linux-sg2042/drivers/acpi/ec.c

1149 lines
30 KiB
C

/*
* ec.c - ACPI Embedded Controller Driver (v2.2)
*
* Copyright (C) 2001-2014 Intel Corporation
* Author: 2014 Lv Zheng <lv.zheng@intel.com>
* 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
* 2006 Denis Sadykov <denis.m.sadykov@intel.com>
* 2004 Luming Yu <luming.yu@intel.com>
* 2001, 2002 Andy Grover <andrew.grover@intel.com>
* 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
/* Uncomment next line to get verbose printout */
/* #define DEBUG */
#define pr_fmt(fmt) "ACPI : EC: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <asm/io.h>
#include "internal.h"
#define ACPI_EC_CLASS "embedded_controller"
#define ACPI_EC_DEVICE_NAME "Embedded Controller"
#define ACPI_EC_FILE_INFO "info"
/* EC status register */
#define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */
#define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */
#define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */
#define ACPI_EC_FLAG_BURST 0x10 /* burst mode */
#define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */
/* EC commands */
enum ec_command {
ACPI_EC_COMMAND_READ = 0x80,
ACPI_EC_COMMAND_WRITE = 0x81,
ACPI_EC_BURST_ENABLE = 0x82,
ACPI_EC_BURST_DISABLE = 0x83,
ACPI_EC_COMMAND_QUERY = 0x84,
};
#define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */
#define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */
#define ACPI_EC_MSI_UDELAY 550 /* Wait 550us for MSI EC */
#define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query
* when trying to clear the EC */
enum {
EC_FLAGS_QUERY_PENDING, /* Query is pending */
EC_FLAGS_GPE_STORM, /* GPE storm detected */
EC_FLAGS_HANDLERS_INSTALLED, /* Handlers for GPE and
* OpReg are installed */
EC_FLAGS_BLOCKED, /* Transactions are blocked */
};
#define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */
#define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */
/* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
module_param(ec_delay, uint, 0644);
MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
/*
* If the number of false interrupts per one transaction exceeds
* this threshold, will think there is a GPE storm happened and
* will disable the GPE for normal transaction.
*/
static unsigned int ec_storm_threshold __read_mostly = 8;
module_param(ec_storm_threshold, uint, 0644);
MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
struct acpi_ec_query_handler {
struct list_head node;
acpi_ec_query_func func;
acpi_handle handle;
void *data;
u8 query_bit;
};
struct transaction {
const u8 *wdata;
u8 *rdata;
unsigned short irq_count;
u8 command;
u8 wi;
u8 ri;
u8 wlen;
u8 rlen;
u8 flags;
};
struct acpi_ec *boot_ec, *first_ec;
EXPORT_SYMBOL(first_ec);
static int EC_FLAGS_MSI; /* Out-of-spec MSI controller */
static int EC_FLAGS_VALIDATE_ECDT; /* ASUStec ECDTs need to be validated */
static int EC_FLAGS_SKIP_DSDT_SCAN; /* Not all BIOS survive early DSDT scan */
static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
/* --------------------------------------------------------------------------
Transaction Management
-------------------------------------------------------------------------- */
static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
{
u8 x = inb(ec->command_addr);
pr_debug("EC_SC(R) = 0x%2.2x "
"SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d\n",
x,
!!(x & ACPI_EC_FLAG_SCI),
!!(x & ACPI_EC_FLAG_BURST),
!!(x & ACPI_EC_FLAG_CMD),
!!(x & ACPI_EC_FLAG_IBF),
!!(x & ACPI_EC_FLAG_OBF));
return x;
}
static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
{
u8 x = inb(ec->data_addr);
pr_debug("EC_DATA(R) = 0x%2.2x\n", x);
return x;
}
static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
{
pr_debug("EC_SC(W) = 0x%2.2x\n", command);
outb(command, ec->command_addr);
}
static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
{
pr_debug("EC_DATA(W) = 0x%2.2x\n", data);
outb(data, ec->data_addr);
}
static int ec_transaction_completed(struct acpi_ec *ec)
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&ec->lock, flags);
if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
ret = 1;
spin_unlock_irqrestore(&ec->lock, flags);
return ret;
}
static bool advance_transaction(struct acpi_ec *ec)
{
struct transaction *t;
u8 status;
bool wakeup = false;
pr_debug("===== %s =====\n", in_interrupt() ? "IRQ" : "TASK");
status = acpi_ec_read_status(ec);
t = ec->curr;
if (!t)
goto err;
if (t->flags & ACPI_EC_COMMAND_POLL) {
if (t->wlen > t->wi) {
if ((status & ACPI_EC_FLAG_IBF) == 0)
acpi_ec_write_data(ec, t->wdata[t->wi++]);
else
goto err;
} else if (t->rlen > t->ri) {
if ((status & ACPI_EC_FLAG_OBF) == 1) {
t->rdata[t->ri++] = acpi_ec_read_data(ec);
if (t->rlen == t->ri) {
t->flags |= ACPI_EC_COMMAND_COMPLETE;
wakeup = true;
}
} else
goto err;
} else if (t->wlen == t->wi &&
(status & ACPI_EC_FLAG_IBF) == 0) {
t->flags |= ACPI_EC_COMMAND_COMPLETE;
wakeup = true;
}
return wakeup;
} else {
if ((status & ACPI_EC_FLAG_IBF) == 0) {
acpi_ec_write_cmd(ec, t->command);
t->flags |= ACPI_EC_COMMAND_POLL;
} else
goto err;
return wakeup;
}
err:
/*
* If SCI bit is set, then don't think it's a false IRQ
* otherwise will take a not handled IRQ as a false one.
*/
if (!(status & ACPI_EC_FLAG_SCI)) {
if (in_interrupt() && t)
++t->irq_count;
}
return wakeup;
}
static void start_transaction(struct acpi_ec *ec)
{
ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
ec->curr->flags = 0;
(void)advance_transaction(ec);
}
static int acpi_ec_sync_query(struct acpi_ec *ec, u8 *data);
static int ec_check_sci_sync(struct acpi_ec *ec, u8 state)
{
if (state & ACPI_EC_FLAG_SCI) {
if (!test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags))
return acpi_ec_sync_query(ec, NULL);
}
return 0;
}
static int ec_poll(struct acpi_ec *ec)
{
unsigned long flags;
int repeat = 5; /* number of command restarts */
while (repeat--) {
unsigned long delay = jiffies +
msecs_to_jiffies(ec_delay);
do {
/* don't sleep with disabled interrupts */
if (EC_FLAGS_MSI || irqs_disabled()) {
udelay(ACPI_EC_MSI_UDELAY);
if (ec_transaction_completed(ec))
return 0;
} else {
if (wait_event_timeout(ec->wait,
ec_transaction_completed(ec),
msecs_to_jiffies(1)))
return 0;
}
spin_lock_irqsave(&ec->lock, flags);
(void)advance_transaction(ec);
spin_unlock_irqrestore(&ec->lock, flags);
} while (time_before(jiffies, delay));
pr_debug("controller reset, restart transaction\n");
spin_lock_irqsave(&ec->lock, flags);
start_transaction(ec);
spin_unlock_irqrestore(&ec->lock, flags);
}
return -ETIME;
}
static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
struct transaction *t)
{
unsigned long tmp;
int ret = 0;
if (EC_FLAGS_MSI)
udelay(ACPI_EC_MSI_UDELAY);
/* start transaction */
spin_lock_irqsave(&ec->lock, tmp);
/* following two actions should be kept atomic */
ec->curr = t;
start_transaction(ec);
if (ec->curr->command == ACPI_EC_COMMAND_QUERY)
clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags);
spin_unlock_irqrestore(&ec->lock, tmp);
ret = ec_poll(ec);
spin_lock_irqsave(&ec->lock, tmp);
ec->curr = NULL;
spin_unlock_irqrestore(&ec->lock, tmp);
return ret;
}
static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
{
int status;
u32 glk;
if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
return -EINVAL;
if (t->rdata)
memset(t->rdata, 0, t->rlen);
mutex_lock(&ec->mutex);
if (test_bit(EC_FLAGS_BLOCKED, &ec->flags)) {
status = -EINVAL;
goto unlock;
}
if (ec->global_lock) {
status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
if (ACPI_FAILURE(status)) {
status = -ENODEV;
goto unlock;
}
}
pr_debug("transaction start (cmd=0x%02x, addr=0x%02x)\n",
t->command, t->wdata ? t->wdata[0] : 0);
/* disable GPE during transaction if storm is detected */
if (test_bit(EC_FLAGS_GPE_STORM, &ec->flags)) {
/* It has to be disabled, so that it doesn't trigger. */
acpi_disable_gpe(NULL, ec->gpe);
}
status = acpi_ec_transaction_unlocked(ec, t);
/* check if we received SCI during transaction */
ec_check_sci_sync(ec, acpi_ec_read_status(ec));
if (test_bit(EC_FLAGS_GPE_STORM, &ec->flags)) {
msleep(1);
/* It is safe to enable the GPE outside of the transaction. */
acpi_enable_gpe(NULL, ec->gpe);
} else if (t->irq_count > ec_storm_threshold) {
pr_info("GPE storm detected(%d GPEs), "
"transactions will use polling mode\n",
t->irq_count);
set_bit(EC_FLAGS_GPE_STORM, &ec->flags);
}
pr_debug("transaction end\n");
if (ec->global_lock)
acpi_release_global_lock(glk);
unlock:
mutex_unlock(&ec->mutex);
return status;
}
static int acpi_ec_burst_enable(struct acpi_ec *ec)
{
u8 d;
struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
.wdata = NULL, .rdata = &d,
.wlen = 0, .rlen = 1};
return acpi_ec_transaction(ec, &t);
}
static int acpi_ec_burst_disable(struct acpi_ec *ec)
{
struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
.wdata = NULL, .rdata = NULL,
.wlen = 0, .rlen = 0};
return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
acpi_ec_transaction(ec, &t) : 0;
}
static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 * data)
{
int result;
u8 d;
struct transaction t = {.command = ACPI_EC_COMMAND_READ,
.wdata = &address, .rdata = &d,
.wlen = 1, .rlen = 1};
result = acpi_ec_transaction(ec, &t);
*data = d;
return result;
}
static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
{
u8 wdata[2] = { address, data };
struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
.wdata = wdata, .rdata = NULL,
.wlen = 2, .rlen = 0};
return acpi_ec_transaction(ec, &t);
}
int ec_read(u8 addr, u8 *val)
{
int err;
u8 temp_data;
if (!first_ec)
return -ENODEV;
err = acpi_ec_read(first_ec, addr, &temp_data);
if (!err) {
*val = temp_data;
return 0;
} else
return err;
}
EXPORT_SYMBOL(ec_read);
int ec_write(u8 addr, u8 val)
{
int err;
if (!first_ec)
return -ENODEV;
err = acpi_ec_write(first_ec, addr, val);
return err;
}
EXPORT_SYMBOL(ec_write);
int ec_transaction(u8 command,
const u8 * wdata, unsigned wdata_len,
u8 * rdata, unsigned rdata_len)
{
struct transaction t = {.command = command,
.wdata = wdata, .rdata = rdata,
.wlen = wdata_len, .rlen = rdata_len};
if (!first_ec)
return -ENODEV;
return acpi_ec_transaction(first_ec, &t);
}
EXPORT_SYMBOL(ec_transaction);
/* Get the handle to the EC device */
acpi_handle ec_get_handle(void)
{
if (!first_ec)
return NULL;
return first_ec->handle;
}
EXPORT_SYMBOL(ec_get_handle);
/*
* Process _Q events that might have accumulated in the EC.
* Run with locked ec mutex.
*/
static void acpi_ec_clear(struct acpi_ec *ec)
{
int i, status;
u8 value = 0;
for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
status = acpi_ec_sync_query(ec, &value);
if (status || !value)
break;
}
if (unlikely(i == ACPI_EC_CLEAR_MAX))
pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
else
pr_info("%d stale EC events cleared\n", i);
}
void acpi_ec_block_transactions(void)
{
struct acpi_ec *ec = first_ec;
if (!ec)
return;
mutex_lock(&ec->mutex);
/* Prevent transactions from being carried out */
set_bit(EC_FLAGS_BLOCKED, &ec->flags);
mutex_unlock(&ec->mutex);
}
void acpi_ec_unblock_transactions(void)
{
struct acpi_ec *ec = first_ec;
if (!ec)
return;
mutex_lock(&ec->mutex);
/* Allow transactions to be carried out again */
clear_bit(EC_FLAGS_BLOCKED, &ec->flags);
if (EC_FLAGS_CLEAR_ON_RESUME)
acpi_ec_clear(ec);
mutex_unlock(&ec->mutex);
}
void acpi_ec_unblock_transactions_early(void)
{
/*
* Allow transactions to happen again (this function is called from
* atomic context during wakeup, so we don't need to acquire the mutex).
*/
if (first_ec)
clear_bit(EC_FLAGS_BLOCKED, &first_ec->flags);
}
static int acpi_ec_query_unlocked(struct acpi_ec *ec, u8 * data)
{
int result;
u8 d;
struct transaction t = {.command = ACPI_EC_COMMAND_QUERY,
.wdata = NULL, .rdata = &d,
.wlen = 0, .rlen = 1};
if (!ec || !data)
return -EINVAL;
/*
* Query the EC to find out which _Qxx method we need to evaluate.
* Note that successful completion of the query causes the ACPI_EC_SCI
* bit to be cleared (and thus clearing the interrupt source).
*/
result = acpi_ec_transaction_unlocked(ec, &t);
if (result)
return result;
if (!d)
return -ENODATA;
*data = d;
return 0;
}
/* --------------------------------------------------------------------------
Event Management
-------------------------------------------------------------------------- */
int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
acpi_handle handle, acpi_ec_query_func func,
void *data)
{
struct acpi_ec_query_handler *handler =
kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
if (!handler)
return -ENOMEM;
handler->query_bit = query_bit;
handler->handle = handle;
handler->func = func;
handler->data = data;
mutex_lock(&ec->mutex);
list_add(&handler->node, &ec->list);
mutex_unlock(&ec->mutex);
return 0;
}
EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
{
struct acpi_ec_query_handler *handler, *tmp;
mutex_lock(&ec->mutex);
list_for_each_entry_safe(handler, tmp, &ec->list, node) {
if (query_bit == handler->query_bit) {
list_del(&handler->node);
kfree(handler);
}
}
mutex_unlock(&ec->mutex);
}
EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
static void acpi_ec_run(void *cxt)
{
struct acpi_ec_query_handler *handler = cxt;
if (!handler)
return;
pr_debug("start query execution\n");
if (handler->func)
handler->func(handler->data);
else if (handler->handle)
acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
pr_debug("stop query execution\n");
kfree(handler);
}
static int acpi_ec_sync_query(struct acpi_ec *ec, u8 *data)
{
u8 value = 0;
int status;
struct acpi_ec_query_handler *handler, *copy;
status = acpi_ec_query_unlocked(ec, &value);
if (data)
*data = value;
if (status)
return status;
list_for_each_entry(handler, &ec->list, node) {
if (value == handler->query_bit) {
/* have custom handler for this bit */
copy = kmalloc(sizeof(*handler), GFP_KERNEL);
if (!copy)
return -ENOMEM;
memcpy(copy, handler, sizeof(*copy));
pr_debug("push query execution (0x%2x) on queue\n",
value);
return acpi_os_execute((copy->func) ?
OSL_NOTIFY_HANDLER : OSL_GPE_HANDLER,
acpi_ec_run, copy);
}
}
return 0;
}
static void acpi_ec_gpe_query(void *ec_cxt)
{
struct acpi_ec *ec = ec_cxt;
if (!ec)
return;
mutex_lock(&ec->mutex);
acpi_ec_sync_query(ec, NULL);
mutex_unlock(&ec->mutex);
}
static int ec_check_sci(struct acpi_ec *ec, u8 state)
{
if (state & ACPI_EC_FLAG_SCI) {
if (!test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) {
pr_debug("push gpe query to the queue\n");
return acpi_os_execute(OSL_NOTIFY_HANDLER,
acpi_ec_gpe_query, ec);
}
}
return 0;
}
static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
u32 gpe_number, void *data)
{
unsigned long flags;
struct acpi_ec *ec = data;
spin_lock_irqsave(&ec->lock, flags);
if (advance_transaction(ec))
wake_up(&ec->wait);
spin_unlock_irqrestore(&ec->lock, flags);
ec_check_sci(ec, acpi_ec_read_status(ec));
return ACPI_INTERRUPT_HANDLED | ACPI_REENABLE_GPE;
}
/* --------------------------------------------------------------------------
Address Space Management
-------------------------------------------------------------------------- */
static acpi_status
acpi_ec_space_handler(u32 function, acpi_physical_address address,
u32 bits, u64 *value64,
void *handler_context, void *region_context)
{
struct acpi_ec *ec = handler_context;
int result = 0, i, bytes = bits / 8;
u8 *value = (u8 *)value64;
if ((address > 0xFF) || !value || !handler_context)
return AE_BAD_PARAMETER;
if (function != ACPI_READ && function != ACPI_WRITE)
return AE_BAD_PARAMETER;
if (EC_FLAGS_MSI || bits > 8)
acpi_ec_burst_enable(ec);
for (i = 0; i < bytes; ++i, ++address, ++value)
result = (function == ACPI_READ) ?
acpi_ec_read(ec, address, value) :
acpi_ec_write(ec, address, *value);
if (EC_FLAGS_MSI || bits > 8)
acpi_ec_burst_disable(ec);
switch (result) {
case -EINVAL:
return AE_BAD_PARAMETER;
break;
case -ENODEV:
return AE_NOT_FOUND;
break;
case -ETIME:
return AE_TIME;
break;
default:
return AE_OK;
}
}
/* --------------------------------------------------------------------------
Driver Interface
-------------------------------------------------------------------------- */
static acpi_status
ec_parse_io_ports(struct acpi_resource *resource, void *context);
static struct acpi_ec *make_acpi_ec(void)
{
struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
if (!ec)
return NULL;
ec->flags = 1 << EC_FLAGS_QUERY_PENDING;
mutex_init(&ec->mutex);
init_waitqueue_head(&ec->wait);
INIT_LIST_HEAD(&ec->list);
spin_lock_init(&ec->lock);
return ec;
}
static acpi_status
acpi_ec_register_query_methods(acpi_handle handle, u32 level,
void *context, void **return_value)
{
char node_name[5];
struct acpi_buffer buffer = { sizeof(node_name), node_name };
struct acpi_ec *ec = context;
int value = 0;
acpi_status status;
status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1) {
acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
}
return AE_OK;
}
static acpi_status
ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
{
acpi_status status;
unsigned long long tmp = 0;
struct acpi_ec *ec = context;
/* clear addr values, ec_parse_io_ports depend on it */
ec->command_addr = ec->data_addr = 0;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
ec_parse_io_ports, ec);
if (ACPI_FAILURE(status))
return status;
/* Get GPE bit assignment (EC events). */
/* TODO: Add support for _GPE returning a package */
status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
if (ACPI_FAILURE(status))
return status;
ec->gpe = tmp;
/* Use the global lock for all EC transactions? */
tmp = 0;
acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
ec->global_lock = tmp;
ec->handle = handle;
return AE_CTRL_TERMINATE;
}
static int ec_install_handlers(struct acpi_ec *ec)
{
acpi_status status;
if (test_bit(EC_FLAGS_HANDLERS_INSTALLED, &ec->flags))
return 0;
status = acpi_install_gpe_handler(NULL, ec->gpe,
ACPI_GPE_EDGE_TRIGGERED,
&acpi_ec_gpe_handler, ec);
if (ACPI_FAILURE(status))
return -ENODEV;
acpi_enable_gpe(NULL, ec->gpe);
status = acpi_install_address_space_handler(ec->handle,
ACPI_ADR_SPACE_EC,
&acpi_ec_space_handler,
NULL, ec);
if (ACPI_FAILURE(status)) {
if (status == AE_NOT_FOUND) {
/*
* Maybe OS fails in evaluating the _REG object.
* The AE_NOT_FOUND error will be ignored and OS
* continue to initialize EC.
*/
pr_err("Fail in evaluating the _REG object"
" of EC device. Broken bios is suspected.\n");
} else {
acpi_disable_gpe(NULL, ec->gpe);
acpi_remove_gpe_handler(NULL, ec->gpe,
&acpi_ec_gpe_handler);
return -ENODEV;
}
}
set_bit(EC_FLAGS_HANDLERS_INSTALLED, &ec->flags);
return 0;
}
static void ec_remove_handlers(struct acpi_ec *ec)
{
acpi_disable_gpe(NULL, ec->gpe);
if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
pr_err("failed to remove space handler\n");
if (ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
&acpi_ec_gpe_handler)))
pr_err("failed to remove gpe handler\n");
clear_bit(EC_FLAGS_HANDLERS_INSTALLED, &ec->flags);
}
static int acpi_ec_add(struct acpi_device *device)
{
struct acpi_ec *ec = NULL;
int ret;
strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
strcpy(acpi_device_class(device), ACPI_EC_CLASS);
/* Check for boot EC */
if (boot_ec &&
(boot_ec->handle == device->handle ||
boot_ec->handle == ACPI_ROOT_OBJECT)) {
ec = boot_ec;
boot_ec = NULL;
} else {
ec = make_acpi_ec();
if (!ec)
return -ENOMEM;
}
if (ec_parse_device(device->handle, 0, ec, NULL) !=
AE_CTRL_TERMINATE) {
kfree(ec);
return -EINVAL;
}
/* Find and register all query methods */
acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
acpi_ec_register_query_methods, NULL, ec, NULL);
if (!first_ec)
first_ec = ec;
device->driver_data = ec;
ret = !!request_region(ec->data_addr, 1, "EC data");
WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
ret = !!request_region(ec->command_addr, 1, "EC cmd");
WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
pr_info("GPE = 0x%lx, I/O: command/status = 0x%lx, data = 0x%lx\n",
ec->gpe, ec->command_addr, ec->data_addr);
ret = ec_install_handlers(ec);
/* EC is fully operational, allow queries */
clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags);
/* Clear stale _Q events if hardware might require that */
if (EC_FLAGS_CLEAR_ON_RESUME) {
mutex_lock(&ec->mutex);
acpi_ec_clear(ec);
mutex_unlock(&ec->mutex);
}
return ret;
}
static int acpi_ec_remove(struct acpi_device *device)
{
struct acpi_ec *ec;
struct acpi_ec_query_handler *handler, *tmp;
if (!device)
return -EINVAL;
ec = acpi_driver_data(device);
ec_remove_handlers(ec);
mutex_lock(&ec->mutex);
list_for_each_entry_safe(handler, tmp, &ec->list, node) {
list_del(&handler->node);
kfree(handler);
}
mutex_unlock(&ec->mutex);
release_region(ec->data_addr, 1);
release_region(ec->command_addr, 1);
device->driver_data = NULL;
if (ec == first_ec)
first_ec = NULL;
kfree(ec);
return 0;
}
static acpi_status
ec_parse_io_ports(struct acpi_resource *resource, void *context)
{
struct acpi_ec *ec = context;
if (resource->type != ACPI_RESOURCE_TYPE_IO)
return AE_OK;
/*
* The first address region returned is the data port, and
* the second address region returned is the status/command
* port.
*/
if (ec->data_addr == 0)
ec->data_addr = resource->data.io.minimum;
else if (ec->command_addr == 0)
ec->command_addr = resource->data.io.minimum;
else
return AE_CTRL_TERMINATE;
return AE_OK;
}
int __init acpi_boot_ec_enable(void)
{
if (!boot_ec || test_bit(EC_FLAGS_HANDLERS_INSTALLED, &boot_ec->flags))
return 0;
if (!ec_install_handlers(boot_ec)) {
first_ec = boot_ec;
return 0;
}
return -EFAULT;
}
static const struct acpi_device_id ec_device_ids[] = {
{"PNP0C09", 0},
{"", 0},
};
/* Some BIOS do not survive early DSDT scan, skip it */
static int ec_skip_dsdt_scan(const struct dmi_system_id *id)
{
EC_FLAGS_SKIP_DSDT_SCAN = 1;
return 0;
}
/* ASUStek often supplies us with broken ECDT, validate it */
static int ec_validate_ecdt(const struct dmi_system_id *id)
{
EC_FLAGS_VALIDATE_ECDT = 1;
return 0;
}
/* MSI EC needs special treatment, enable it */
static int ec_flag_msi(const struct dmi_system_id *id)
{
pr_debug("Detected MSI hardware, enabling workarounds.\n");
EC_FLAGS_MSI = 1;
EC_FLAGS_VALIDATE_ECDT = 1;
return 0;
}
/*
* Clevo M720 notebook actually works ok with IRQ mode, if we lifted
* the GPE storm threshold back to 20
*/
static int ec_enlarge_storm_threshold(const struct dmi_system_id *id)
{
pr_debug("Setting the EC GPE storm threshold to 20\n");
ec_storm_threshold = 20;
return 0;
}
/*
* On some hardware it is necessary to clear events accumulated by the EC during
* sleep. These ECs stop reporting GPEs until they are manually polled, if too
* many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
*
* https://bugzilla.kernel.org/show_bug.cgi?id=44161
*
* Ideally, the EC should also be instructed NOT to accumulate events during
* sleep (which Windows seems to do somehow), but the interface to control this
* behaviour is not known at this time.
*
* Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
* however it is very likely that other Samsung models are affected.
*
* On systems which don't accumulate _Q events during sleep, this extra check
* should be harmless.
*/
static int ec_clear_on_resume(const struct dmi_system_id *id)
{
pr_debug("Detected system needing EC poll on resume.\n");
EC_FLAGS_CLEAR_ON_RESUME = 1;
return 0;
}
static struct dmi_system_id ec_dmi_table[] __initdata = {
{
ec_skip_dsdt_scan, "Compal JFL92", {
DMI_MATCH(DMI_BIOS_VENDOR, "COMPAL"),
DMI_MATCH(DMI_BOARD_NAME, "JFL92") }, NULL},
{
ec_flag_msi, "MSI hardware", {
DMI_MATCH(DMI_BIOS_VENDOR, "Micro-Star")}, NULL},
{
ec_flag_msi, "MSI hardware", {
DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star")}, NULL},
{
ec_flag_msi, "MSI hardware", {
DMI_MATCH(DMI_CHASSIS_VENDOR, "MICRO-Star")}, NULL},
{
ec_flag_msi, "MSI hardware", {
DMI_MATCH(DMI_CHASSIS_VENDOR, "MICRO-STAR")}, NULL},
{
ec_flag_msi, "Quanta hardware", {
DMI_MATCH(DMI_SYS_VENDOR, "Quanta"),
DMI_MATCH(DMI_PRODUCT_NAME, "TW8/SW8/DW8"),}, NULL},
{
ec_flag_msi, "Quanta hardware", {
DMI_MATCH(DMI_SYS_VENDOR, "Quanta"),
DMI_MATCH(DMI_PRODUCT_NAME, "TW9/SW9"),}, NULL},
{
ec_validate_ecdt, "ASUS hardware", {
DMI_MATCH(DMI_BIOS_VENDOR, "ASUS") }, NULL},
{
ec_validate_ecdt, "ASUS hardware", {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer Inc.") }, NULL},
{
ec_enlarge_storm_threshold, "CLEVO hardware", {
DMI_MATCH(DMI_SYS_VENDOR, "CLEVO Co."),
DMI_MATCH(DMI_PRODUCT_NAME, "M720T/M730T"),}, NULL},
{
ec_skip_dsdt_scan, "HP Folio 13", {
DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
DMI_MATCH(DMI_PRODUCT_NAME, "HP Folio 13"),}, NULL},
{
ec_validate_ecdt, "ASUS hardware", {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTek Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "L4R"),}, NULL},
{
ec_clear_on_resume, "Samsung hardware", {
DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL},
{},
};
int __init acpi_ec_ecdt_probe(void)
{
acpi_status status;
struct acpi_ec *saved_ec = NULL;
struct acpi_table_ecdt *ecdt_ptr;
boot_ec = make_acpi_ec();
if (!boot_ec)
return -ENOMEM;
/*
* Generate a boot ec context
*/
dmi_check_system(ec_dmi_table);
status = acpi_get_table(ACPI_SIG_ECDT, 1,
(struct acpi_table_header **)&ecdt_ptr);
if (ACPI_SUCCESS(status)) {
pr_info("EC description table is found, configuring boot EC\n");
boot_ec->command_addr = ecdt_ptr->control.address;
boot_ec->data_addr = ecdt_ptr->data.address;
boot_ec->gpe = ecdt_ptr->gpe;
boot_ec->handle = ACPI_ROOT_OBJECT;
acpi_get_handle(ACPI_ROOT_OBJECT, ecdt_ptr->id, &boot_ec->handle);
/* Don't trust ECDT, which comes from ASUSTek */
if (!EC_FLAGS_VALIDATE_ECDT)
goto install;
saved_ec = kmemdup(boot_ec, sizeof(struct acpi_ec), GFP_KERNEL);
if (!saved_ec)
return -ENOMEM;
/* fall through */
}
if (EC_FLAGS_SKIP_DSDT_SCAN) {
kfree(saved_ec);
return -ENODEV;
}
/* This workaround is needed only on some broken machines,
* which require early EC, but fail to provide ECDT */
pr_debug("Look up EC in DSDT\n");
status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device,
boot_ec, NULL);
/* Check that acpi_get_devices actually find something */
if (ACPI_FAILURE(status) || !boot_ec->handle)
goto error;
if (saved_ec) {
/* try to find good ECDT from ASUSTek */
if (saved_ec->command_addr != boot_ec->command_addr ||
saved_ec->data_addr != boot_ec->data_addr ||
saved_ec->gpe != boot_ec->gpe ||
saved_ec->handle != boot_ec->handle)
pr_info("ASUSTek keeps feeding us with broken "
"ECDT tables, which are very hard to workaround. "
"Trying to use DSDT EC info instead. Please send "
"output of acpidump to linux-acpi@vger.kernel.org\n");
kfree(saved_ec);
saved_ec = NULL;
} else {
/* We really need to limit this workaround, the only ASUS,
* which needs it, has fake EC._INI method, so use it as flag.
* Keep boot_ec struct as it will be needed soon.
*/
if (!dmi_name_in_vendors("ASUS") ||
!acpi_has_method(boot_ec->handle, "_INI"))
return -ENODEV;
}
install:
if (!ec_install_handlers(boot_ec)) {
first_ec = boot_ec;
return 0;
}
error:
kfree(boot_ec);
kfree(saved_ec);
boot_ec = NULL;
return -ENODEV;
}
static struct acpi_driver acpi_ec_driver = {
.name = "ec",
.class = ACPI_EC_CLASS,
.ids = ec_device_ids,
.ops = {
.add = acpi_ec_add,
.remove = acpi_ec_remove,
},
};
int __init acpi_ec_init(void)
{
int result = 0;
/* Now register the driver for the EC */
result = acpi_bus_register_driver(&acpi_ec_driver);
if (result < 0)
return -ENODEV;
return result;
}
/* EC driver currently not unloadable */
#if 0
static void __exit acpi_ec_exit(void)
{
acpi_bus_unregister_driver(&acpi_ec_driver);
return;
}
#endif /* 0 */