linux-sg2042/include/linux/srcu.h

240 lines
8.1 KiB
C

/*
* Sleepable Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2006
*
* Author: Paul McKenney <paulmck@us.ibm.com>
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU/ *.txt
*
*/
#ifndef _LINUX_SRCU_H
#define _LINUX_SRCU_H
#include <linux/mutex.h>
#include <linux/rcupdate.h>
struct srcu_struct_array {
int c[2];
};
struct srcu_struct {
int completed;
struct srcu_struct_array __percpu *per_cpu_ref;
struct mutex mutex;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
};
#ifndef CONFIG_PREEMPT
#define srcu_barrier() barrier()
#else /* #ifndef CONFIG_PREEMPT */
#define srcu_barrier()
#endif /* #else #ifndef CONFIG_PREEMPT */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
int __init_srcu_struct(struct srcu_struct *sp, const char *name,
struct lock_class_key *key);
#define init_srcu_struct(sp) \
({ \
static struct lock_class_key __srcu_key; \
\
__init_srcu_struct((sp), #sp, &__srcu_key); \
})
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
int init_srcu_struct(struct srcu_struct *sp);
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
void cleanup_srcu_struct(struct srcu_struct *sp);
int __srcu_read_lock(struct srcu_struct *sp) __acquires(sp);
void __srcu_read_unlock(struct srcu_struct *sp, int idx) __releases(sp);
void synchronize_srcu(struct srcu_struct *sp);
void synchronize_srcu_expedited(struct srcu_struct *sp);
long srcu_batches_completed(struct srcu_struct *sp);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
/**
* srcu_read_lock_held - might we be in SRCU read-side critical section?
*
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an SRCU
* read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
* this assumes we are in an SRCU read-side critical section unless it can
* prove otherwise.
*
* Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
* and while lockdep is disabled.
*
* Note that if the CPU is in the idle loop from an RCU point of view
* (ie: that we are in the section between rcu_idle_enter() and
* rcu_idle_exit()) then srcu_read_lock_held() returns false even if
* the CPU did an srcu_read_lock(). The reason for this is that RCU
* ignores CPUs that are in such a section, considering these as in
* extended quiescent state, so such a CPU is effectively never in an
* RCU read-side critical section regardless of what RCU primitives it
* invokes. This state of affairs is required --- we need to keep an
* RCU-free window in idle where the CPU may possibly enter into low
* power mode. This way we can notice an extended quiescent state to
* other CPUs that started a grace period. Otherwise we would delay any
* grace period as long as we run in the idle task.
*
* Similarly, we avoid claiming an SRCU read lock held if the current
* CPU is offline.
*/
static inline int srcu_read_lock_held(struct srcu_struct *sp)
{
if (!debug_lockdep_rcu_enabled())
return 1;
if (rcu_is_cpu_idle())
return 0;
if (!rcu_lockdep_current_cpu_online())
return 0;
return lock_is_held(&sp->dep_map);
}
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
static inline int srcu_read_lock_held(struct srcu_struct *sp)
{
return 1;
}
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
/**
* srcu_dereference_check - fetch SRCU-protected pointer for later dereferencing
* @p: the pointer to fetch and protect for later dereferencing
* @sp: pointer to the srcu_struct, which is used to check that we
* really are in an SRCU read-side critical section.
* @c: condition to check for update-side use
*
* If PROVE_RCU is enabled, invoking this outside of an RCU read-side
* critical section will result in an RCU-lockdep splat, unless @c evaluates
* to 1. The @c argument will normally be a logical expression containing
* lockdep_is_held() calls.
*/
#define srcu_dereference_check(p, sp, c) \
__rcu_dereference_check((p), srcu_read_lock_held(sp) || (c), __rcu)
/**
* srcu_dereference - fetch SRCU-protected pointer for later dereferencing
* @p: the pointer to fetch and protect for later dereferencing
* @sp: pointer to the srcu_struct, which is used to check that we
* really are in an SRCU read-side critical section.
*
* Makes rcu_dereference_check() do the dirty work. If PROVE_RCU
* is enabled, invoking this outside of an RCU read-side critical
* section will result in an RCU-lockdep splat.
*/
#define srcu_dereference(p, sp) srcu_dereference_check((p), (sp), 0)
/**
* srcu_read_lock - register a new reader for an SRCU-protected structure.
* @sp: srcu_struct in which to register the new reader.
*
* Enter an SRCU read-side critical section. Note that SRCU read-side
* critical sections may be nested. However, it is illegal to
* call anything that waits on an SRCU grace period for the same
* srcu_struct, whether directly or indirectly. Please note that
* one way to indirectly wait on an SRCU grace period is to acquire
* a mutex that is held elsewhere while calling synchronize_srcu() or
* synchronize_srcu_expedited().
*
* Note that srcu_read_lock() and the matching srcu_read_unlock() must
* occur in the same context, for example, it is illegal to invoke
* srcu_read_unlock() in an irq handler if the matching srcu_read_lock()
* was invoked in process context.
*/
static inline int srcu_read_lock(struct srcu_struct *sp) __acquires(sp)
{
int retval = __srcu_read_lock(sp);
rcu_lock_acquire(&(sp)->dep_map);
rcu_lockdep_assert(!rcu_is_cpu_idle(),
"srcu_read_lock() used illegally while idle");
return retval;
}
/**
* srcu_read_unlock - unregister a old reader from an SRCU-protected structure.
* @sp: srcu_struct in which to unregister the old reader.
* @idx: return value from corresponding srcu_read_lock().
*
* Exit an SRCU read-side critical section.
*/
static inline void srcu_read_unlock(struct srcu_struct *sp, int idx)
__releases(sp)
{
rcu_lockdep_assert(!rcu_is_cpu_idle(),
"srcu_read_unlock() used illegally while idle");
rcu_lock_release(&(sp)->dep_map);
__srcu_read_unlock(sp, idx);
}
/**
* srcu_read_lock_raw - register a new reader for an SRCU-protected structure.
* @sp: srcu_struct in which to register the new reader.
*
* Enter an SRCU read-side critical section. Similar to srcu_read_lock(),
* but avoids the RCU-lockdep checking. This means that it is legal to
* use srcu_read_lock_raw() in one context, for example, in an exception
* handler, and then have the matching srcu_read_unlock_raw() in another
* context, for example in the task that took the exception.
*
* However, the entire SRCU read-side critical section must reside within a
* single task. For example, beware of using srcu_read_lock_raw() in
* a device interrupt handler and srcu_read_unlock() in the interrupted
* task: This will not work if interrupts are threaded.
*/
static inline int srcu_read_lock_raw(struct srcu_struct *sp)
{
unsigned long flags;
int ret;
local_irq_save(flags);
ret = __srcu_read_lock(sp);
local_irq_restore(flags);
return ret;
}
/**
* srcu_read_unlock_raw - unregister reader from an SRCU-protected structure.
* @sp: srcu_struct in which to unregister the old reader.
* @idx: return value from corresponding srcu_read_lock_raw().
*
* Exit an SRCU read-side critical section without lockdep-RCU checking.
* See srcu_read_lock_raw() for more details.
*/
static inline void srcu_read_unlock_raw(struct srcu_struct *sp, int idx)
{
unsigned long flags;
local_irq_save(flags);
__srcu_read_unlock(sp, idx);
local_irq_restore(flags);
}
#endif