* If we hit a space limit, try to free up some lingering preallocated
* space before returning an error. In the case of ENOSPC, first try to
* write back all dirty inodes to free up some of the excess reserved
* metadata space. This reduces the chances that the eofblocks scan
* waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
* also behaves as a filter to prevent too many eofblocks scans from
* running at the same time.
*/
if (ret == -EDQUOT && !enospc) {
xfs_iunlock(ip, iolock);
enospc = xfs_inode_free_quota_eofblocks(ip);
if (enospc)
goto write_retry;
enospc = xfs_inode_free_quota_cowblocks(ip);
if (enospc)
goto write_retry;
iolock = 0;
} else if (ret == -ENOSPC && !enospc) {
struct xfs_eofblocks eofb = {0};
enospc = 1;
xfs_flush_inodes(ip->i_mount);
xfs_iunlock(ip, iolock);
eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
xfs_icache_free_eofblocks(ip->i_mount, &eofb);
xfs_icache_free_cowblocks(ip->i_mount, &eofb);
goto write_retry;
}
current->backing_dev_info = NULL;
out:
if (iolock)
xfs_iunlock(ip, iolock);
return ret;
}
STATIC ssize_t
xfs_file_write_iter(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t ret;
size_t ocount = iov_iter_count(from);
XFS_STATS_INC(ip->i_mount, xs_write_calls);
if (ocount == 0)
return 0;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
if (IS_DAX(inode))
ret = xfs_file_dax_write(iocb, from);
else if (iocb->ki_flags & IOCB_DIRECT) {
/*
* Allow a directio write to fall back to a buffered
* write *only* in the case that we're doing a reflink
* CoW. In all other directio scenarios we do not
* allow an operation to fall back to buffered mode.
*/
ret = xfs_file_dio_aio_write(iocb, from);
if (ret == -EREMCHG)
goto buffered;
} else {
buffered:
ret = xfs_file_buffered_aio_write(iocb, from);
}
if (ret > 0) {
XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
/* Handle various SYNC-type writes */
ret = generic_write_sync(iocb, ret);
}
return ret;
}
#define XFS_FALLOC_FL_SUPPORTED \
(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
STATIC long
xfs_file_fallocate(
struct file *file,
int mode,
loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct xfs_inode *ip = XFS_I(inode);
long error;
enum xfs_prealloc_flags flags = 0;
uint iolock = XFS_IOLOCK_EXCL;
loff_t new_size = 0;
bool do_file_insert = false;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (mode & ~XFS_FALLOC_FL_SUPPORTED)
return -EOPNOTSUPP;
xfs_ilock(ip, iolock);
error = xfs_break_layouts(inode, &iolock);
if (error)
goto out_unlock;
xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
iolock |= XFS_MMAPLOCK_EXCL;
if (mode & FALLOC_FL_PUNCH_HOLE) {
error = xfs_free_file_space(ip, offset, len);
if (error)
goto out_unlock;
} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
unsigned int blksize_mask = i_blocksize(inode) - 1;
if (offset & blksize_mask || len & blksize_mask) {
error = -EINVAL;
goto out_unlock;
}
/*
* There is no need to overlap collapse range with EOF,
* in which case it is effectively a truncate operation
*/
if (offset + len >= i_size_read(inode)) {
error = -EINVAL;
goto out_unlock;
}
new_size = i_size_read(inode) - len;
error = xfs_collapse_file_space(ip, offset, len);
if (error)
goto out_unlock;
} else if (mode & FALLOC_FL_INSERT_RANGE) {
unsigned int blksize_mask = i_blocksize(inode) - 1;
new_size = i_size_read(inode) + len;
if (offset & blksize_mask || len & blksize_mask) {
error = -EINVAL;
goto out_unlock;
}
/* check the new inode size does not wrap through zero */
if (new_size > inode->i_sb->s_maxbytes) {
error = -EFBIG;
goto out_unlock;
}
/* Offset should be less than i_size */
if (offset >= i_size_read(inode)) {
error = -EINVAL;
goto out_unlock;
}
do_file_insert = true;
} else {
flags |= XFS_PREALLOC_SET;
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
offset + len > i_size_read(inode)) {
new_size = offset + len;
error = inode_newsize_ok(inode, new_size);
if (error)
goto out_unlock;
}
if (mode & FALLOC_FL_ZERO_RANGE)
error = xfs_zero_file_space(ip, offset, len);
else {
if (mode & FALLOC_FL_UNSHARE_RANGE) {
error = xfs_reflink_unshare(ip, offset, len);
if (error)
goto out_unlock;
}
error = xfs_alloc_file_space(ip, offset, len,
XFS_BMAPI_PREALLOC);
}
if (error)
goto out_unlock;
}
if (file->f_flags & O_DSYNC)
flags |= XFS_PREALLOC_SYNC;
error = xfs_update_prealloc_flags(ip, flags);
if (error)
goto out_unlock;
/* Change file size if needed */
if (new_size) {
struct iattr iattr;
iattr.ia_valid = ATTR_SIZE;
iattr.ia_size = new_size;
error = xfs_vn_setattr_size(file_dentry(file), &iattr);
if (error)
goto out_unlock;
}
/*
* Perform hole insertion now that the file size has been
* updated so that if we crash during the operation we don't
* leave shifted extents past EOF and hence losing access to
* the data that is contained within them.
*/
if (do_file_insert)
error = xfs_insert_file_space(ip, offset, len);
out_unlock:
xfs_iunlock(ip, iolock);
return error;
}
STATIC int
xfs_file_clone_range(
struct file *file_in,
loff_t pos_in,
struct file *file_out,
loff_t pos_out,
u64 len)
{
return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
len, false);
}
STATIC ssize_t
xfs_file_dedupe_range(
struct file *src_file,
u64 loff,
u64 len,
struct file *dst_file,
u64 dst_loff)
{
int error;
error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
len, true);
if (error)
return error;
return len;
}
STATIC int
xfs_file_open(
struct inode *inode,
struct file *file)
{
if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
return -EFBIG;
if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
return -EIO;
file->f_mode |= FMODE_NOWAIT;
return 0;
}
STATIC int
xfs_dir_open(
struct inode *inode,
struct file *file)
{
struct xfs_inode *ip = XFS_I(inode);
int mode;
int error;
error = xfs_file_open(inode, file);
if (error)
return error;
/*
* If there are any blocks, read-ahead block 0 as we're almost
* certain to have the next operation be a read there.
*/
mode = xfs_ilock_data_map_shared(ip);
if (ip->i_d.di_nextents > 0)
error = xfs_dir3_data_readahead(ip, 0, -1);
xfs_iunlock(ip, mode);
return error;
}
STATIC int
xfs_file_release(
struct inode *inode,
struct file *filp)
{
return xfs_release(XFS_I(inode));
}
STATIC int
xfs_file_readdir(
struct file *file,
struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
xfs_inode_t *ip = XFS_I(inode);
size_t bufsize;
/*
* The Linux API doesn't pass down the total size of the buffer
* we read into down to the filesystem. With the filldir concept
* it's not needed for correct information, but the XFS dir2 leaf
* code wants an estimate of the buffer size to calculate it's
* readahead window and size the buffers used for mapping to
* physical blocks.
*
* Try to give it an estimate that's good enough, maybe at some
* point we can change the ->readdir prototype to include the
* buffer size. For now we use the current glibc buffer size.
*/
bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
return xfs_readdir(NULL, ip, ctx, bufsize);
}
STATIC loff_t
xfs_file_llseek(
struct file *file,
loff_t offset,
int whence)
{
struct inode *inode = file->f_mapping->host;
if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
return -EIO;
switch (whence) {
default:
return generic_file_llseek(file, offset, whence);
case SEEK_HOLE:
offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
break;
case SEEK_DATA:
offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
break;
}
if (offset < 0)
return offset;
return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
}
/*
* Locking for serialisation of IO during page faults. This results in a lock
* ordering of:
*
* mmap_sem (MM)
* sb_start_pagefault(vfs, freeze)
* i_mmaplock (XFS - truncate serialisation)
* page_lock (MM)
* i_lock (XFS - extent map serialisation)
*/
static int
__xfs_filemap_fault(
struct vm_fault *vmf,
enum page_entry_size pe_size,
bool write_fault)
{
struct inode *inode = file_inode(vmf->vma->vm_file);
struct xfs_inode *ip = XFS_I(inode);
int ret;
trace_xfs_filemap_fault(ip, pe_size, write_fault);
if (write_fault) {
sb_start_pagefault(inode->i_sb);
file_update_time(vmf->vma->vm_file);
}
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
if (IS_DAX(inode)) {
ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
} else {
if (write_fault)
ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
else
ret = filemap_fault(vmf);
}
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
if (write_fault)
sb_end_pagefault(inode->i_sb);
return ret;
}
static int
xfs_filemap_fault(
struct vm_fault *vmf)
{
/* DAX can shortcut the normal fault path on write faults! */
return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
IS_DAX(file_inode(vmf->vma->vm_file)) &&
(vmf->flags & FAULT_FLAG_WRITE));
}
static int
xfs_filemap_huge_fault(
struct vm_fault *vmf,
enum page_entry_size pe_size)
{
if (!IS_DAX(file_inode(vmf->vma->vm_file)))
return VM_FAULT_FALLBACK;
/* DAX can shortcut the normal fault path on write faults! */
return __xfs_filemap_fault(vmf, pe_size,
(vmf->flags & FAULT_FLAG_WRITE));
}
static int
xfs_filemap_page_mkwrite(
struct vm_fault *vmf)
{
return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
}
/*
* pfn_mkwrite was originally inteneded to ensure we capture time stamp
* updates on write faults. In reality, it's need to serialise against
* truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
* to ensure we serialise the fault barrier in place.
*/
static int
xfs_filemap_pfn_mkwrite(
struct vm_fault *vmf)
{
struct inode *inode = file_inode(vmf->vma->vm_file);
struct xfs_inode *ip = XFS_I(inode);
int ret = VM_FAULT_NOPAGE;
loff_t size;
trace_xfs_filemap_pfn_mkwrite(ip);
sb_start_pagefault(inode->i_sb);
file_update_time(vmf->vma->vm_file);
/* check if the faulting page hasn't raced with truncate */
xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (vmf->pgoff >= size)
ret = VM_FAULT_SIGBUS;
else if (IS_DAX(inode))
ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
sb_end_pagefault(inode->i_sb);
return ret;
}
static const struct vm_operations_struct xfs_file_vm_ops = {
.fault = xfs_filemap_fault,
.huge_fault = xfs_filemap_huge_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = xfs_filemap_page_mkwrite,
.pfn_mkwrite = xfs_filemap_pfn_mkwrite,
};
STATIC int
xfs_file_mmap(
struct file *filp,
struct vm_area_struct *vma)
{
file_accessed(filp);
vma->vm_ops = &xfs_file_vm_ops;
if (IS_DAX(file_inode(filp)))
vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
return 0;
}
const struct file_operations xfs_file_operations = {
.llseek = xfs_file_llseek,
.read_iter = xfs_file_read_iter,
.write_iter = xfs_file_write_iter,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.mmap = xfs_file_mmap,
.open = xfs_file_open,
.release = xfs_file_release,
.fsync = xfs_file_fsync,
.get_unmapped_area = thp_get_unmapped_area,
.fallocate = xfs_file_fallocate,
.clone_file_range = xfs_file_clone_range,
.dedupe_file_range = xfs_file_dedupe_range,
};
const struct file_operations xfs_dir_file_operations = {
.open = xfs_dir_open,
.read = generic_read_dir,
.iterate_shared = xfs_file_readdir,
.llseek = generic_file_llseek,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.fsync = xfs_dir_fsync,
};