1348 lines
33 KiB
C
1348 lines
33 KiB
C
/*
|
|
* u_serial.c - utilities for USB gadget "serial port"/TTY support
|
|
*
|
|
* Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
|
|
* Copyright (C) 2008 David Brownell
|
|
* Copyright (C) 2008 by Nokia Corporation
|
|
*
|
|
* This code also borrows from usbserial.c, which is
|
|
* Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com)
|
|
* Copyright (C) 2000 Peter Berger (pberger@brimson.com)
|
|
* Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com)
|
|
*
|
|
* This software is distributed under the terms of the GNU General
|
|
* Public License ("GPL") as published by the Free Software Foundation,
|
|
* either version 2 of that License or (at your option) any later version.
|
|
*/
|
|
|
|
/* #define VERBOSE_DEBUG */
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "u_serial.h"
|
|
|
|
|
|
/*
|
|
* This component encapsulates the TTY layer glue needed to provide basic
|
|
* "serial port" functionality through the USB gadget stack. Each such
|
|
* port is exposed through a /dev/ttyGS* node.
|
|
*
|
|
* After this module has been loaded, the individual TTY port can be requested
|
|
* (gserial_alloc_line()) and it will stay available until they are removed
|
|
* (gserial_free_line()). Each one may be connected to a USB function
|
|
* (gserial_connect), or disconnected (with gserial_disconnect) when the USB
|
|
* host issues a config change event. Data can only flow when the port is
|
|
* connected to the host.
|
|
*
|
|
* A given TTY port can be made available in multiple configurations.
|
|
* For example, each one might expose a ttyGS0 node which provides a
|
|
* login application. In one case that might use CDC ACM interface 0,
|
|
* while another configuration might use interface 3 for that. The
|
|
* work to handle that (including descriptor management) is not part
|
|
* of this component.
|
|
*
|
|
* Configurations may expose more than one TTY port. For example, if
|
|
* ttyGS0 provides login service, then ttyGS1 might provide dialer access
|
|
* for a telephone or fax link. And ttyGS2 might be something that just
|
|
* needs a simple byte stream interface for some messaging protocol that
|
|
* is managed in userspace ... OBEX, PTP, and MTP have been mentioned.
|
|
*/
|
|
|
|
#define PREFIX "ttyGS"
|
|
|
|
/*
|
|
* gserial is the lifecycle interface, used by USB functions
|
|
* gs_port is the I/O nexus, used by the tty driver
|
|
* tty_struct links to the tty/filesystem framework
|
|
*
|
|
* gserial <---> gs_port ... links will be null when the USB link is
|
|
* inactive; managed by gserial_{connect,disconnect}(). each gserial
|
|
* instance can wrap its own USB control protocol.
|
|
* gserial->ioport == usb_ep->driver_data ... gs_port
|
|
* gs_port->port_usb ... gserial
|
|
*
|
|
* gs_port <---> tty_struct ... links will be null when the TTY file
|
|
* isn't opened; managed by gs_open()/gs_close()
|
|
* gserial->port_tty ... tty_struct
|
|
* tty_struct->driver_data ... gserial
|
|
*/
|
|
|
|
/* RX and TX queues can buffer QUEUE_SIZE packets before they hit the
|
|
* next layer of buffering. For TX that's a circular buffer; for RX
|
|
* consider it a NOP. A third layer is provided by the TTY code.
|
|
*/
|
|
#define QUEUE_SIZE 16
|
|
#define WRITE_BUF_SIZE 8192 /* TX only */
|
|
|
|
/* circular buffer */
|
|
struct gs_buf {
|
|
unsigned buf_size;
|
|
char *buf_buf;
|
|
char *buf_get;
|
|
char *buf_put;
|
|
};
|
|
|
|
/*
|
|
* The port structure holds info for each port, one for each minor number
|
|
* (and thus for each /dev/ node).
|
|
*/
|
|
struct gs_port {
|
|
struct tty_port port;
|
|
spinlock_t port_lock; /* guard port_* access */
|
|
|
|
struct gserial *port_usb;
|
|
|
|
bool openclose; /* open/close in progress */
|
|
u8 port_num;
|
|
|
|
struct list_head read_pool;
|
|
int read_started;
|
|
int read_allocated;
|
|
struct list_head read_queue;
|
|
unsigned n_read;
|
|
struct tasklet_struct push;
|
|
|
|
struct list_head write_pool;
|
|
int write_started;
|
|
int write_allocated;
|
|
struct gs_buf port_write_buf;
|
|
wait_queue_head_t drain_wait; /* wait while writes drain */
|
|
|
|
/* REVISIT this state ... */
|
|
struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */
|
|
};
|
|
|
|
static struct portmaster {
|
|
struct mutex lock; /* protect open/close */
|
|
struct gs_port *port;
|
|
} ports[MAX_U_SERIAL_PORTS];
|
|
|
|
#define GS_CLOSE_TIMEOUT 15 /* seconds */
|
|
|
|
|
|
|
|
#ifdef VERBOSE_DEBUG
|
|
#ifndef pr_vdebug
|
|
#define pr_vdebug(fmt, arg...) \
|
|
pr_debug(fmt, ##arg)
|
|
#endif /* pr_vdebug */
|
|
#else
|
|
#ifndef pr_vdebug
|
|
#define pr_vdebug(fmt, arg...) \
|
|
({ if (0) pr_debug(fmt, ##arg); })
|
|
#endif /* pr_vdebug */
|
|
#endif
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Circular Buffer */
|
|
|
|
/*
|
|
* gs_buf_alloc
|
|
*
|
|
* Allocate a circular buffer and all associated memory.
|
|
*/
|
|
static int gs_buf_alloc(struct gs_buf *gb, unsigned size)
|
|
{
|
|
gb->buf_buf = kmalloc(size, GFP_KERNEL);
|
|
if (gb->buf_buf == NULL)
|
|
return -ENOMEM;
|
|
|
|
gb->buf_size = size;
|
|
gb->buf_put = gb->buf_buf;
|
|
gb->buf_get = gb->buf_buf;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* gs_buf_free
|
|
*
|
|
* Free the buffer and all associated memory.
|
|
*/
|
|
static void gs_buf_free(struct gs_buf *gb)
|
|
{
|
|
kfree(gb->buf_buf);
|
|
gb->buf_buf = NULL;
|
|
}
|
|
|
|
/*
|
|
* gs_buf_clear
|
|
*
|
|
* Clear out all data in the circular buffer.
|
|
*/
|
|
static void gs_buf_clear(struct gs_buf *gb)
|
|
{
|
|
gb->buf_get = gb->buf_put;
|
|
/* equivalent to a get of all data available */
|
|
}
|
|
|
|
/*
|
|
* gs_buf_data_avail
|
|
*
|
|
* Return the number of bytes of data written into the circular
|
|
* buffer.
|
|
*/
|
|
static unsigned gs_buf_data_avail(struct gs_buf *gb)
|
|
{
|
|
return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size;
|
|
}
|
|
|
|
/*
|
|
* gs_buf_space_avail
|
|
*
|
|
* Return the number of bytes of space available in the circular
|
|
* buffer.
|
|
*/
|
|
static unsigned gs_buf_space_avail(struct gs_buf *gb)
|
|
{
|
|
return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size;
|
|
}
|
|
|
|
/*
|
|
* gs_buf_put
|
|
*
|
|
* Copy data data from a user buffer and put it into the circular buffer.
|
|
* Restrict to the amount of space available.
|
|
*
|
|
* Return the number of bytes copied.
|
|
*/
|
|
static unsigned
|
|
gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count)
|
|
{
|
|
unsigned len;
|
|
|
|
len = gs_buf_space_avail(gb);
|
|
if (count > len)
|
|
count = len;
|
|
|
|
if (count == 0)
|
|
return 0;
|
|
|
|
len = gb->buf_buf + gb->buf_size - gb->buf_put;
|
|
if (count > len) {
|
|
memcpy(gb->buf_put, buf, len);
|
|
memcpy(gb->buf_buf, buf+len, count - len);
|
|
gb->buf_put = gb->buf_buf + count - len;
|
|
} else {
|
|
memcpy(gb->buf_put, buf, count);
|
|
if (count < len)
|
|
gb->buf_put += count;
|
|
else /* count == len */
|
|
gb->buf_put = gb->buf_buf;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* gs_buf_get
|
|
*
|
|
* Get data from the circular buffer and copy to the given buffer.
|
|
* Restrict to the amount of data available.
|
|
*
|
|
* Return the number of bytes copied.
|
|
*/
|
|
static unsigned
|
|
gs_buf_get(struct gs_buf *gb, char *buf, unsigned count)
|
|
{
|
|
unsigned len;
|
|
|
|
len = gs_buf_data_avail(gb);
|
|
if (count > len)
|
|
count = len;
|
|
|
|
if (count == 0)
|
|
return 0;
|
|
|
|
len = gb->buf_buf + gb->buf_size - gb->buf_get;
|
|
if (count > len) {
|
|
memcpy(buf, gb->buf_get, len);
|
|
memcpy(buf+len, gb->buf_buf, count - len);
|
|
gb->buf_get = gb->buf_buf + count - len;
|
|
} else {
|
|
memcpy(buf, gb->buf_get, count);
|
|
if (count < len)
|
|
gb->buf_get += count;
|
|
else /* count == len */
|
|
gb->buf_get = gb->buf_buf;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* I/O glue between TTY (upper) and USB function (lower) driver layers */
|
|
|
|
/*
|
|
* gs_alloc_req
|
|
*
|
|
* Allocate a usb_request and its buffer. Returns a pointer to the
|
|
* usb_request or NULL if there is an error.
|
|
*/
|
|
struct usb_request *
|
|
gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags)
|
|
{
|
|
struct usb_request *req;
|
|
|
|
req = usb_ep_alloc_request(ep, kmalloc_flags);
|
|
|
|
if (req != NULL) {
|
|
req->length = len;
|
|
req->buf = kmalloc(len, kmalloc_flags);
|
|
if (req->buf == NULL) {
|
|
usb_ep_free_request(ep, req);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return req;
|
|
}
|
|
EXPORT_SYMBOL_GPL(gs_alloc_req);
|
|
|
|
/*
|
|
* gs_free_req
|
|
*
|
|
* Free a usb_request and its buffer.
|
|
*/
|
|
void gs_free_req(struct usb_ep *ep, struct usb_request *req)
|
|
{
|
|
kfree(req->buf);
|
|
usb_ep_free_request(ep, req);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gs_free_req);
|
|
|
|
/*
|
|
* gs_send_packet
|
|
*
|
|
* If there is data to send, a packet is built in the given
|
|
* buffer and the size is returned. If there is no data to
|
|
* send, 0 is returned.
|
|
*
|
|
* Called with port_lock held.
|
|
*/
|
|
static unsigned
|
|
gs_send_packet(struct gs_port *port, char *packet, unsigned size)
|
|
{
|
|
unsigned len;
|
|
|
|
len = gs_buf_data_avail(&port->port_write_buf);
|
|
if (len < size)
|
|
size = len;
|
|
if (size != 0)
|
|
size = gs_buf_get(&port->port_write_buf, packet, size);
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* gs_start_tx
|
|
*
|
|
* This function finds available write requests, calls
|
|
* gs_send_packet to fill these packets with data, and
|
|
* continues until either there are no more write requests
|
|
* available or no more data to send. This function is
|
|
* run whenever data arrives or write requests are available.
|
|
*
|
|
* Context: caller owns port_lock; port_usb is non-null.
|
|
*/
|
|
static int gs_start_tx(struct gs_port *port)
|
|
/*
|
|
__releases(&port->port_lock)
|
|
__acquires(&port->port_lock)
|
|
*/
|
|
{
|
|
struct list_head *pool = &port->write_pool;
|
|
struct usb_ep *in = port->port_usb->in;
|
|
int status = 0;
|
|
bool do_tty_wake = false;
|
|
|
|
while (!list_empty(pool)) {
|
|
struct usb_request *req;
|
|
int len;
|
|
|
|
if (port->write_started >= QUEUE_SIZE)
|
|
break;
|
|
|
|
req = list_entry(pool->next, struct usb_request, list);
|
|
len = gs_send_packet(port, req->buf, in->maxpacket);
|
|
if (len == 0) {
|
|
wake_up_interruptible(&port->drain_wait);
|
|
break;
|
|
}
|
|
do_tty_wake = true;
|
|
|
|
req->length = len;
|
|
list_del(&req->list);
|
|
req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0);
|
|
|
|
pr_vdebug(PREFIX "%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n",
|
|
port->port_num, len, *((u8 *)req->buf),
|
|
*((u8 *)req->buf+1), *((u8 *)req->buf+2));
|
|
|
|
/* Drop lock while we call out of driver; completions
|
|
* could be issued while we do so. Disconnection may
|
|
* happen too; maybe immediately before we queue this!
|
|
*
|
|
* NOTE that we may keep sending data for a while after
|
|
* the TTY closed (dev->ioport->port_tty is NULL).
|
|
*/
|
|
spin_unlock(&port->port_lock);
|
|
status = usb_ep_queue(in, req, GFP_ATOMIC);
|
|
spin_lock(&port->port_lock);
|
|
|
|
if (status) {
|
|
pr_debug("%s: %s %s err %d\n",
|
|
__func__, "queue", in->name, status);
|
|
list_add(&req->list, pool);
|
|
break;
|
|
}
|
|
|
|
port->write_started++;
|
|
|
|
/* abort immediately after disconnect */
|
|
if (!port->port_usb)
|
|
break;
|
|
}
|
|
|
|
if (do_tty_wake && port->port.tty)
|
|
tty_wakeup(port->port.tty);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Context: caller owns port_lock, and port_usb is set
|
|
*/
|
|
static unsigned gs_start_rx(struct gs_port *port)
|
|
/*
|
|
__releases(&port->port_lock)
|
|
__acquires(&port->port_lock)
|
|
*/
|
|
{
|
|
struct list_head *pool = &port->read_pool;
|
|
struct usb_ep *out = port->port_usb->out;
|
|
|
|
while (!list_empty(pool)) {
|
|
struct usb_request *req;
|
|
int status;
|
|
struct tty_struct *tty;
|
|
|
|
/* no more rx if closed */
|
|
tty = port->port.tty;
|
|
if (!tty)
|
|
break;
|
|
|
|
if (port->read_started >= QUEUE_SIZE)
|
|
break;
|
|
|
|
req = list_entry(pool->next, struct usb_request, list);
|
|
list_del(&req->list);
|
|
req->length = out->maxpacket;
|
|
|
|
/* drop lock while we call out; the controller driver
|
|
* may need to call us back (e.g. for disconnect)
|
|
*/
|
|
spin_unlock(&port->port_lock);
|
|
status = usb_ep_queue(out, req, GFP_ATOMIC);
|
|
spin_lock(&port->port_lock);
|
|
|
|
if (status) {
|
|
pr_debug("%s: %s %s err %d\n",
|
|
__func__, "queue", out->name, status);
|
|
list_add(&req->list, pool);
|
|
break;
|
|
}
|
|
port->read_started++;
|
|
|
|
/* abort immediately after disconnect */
|
|
if (!port->port_usb)
|
|
break;
|
|
}
|
|
return port->read_started;
|
|
}
|
|
|
|
/*
|
|
* RX tasklet takes data out of the RX queue and hands it up to the TTY
|
|
* layer until it refuses to take any more data (or is throttled back).
|
|
* Then it issues reads for any further data.
|
|
*
|
|
* If the RX queue becomes full enough that no usb_request is queued,
|
|
* the OUT endpoint may begin NAKing as soon as its FIFO fills up.
|
|
* So QUEUE_SIZE packets plus however many the FIFO holds (usually two)
|
|
* can be buffered before the TTY layer's buffers (currently 64 KB).
|
|
*/
|
|
static void gs_rx_push(unsigned long _port)
|
|
{
|
|
struct gs_port *port = (void *)_port;
|
|
struct tty_struct *tty;
|
|
struct list_head *queue = &port->read_queue;
|
|
bool disconnect = false;
|
|
bool do_push = false;
|
|
|
|
/* hand any queued data to the tty */
|
|
spin_lock_irq(&port->port_lock);
|
|
tty = port->port.tty;
|
|
while (!list_empty(queue)) {
|
|
struct usb_request *req;
|
|
|
|
req = list_first_entry(queue, struct usb_request, list);
|
|
|
|
/* leave data queued if tty was rx throttled */
|
|
if (tty && test_bit(TTY_THROTTLED, &tty->flags))
|
|
break;
|
|
|
|
switch (req->status) {
|
|
case -ESHUTDOWN:
|
|
disconnect = true;
|
|
pr_vdebug(PREFIX "%d: shutdown\n", port->port_num);
|
|
break;
|
|
|
|
default:
|
|
/* presumably a transient fault */
|
|
pr_warning(PREFIX "%d: unexpected RX status %d\n",
|
|
port->port_num, req->status);
|
|
/* FALLTHROUGH */
|
|
case 0:
|
|
/* normal completion */
|
|
break;
|
|
}
|
|
|
|
/* push data to (open) tty */
|
|
if (req->actual) {
|
|
char *packet = req->buf;
|
|
unsigned size = req->actual;
|
|
unsigned n;
|
|
int count;
|
|
|
|
/* we may have pushed part of this packet already... */
|
|
n = port->n_read;
|
|
if (n) {
|
|
packet += n;
|
|
size -= n;
|
|
}
|
|
|
|
count = tty_insert_flip_string(&port->port, packet,
|
|
size);
|
|
if (count)
|
|
do_push = true;
|
|
if (count != size) {
|
|
/* stop pushing; TTY layer can't handle more */
|
|
port->n_read += count;
|
|
pr_vdebug(PREFIX "%d: rx block %d/%d\n",
|
|
port->port_num,
|
|
count, req->actual);
|
|
break;
|
|
}
|
|
port->n_read = 0;
|
|
}
|
|
|
|
list_move(&req->list, &port->read_pool);
|
|
port->read_started--;
|
|
}
|
|
|
|
/* Push from tty to ldisc; without low_latency set this is handled by
|
|
* a workqueue, so we won't get callbacks and can hold port_lock
|
|
*/
|
|
if (do_push)
|
|
tty_flip_buffer_push(&port->port);
|
|
|
|
|
|
/* We want our data queue to become empty ASAP, keeping data
|
|
* in the tty and ldisc (not here). If we couldn't push any
|
|
* this time around, there may be trouble unless there's an
|
|
* implicit tty_unthrottle() call on its way...
|
|
*
|
|
* REVISIT we should probably add a timer to keep the tasklet
|
|
* from starving ... but it's not clear that case ever happens.
|
|
*/
|
|
if (!list_empty(queue) && tty) {
|
|
if (!test_bit(TTY_THROTTLED, &tty->flags)) {
|
|
if (do_push)
|
|
tasklet_schedule(&port->push);
|
|
else
|
|
pr_warning(PREFIX "%d: RX not scheduled?\n",
|
|
port->port_num);
|
|
}
|
|
}
|
|
|
|
/* If we're still connected, refill the USB RX queue. */
|
|
if (!disconnect && port->port_usb)
|
|
gs_start_rx(port);
|
|
|
|
spin_unlock_irq(&port->port_lock);
|
|
}
|
|
|
|
static void gs_read_complete(struct usb_ep *ep, struct usb_request *req)
|
|
{
|
|
struct gs_port *port = ep->driver_data;
|
|
|
|
/* Queue all received data until the tty layer is ready for it. */
|
|
spin_lock(&port->port_lock);
|
|
list_add_tail(&req->list, &port->read_queue);
|
|
tasklet_schedule(&port->push);
|
|
spin_unlock(&port->port_lock);
|
|
}
|
|
|
|
static void gs_write_complete(struct usb_ep *ep, struct usb_request *req)
|
|
{
|
|
struct gs_port *port = ep->driver_data;
|
|
|
|
spin_lock(&port->port_lock);
|
|
list_add(&req->list, &port->write_pool);
|
|
port->write_started--;
|
|
|
|
switch (req->status) {
|
|
default:
|
|
/* presumably a transient fault */
|
|
pr_warning("%s: unexpected %s status %d\n",
|
|
__func__, ep->name, req->status);
|
|
/* FALL THROUGH */
|
|
case 0:
|
|
/* normal completion */
|
|
gs_start_tx(port);
|
|
break;
|
|
|
|
case -ESHUTDOWN:
|
|
/* disconnect */
|
|
pr_vdebug("%s: %s shutdown\n", __func__, ep->name);
|
|
break;
|
|
}
|
|
|
|
spin_unlock(&port->port_lock);
|
|
}
|
|
|
|
static void gs_free_requests(struct usb_ep *ep, struct list_head *head,
|
|
int *allocated)
|
|
{
|
|
struct usb_request *req;
|
|
|
|
while (!list_empty(head)) {
|
|
req = list_entry(head->next, struct usb_request, list);
|
|
list_del(&req->list);
|
|
gs_free_req(ep, req);
|
|
if (allocated)
|
|
(*allocated)--;
|
|
}
|
|
}
|
|
|
|
static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head,
|
|
void (*fn)(struct usb_ep *, struct usb_request *),
|
|
int *allocated)
|
|
{
|
|
int i;
|
|
struct usb_request *req;
|
|
int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE;
|
|
|
|
/* Pre-allocate up to QUEUE_SIZE transfers, but if we can't
|
|
* do quite that many this time, don't fail ... we just won't
|
|
* be as speedy as we might otherwise be.
|
|
*/
|
|
for (i = 0; i < n; i++) {
|
|
req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC);
|
|
if (!req)
|
|
return list_empty(head) ? -ENOMEM : 0;
|
|
req->complete = fn;
|
|
list_add_tail(&req->list, head);
|
|
if (allocated)
|
|
(*allocated)++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gs_start_io - start USB I/O streams
|
|
* @dev: encapsulates endpoints to use
|
|
* Context: holding port_lock; port_tty and port_usb are non-null
|
|
*
|
|
* We only start I/O when something is connected to both sides of
|
|
* this port. If nothing is listening on the host side, we may
|
|
* be pointlessly filling up our TX buffers and FIFO.
|
|
*/
|
|
static int gs_start_io(struct gs_port *port)
|
|
{
|
|
struct list_head *head = &port->read_pool;
|
|
struct usb_ep *ep = port->port_usb->out;
|
|
int status;
|
|
unsigned started;
|
|
|
|
/* Allocate RX and TX I/O buffers. We can't easily do this much
|
|
* earlier (with GFP_KERNEL) because the requests are coupled to
|
|
* endpoints, as are the packet sizes we'll be using. Different
|
|
* configurations may use different endpoints with a given port;
|
|
* and high speed vs full speed changes packet sizes too.
|
|
*/
|
|
status = gs_alloc_requests(ep, head, gs_read_complete,
|
|
&port->read_allocated);
|
|
if (status)
|
|
return status;
|
|
|
|
status = gs_alloc_requests(port->port_usb->in, &port->write_pool,
|
|
gs_write_complete, &port->write_allocated);
|
|
if (status) {
|
|
gs_free_requests(ep, head, &port->read_allocated);
|
|
return status;
|
|
}
|
|
|
|
/* queue read requests */
|
|
port->n_read = 0;
|
|
started = gs_start_rx(port);
|
|
|
|
/* unblock any pending writes into our circular buffer */
|
|
if (started) {
|
|
tty_wakeup(port->port.tty);
|
|
} else {
|
|
gs_free_requests(ep, head, &port->read_allocated);
|
|
gs_free_requests(port->port_usb->in, &port->write_pool,
|
|
&port->write_allocated);
|
|
status = -EIO;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* TTY Driver */
|
|
|
|
/*
|
|
* gs_open sets up the link between a gs_port and its associated TTY.
|
|
* That link is broken *only* by TTY close(), and all driver methods
|
|
* know that.
|
|
*/
|
|
static int gs_open(struct tty_struct *tty, struct file *file)
|
|
{
|
|
int port_num = tty->index;
|
|
struct gs_port *port;
|
|
int status;
|
|
|
|
do {
|
|
mutex_lock(&ports[port_num].lock);
|
|
port = ports[port_num].port;
|
|
if (!port)
|
|
status = -ENODEV;
|
|
else {
|
|
spin_lock_irq(&port->port_lock);
|
|
|
|
/* already open? Great. */
|
|
if (port->port.count) {
|
|
status = 0;
|
|
port->port.count++;
|
|
|
|
/* currently opening/closing? wait ... */
|
|
} else if (port->openclose) {
|
|
status = -EBUSY;
|
|
|
|
/* ... else we do the work */
|
|
} else {
|
|
status = -EAGAIN;
|
|
port->openclose = true;
|
|
}
|
|
spin_unlock_irq(&port->port_lock);
|
|
}
|
|
mutex_unlock(&ports[port_num].lock);
|
|
|
|
switch (status) {
|
|
default:
|
|
/* fully handled */
|
|
return status;
|
|
case -EAGAIN:
|
|
/* must do the work */
|
|
break;
|
|
case -EBUSY:
|
|
/* wait for EAGAIN task to finish */
|
|
msleep(1);
|
|
/* REVISIT could have a waitchannel here, if
|
|
* concurrent open performance is important
|
|
*/
|
|
break;
|
|
}
|
|
} while (status != -EAGAIN);
|
|
|
|
/* Do the "real open" */
|
|
spin_lock_irq(&port->port_lock);
|
|
|
|
/* allocate circular buffer on first open */
|
|
if (port->port_write_buf.buf_buf == NULL) {
|
|
|
|
spin_unlock_irq(&port->port_lock);
|
|
status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE);
|
|
spin_lock_irq(&port->port_lock);
|
|
|
|
if (status) {
|
|
pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n",
|
|
port->port_num, tty, file);
|
|
port->openclose = false;
|
|
goto exit_unlock_port;
|
|
}
|
|
}
|
|
|
|
/* REVISIT if REMOVED (ports[].port NULL), abort the open
|
|
* to let rmmod work faster (but this way isn't wrong).
|
|
*/
|
|
|
|
/* REVISIT maybe wait for "carrier detect" */
|
|
|
|
tty->driver_data = port;
|
|
port->port.tty = tty;
|
|
|
|
port->port.count = 1;
|
|
port->openclose = false;
|
|
|
|
/* if connected, start the I/O stream */
|
|
if (port->port_usb) {
|
|
struct gserial *gser = port->port_usb;
|
|
|
|
pr_debug("gs_open: start ttyGS%d\n", port->port_num);
|
|
gs_start_io(port);
|
|
|
|
if (gser->connect)
|
|
gser->connect(gser);
|
|
}
|
|
|
|
pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file);
|
|
|
|
status = 0;
|
|
|
|
exit_unlock_port:
|
|
spin_unlock_irq(&port->port_lock);
|
|
return status;
|
|
}
|
|
|
|
static int gs_writes_finished(struct gs_port *p)
|
|
{
|
|
int cond;
|
|
|
|
/* return true on disconnect or empty buffer */
|
|
spin_lock_irq(&p->port_lock);
|
|
cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf);
|
|
spin_unlock_irq(&p->port_lock);
|
|
|
|
return cond;
|
|
}
|
|
|
|
static void gs_close(struct tty_struct *tty, struct file *file)
|
|
{
|
|
struct gs_port *port = tty->driver_data;
|
|
struct gserial *gser;
|
|
|
|
spin_lock_irq(&port->port_lock);
|
|
|
|
if (port->port.count != 1) {
|
|
if (port->port.count == 0)
|
|
WARN_ON(1);
|
|
else
|
|
--port->port.count;
|
|
goto exit;
|
|
}
|
|
|
|
pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file);
|
|
|
|
/* mark port as closing but in use; we can drop port lock
|
|
* and sleep if necessary
|
|
*/
|
|
port->openclose = true;
|
|
port->port.count = 0;
|
|
|
|
gser = port->port_usb;
|
|
if (gser && gser->disconnect)
|
|
gser->disconnect(gser);
|
|
|
|
/* wait for circular write buffer to drain, disconnect, or at
|
|
* most GS_CLOSE_TIMEOUT seconds; then discard the rest
|
|
*/
|
|
if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) {
|
|
spin_unlock_irq(&port->port_lock);
|
|
wait_event_interruptible_timeout(port->drain_wait,
|
|
gs_writes_finished(port),
|
|
GS_CLOSE_TIMEOUT * HZ);
|
|
spin_lock_irq(&port->port_lock);
|
|
gser = port->port_usb;
|
|
}
|
|
|
|
/* Iff we're disconnected, there can be no I/O in flight so it's
|
|
* ok to free the circular buffer; else just scrub it. And don't
|
|
* let the push tasklet fire again until we're re-opened.
|
|
*/
|
|
if (gser == NULL)
|
|
gs_buf_free(&port->port_write_buf);
|
|
else
|
|
gs_buf_clear(&port->port_write_buf);
|
|
|
|
tty->driver_data = NULL;
|
|
port->port.tty = NULL;
|
|
|
|
port->openclose = false;
|
|
|
|
pr_debug("gs_close: ttyGS%d (%p,%p) done!\n",
|
|
port->port_num, tty, file);
|
|
|
|
wake_up(&port->port.close_wait);
|
|
exit:
|
|
spin_unlock_irq(&port->port_lock);
|
|
}
|
|
|
|
static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count)
|
|
{
|
|
struct gs_port *port = tty->driver_data;
|
|
unsigned long flags;
|
|
int status;
|
|
|
|
pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n",
|
|
port->port_num, tty, count);
|
|
|
|
spin_lock_irqsave(&port->port_lock, flags);
|
|
if (count)
|
|
count = gs_buf_put(&port->port_write_buf, buf, count);
|
|
/* treat count == 0 as flush_chars() */
|
|
if (port->port_usb)
|
|
status = gs_start_tx(port);
|
|
spin_unlock_irqrestore(&port->port_lock, flags);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int gs_put_char(struct tty_struct *tty, unsigned char ch)
|
|
{
|
|
struct gs_port *port = tty->driver_data;
|
|
unsigned long flags;
|
|
int status;
|
|
|
|
pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %pf\n",
|
|
port->port_num, tty, ch, __builtin_return_address(0));
|
|
|
|
spin_lock_irqsave(&port->port_lock, flags);
|
|
status = gs_buf_put(&port->port_write_buf, &ch, 1);
|
|
spin_unlock_irqrestore(&port->port_lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void gs_flush_chars(struct tty_struct *tty)
|
|
{
|
|
struct gs_port *port = tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty);
|
|
|
|
spin_lock_irqsave(&port->port_lock, flags);
|
|
if (port->port_usb)
|
|
gs_start_tx(port);
|
|
spin_unlock_irqrestore(&port->port_lock, flags);
|
|
}
|
|
|
|
static int gs_write_room(struct tty_struct *tty)
|
|
{
|
|
struct gs_port *port = tty->driver_data;
|
|
unsigned long flags;
|
|
int room = 0;
|
|
|
|
spin_lock_irqsave(&port->port_lock, flags);
|
|
if (port->port_usb)
|
|
room = gs_buf_space_avail(&port->port_write_buf);
|
|
spin_unlock_irqrestore(&port->port_lock, flags);
|
|
|
|
pr_vdebug("gs_write_room: (%d,%p) room=%d\n",
|
|
port->port_num, tty, room);
|
|
|
|
return room;
|
|
}
|
|
|
|
static int gs_chars_in_buffer(struct tty_struct *tty)
|
|
{
|
|
struct gs_port *port = tty->driver_data;
|
|
unsigned long flags;
|
|
int chars = 0;
|
|
|
|
spin_lock_irqsave(&port->port_lock, flags);
|
|
chars = gs_buf_data_avail(&port->port_write_buf);
|
|
spin_unlock_irqrestore(&port->port_lock, flags);
|
|
|
|
pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n",
|
|
port->port_num, tty, chars);
|
|
|
|
return chars;
|
|
}
|
|
|
|
/* undo side effects of setting TTY_THROTTLED */
|
|
static void gs_unthrottle(struct tty_struct *tty)
|
|
{
|
|
struct gs_port *port = tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&port->port_lock, flags);
|
|
if (port->port_usb) {
|
|
/* Kickstart read queue processing. We don't do xon/xoff,
|
|
* rts/cts, or other handshaking with the host, but if the
|
|
* read queue backs up enough we'll be NAKing OUT packets.
|
|
*/
|
|
tasklet_schedule(&port->push);
|
|
pr_vdebug(PREFIX "%d: unthrottle\n", port->port_num);
|
|
}
|
|
spin_unlock_irqrestore(&port->port_lock, flags);
|
|
}
|
|
|
|
static int gs_break_ctl(struct tty_struct *tty, int duration)
|
|
{
|
|
struct gs_port *port = tty->driver_data;
|
|
int status = 0;
|
|
struct gserial *gser;
|
|
|
|
pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n",
|
|
port->port_num, duration);
|
|
|
|
spin_lock_irq(&port->port_lock);
|
|
gser = port->port_usb;
|
|
if (gser && gser->send_break)
|
|
status = gser->send_break(gser, duration);
|
|
spin_unlock_irq(&port->port_lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
static const struct tty_operations gs_tty_ops = {
|
|
.open = gs_open,
|
|
.close = gs_close,
|
|
.write = gs_write,
|
|
.put_char = gs_put_char,
|
|
.flush_chars = gs_flush_chars,
|
|
.write_room = gs_write_room,
|
|
.chars_in_buffer = gs_chars_in_buffer,
|
|
.unthrottle = gs_unthrottle,
|
|
.break_ctl = gs_break_ctl,
|
|
};
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static struct tty_driver *gs_tty_driver;
|
|
|
|
static int
|
|
gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding)
|
|
{
|
|
struct gs_port *port;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&ports[port_num].lock);
|
|
if (ports[port_num].port) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
port = kzalloc(sizeof(struct gs_port), GFP_KERNEL);
|
|
if (port == NULL) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
tty_port_init(&port->port);
|
|
spin_lock_init(&port->port_lock);
|
|
init_waitqueue_head(&port->drain_wait);
|
|
|
|
tasklet_init(&port->push, gs_rx_push, (unsigned long) port);
|
|
|
|
INIT_LIST_HEAD(&port->read_pool);
|
|
INIT_LIST_HEAD(&port->read_queue);
|
|
INIT_LIST_HEAD(&port->write_pool);
|
|
|
|
port->port_num = port_num;
|
|
port->port_line_coding = *coding;
|
|
|
|
ports[port_num].port = port;
|
|
out:
|
|
mutex_unlock(&ports[port_num].lock);
|
|
return ret;
|
|
}
|
|
|
|
static int gs_closed(struct gs_port *port)
|
|
{
|
|
int cond;
|
|
|
|
spin_lock_irq(&port->port_lock);
|
|
cond = (port->port.count == 0) && !port->openclose;
|
|
spin_unlock_irq(&port->port_lock);
|
|
return cond;
|
|
}
|
|
|
|
static void gserial_free_port(struct gs_port *port)
|
|
{
|
|
tasklet_kill(&port->push);
|
|
/* wait for old opens to finish */
|
|
wait_event(port->port.close_wait, gs_closed(port));
|
|
WARN_ON(port->port_usb != NULL);
|
|
tty_port_destroy(&port->port);
|
|
kfree(port);
|
|
}
|
|
|
|
void gserial_free_line(unsigned char port_num)
|
|
{
|
|
struct gs_port *port;
|
|
|
|
mutex_lock(&ports[port_num].lock);
|
|
if (WARN_ON(!ports[port_num].port)) {
|
|
mutex_unlock(&ports[port_num].lock);
|
|
return;
|
|
}
|
|
port = ports[port_num].port;
|
|
ports[port_num].port = NULL;
|
|
mutex_unlock(&ports[port_num].lock);
|
|
|
|
gserial_free_port(port);
|
|
tty_unregister_device(gs_tty_driver, port_num);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gserial_free_line);
|
|
|
|
int gserial_alloc_line(unsigned char *line_num)
|
|
{
|
|
struct usb_cdc_line_coding coding;
|
|
struct device *tty_dev;
|
|
int ret;
|
|
int port_num;
|
|
|
|
coding.dwDTERate = cpu_to_le32(9600);
|
|
coding.bCharFormat = 8;
|
|
coding.bParityType = USB_CDC_NO_PARITY;
|
|
coding.bDataBits = USB_CDC_1_STOP_BITS;
|
|
|
|
for (port_num = 0; port_num < MAX_U_SERIAL_PORTS; port_num++) {
|
|
ret = gs_port_alloc(port_num, &coding);
|
|
if (ret == -EBUSY)
|
|
continue;
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */
|
|
|
|
tty_dev = tty_port_register_device(&ports[port_num].port->port,
|
|
gs_tty_driver, port_num, NULL);
|
|
if (IS_ERR(tty_dev)) {
|
|
struct gs_port *port;
|
|
pr_err("%s: failed to register tty for port %d, err %ld\n",
|
|
__func__, port_num, PTR_ERR(tty_dev));
|
|
|
|
ret = PTR_ERR(tty_dev);
|
|
port = ports[port_num].port;
|
|
ports[port_num].port = NULL;
|
|
gserial_free_port(port);
|
|
goto err;
|
|
}
|
|
*line_num = port_num;
|
|
err:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(gserial_alloc_line);
|
|
|
|
/**
|
|
* gserial_connect - notify TTY I/O glue that USB link is active
|
|
* @gser: the function, set up with endpoints and descriptors
|
|
* @port_num: which port is active
|
|
* Context: any (usually from irq)
|
|
*
|
|
* This is called activate endpoints and let the TTY layer know that
|
|
* the connection is active ... not unlike "carrier detect". It won't
|
|
* necessarily start I/O queues; unless the TTY is held open by any
|
|
* task, there would be no point. However, the endpoints will be
|
|
* activated so the USB host can perform I/O, subject to basic USB
|
|
* hardware flow control.
|
|
*
|
|
* Caller needs to have set up the endpoints and USB function in @dev
|
|
* before calling this, as well as the appropriate (speed-specific)
|
|
* endpoint descriptors, and also have allocate @port_num by calling
|
|
* @gserial_alloc_line().
|
|
*
|
|
* Returns negative errno or zero.
|
|
* On success, ep->driver_data will be overwritten.
|
|
*/
|
|
int gserial_connect(struct gserial *gser, u8 port_num)
|
|
{
|
|
struct gs_port *port;
|
|
unsigned long flags;
|
|
int status;
|
|
|
|
if (port_num >= MAX_U_SERIAL_PORTS)
|
|
return -ENXIO;
|
|
|
|
port = ports[port_num].port;
|
|
if (!port) {
|
|
pr_err("serial line %d not allocated.\n", port_num);
|
|
return -EINVAL;
|
|
}
|
|
if (port->port_usb) {
|
|
pr_err("serial line %d is in use.\n", port_num);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* activate the endpoints */
|
|
status = usb_ep_enable(gser->in);
|
|
if (status < 0)
|
|
return status;
|
|
gser->in->driver_data = port;
|
|
|
|
status = usb_ep_enable(gser->out);
|
|
if (status < 0)
|
|
goto fail_out;
|
|
gser->out->driver_data = port;
|
|
|
|
/* then tell the tty glue that I/O can work */
|
|
spin_lock_irqsave(&port->port_lock, flags);
|
|
gser->ioport = port;
|
|
port->port_usb = gser;
|
|
|
|
/* REVISIT unclear how best to handle this state...
|
|
* we don't really couple it with the Linux TTY.
|
|
*/
|
|
gser->port_line_coding = port->port_line_coding;
|
|
|
|
/* REVISIT if waiting on "carrier detect", signal. */
|
|
|
|
/* if it's already open, start I/O ... and notify the serial
|
|
* protocol about open/close status (connect/disconnect).
|
|
*/
|
|
if (port->port.count) {
|
|
pr_debug("gserial_connect: start ttyGS%d\n", port->port_num);
|
|
gs_start_io(port);
|
|
if (gser->connect)
|
|
gser->connect(gser);
|
|
} else {
|
|
if (gser->disconnect)
|
|
gser->disconnect(gser);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&port->port_lock, flags);
|
|
|
|
return status;
|
|
|
|
fail_out:
|
|
usb_ep_disable(gser->in);
|
|
gser->in->driver_data = NULL;
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(gserial_connect);
|
|
/**
|
|
* gserial_disconnect - notify TTY I/O glue that USB link is inactive
|
|
* @gser: the function, on which gserial_connect() was called
|
|
* Context: any (usually from irq)
|
|
*
|
|
* This is called to deactivate endpoints and let the TTY layer know
|
|
* that the connection went inactive ... not unlike "hangup".
|
|
*
|
|
* On return, the state is as if gserial_connect() had never been called;
|
|
* there is no active USB I/O on these endpoints.
|
|
*/
|
|
void gserial_disconnect(struct gserial *gser)
|
|
{
|
|
struct gs_port *port = gser->ioport;
|
|
unsigned long flags;
|
|
|
|
if (!port)
|
|
return;
|
|
|
|
/* tell the TTY glue not to do I/O here any more */
|
|
spin_lock_irqsave(&port->port_lock, flags);
|
|
|
|
/* REVISIT as above: how best to track this? */
|
|
port->port_line_coding = gser->port_line_coding;
|
|
|
|
port->port_usb = NULL;
|
|
gser->ioport = NULL;
|
|
if (port->port.count > 0 || port->openclose) {
|
|
wake_up_interruptible(&port->drain_wait);
|
|
if (port->port.tty)
|
|
tty_hangup(port->port.tty);
|
|
}
|
|
spin_unlock_irqrestore(&port->port_lock, flags);
|
|
|
|
/* disable endpoints, aborting down any active I/O */
|
|
usb_ep_disable(gser->out);
|
|
gser->out->driver_data = NULL;
|
|
|
|
usb_ep_disable(gser->in);
|
|
gser->in->driver_data = NULL;
|
|
|
|
/* finally, free any unused/unusable I/O buffers */
|
|
spin_lock_irqsave(&port->port_lock, flags);
|
|
if (port->port.count == 0 && !port->openclose)
|
|
gs_buf_free(&port->port_write_buf);
|
|
gs_free_requests(gser->out, &port->read_pool, NULL);
|
|
gs_free_requests(gser->out, &port->read_queue, NULL);
|
|
gs_free_requests(gser->in, &port->write_pool, NULL);
|
|
|
|
port->read_allocated = port->read_started =
|
|
port->write_allocated = port->write_started = 0;
|
|
|
|
spin_unlock_irqrestore(&port->port_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gserial_disconnect);
|
|
|
|
static int userial_init(void)
|
|
{
|
|
unsigned i;
|
|
int status;
|
|
|
|
gs_tty_driver = alloc_tty_driver(MAX_U_SERIAL_PORTS);
|
|
if (!gs_tty_driver)
|
|
return -ENOMEM;
|
|
|
|
gs_tty_driver->driver_name = "g_serial";
|
|
gs_tty_driver->name = PREFIX;
|
|
/* uses dynamically assigned dev_t values */
|
|
|
|
gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
|
|
gs_tty_driver->subtype = SERIAL_TYPE_NORMAL;
|
|
gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
|
|
gs_tty_driver->init_termios = tty_std_termios;
|
|
|
|
/* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on
|
|
* MS-Windows. Otherwise, most of these flags shouldn't affect
|
|
* anything unless we were to actually hook up to a serial line.
|
|
*/
|
|
gs_tty_driver->init_termios.c_cflag =
|
|
B9600 | CS8 | CREAD | HUPCL | CLOCAL;
|
|
gs_tty_driver->init_termios.c_ispeed = 9600;
|
|
gs_tty_driver->init_termios.c_ospeed = 9600;
|
|
|
|
tty_set_operations(gs_tty_driver, &gs_tty_ops);
|
|
for (i = 0; i < MAX_U_SERIAL_PORTS; i++)
|
|
mutex_init(&ports[i].lock);
|
|
|
|
/* export the driver ... */
|
|
status = tty_register_driver(gs_tty_driver);
|
|
if (status) {
|
|
pr_err("%s: cannot register, err %d\n",
|
|
__func__, status);
|
|
goto fail;
|
|
}
|
|
|
|
pr_debug("%s: registered %d ttyGS* device%s\n", __func__,
|
|
MAX_U_SERIAL_PORTS,
|
|
(MAX_U_SERIAL_PORTS == 1) ? "" : "s");
|
|
|
|
return status;
|
|
fail:
|
|
put_tty_driver(gs_tty_driver);
|
|
gs_tty_driver = NULL;
|
|
return status;
|
|
}
|
|
module_init(userial_init);
|
|
|
|
static void userial_cleanup(void)
|
|
{
|
|
tty_unregister_driver(gs_tty_driver);
|
|
put_tty_driver(gs_tty_driver);
|
|
gs_tty_driver = NULL;
|
|
}
|
|
module_exit(userial_cleanup);
|
|
|
|
MODULE_LICENSE("GPL");
|