linux-sg2042/drivers/net/myri_sbus.c

1175 lines
31 KiB
C

/* myri_sbus.h: MyriCOM MyriNET SBUS card driver.
*
* Copyright (C) 1996, 1999 David S. Miller (davem@redhat.com)
*/
static char version[] =
"myri_sbus.c:v1.9 12/Sep/99 David S. Miller (davem@redhat.com)\n";
#include <linux/module.h>
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/bitops.h>
#include <net/dst.h>
#include <net/arp.h>
#include <net/sock.h>
#include <net/ipv6.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/byteorder.h>
#include <asm/idprom.h>
#include <asm/sbus.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/auxio.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/checksum.h>
#include "myri_sbus.h"
#include "myri_code.h"
/* #define DEBUG_DETECT */
/* #define DEBUG_IRQ */
/* #define DEBUG_TRANSMIT */
/* #define DEBUG_RECEIVE */
/* #define DEBUG_HEADER */
#ifdef DEBUG_DETECT
#define DET(x) printk x
#else
#define DET(x)
#endif
#ifdef DEBUG_IRQ
#define DIRQ(x) printk x
#else
#define DIRQ(x)
#endif
#ifdef DEBUG_TRANSMIT
#define DTX(x) printk x
#else
#define DTX(x)
#endif
#ifdef DEBUG_RECEIVE
#define DRX(x) printk x
#else
#define DRX(x)
#endif
#ifdef DEBUG_HEADER
#define DHDR(x) printk x
#else
#define DHDR(x)
#endif
#ifdef MODULE
static struct myri_eth *root_myri_dev;
#endif
static void myri_reset_off(void __iomem *lp, void __iomem *cregs)
{
/* Clear IRQ mask. */
sbus_writel(0, lp + LANAI_EIMASK);
/* Turn RESET function off. */
sbus_writel(CONTROL_ROFF, cregs + MYRICTRL_CTRL);
}
static void myri_reset_on(void __iomem *cregs)
{
/* Enable RESET function. */
sbus_writel(CONTROL_RON, cregs + MYRICTRL_CTRL);
/* Disable IRQ's. */
sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
}
static void myri_disable_irq(void __iomem *lp, void __iomem *cregs)
{
sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
sbus_writel(0, lp + LANAI_EIMASK);
sbus_writel(ISTAT_HOST, lp + LANAI_ISTAT);
}
static void myri_enable_irq(void __iomem *lp, void __iomem *cregs)
{
sbus_writel(CONTROL_EIRQ, cregs + MYRICTRL_CTRL);
sbus_writel(ISTAT_HOST, lp + LANAI_EIMASK);
}
static inline void bang_the_chip(struct myri_eth *mp)
{
struct myri_shmem __iomem *shmem = mp->shmem;
void __iomem *cregs = mp->cregs;
sbus_writel(1, &shmem->send);
sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
}
static int myri_do_handshake(struct myri_eth *mp)
{
struct myri_shmem __iomem *shmem = mp->shmem;
void __iomem *cregs = mp->cregs;
struct myri_channel __iomem *chan = &shmem->channel;
int tick = 0;
DET(("myri_do_handshake: "));
if (sbus_readl(&chan->state) == STATE_READY) {
DET(("Already STATE_READY, failed.\n"));
return -1; /* We're hosed... */
}
myri_disable_irq(mp->lregs, cregs);
while (tick++ <= 25) {
u32 softstate;
/* Wake it up. */
DET(("shakedown, CONTROL_WON, "));
sbus_writel(1, &shmem->shakedown);
sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
softstate = sbus_readl(&chan->state);
DET(("chanstate[%08x] ", softstate));
if (softstate == STATE_READY) {
DET(("wakeup successful, "));
break;
}
if (softstate != STATE_WFN) {
DET(("not WFN setting that, "));
sbus_writel(STATE_WFN, &chan->state);
}
udelay(20);
}
myri_enable_irq(mp->lregs, cregs);
if (tick > 25) {
DET(("25 ticks we lose, failure.\n"));
return -1;
}
DET(("success\n"));
return 0;
}
static int myri_load_lanai(struct myri_eth *mp)
{
struct net_device *dev = mp->dev;
struct myri_shmem __iomem *shmem = mp->shmem;
void __iomem *rptr;
int i;
myri_disable_irq(mp->lregs, mp->cregs);
myri_reset_on(mp->cregs);
rptr = mp->lanai;
for (i = 0; i < mp->eeprom.ramsz; i++)
sbus_writeb(0, rptr + i);
if (mp->eeprom.cpuvers >= CPUVERS_3_0)
sbus_writel(mp->eeprom.cval, mp->lregs + LANAI_CVAL);
/* Load executable code. */
for (i = 0; i < sizeof(lanai4_code); i++)
sbus_writeb(lanai4_code[i], rptr + (lanai4_code_off * 2) + i);
/* Load data segment. */
for (i = 0; i < sizeof(lanai4_data); i++)
sbus_writeb(lanai4_data[i], rptr + (lanai4_data_off * 2) + i);
/* Set device address. */
sbus_writeb(0, &shmem->addr[0]);
sbus_writeb(0, &shmem->addr[1]);
for (i = 0; i < 6; i++)
sbus_writeb(dev->dev_addr[i],
&shmem->addr[i + 2]);
/* Set SBUS bursts and interrupt mask. */
sbus_writel(((mp->myri_bursts & 0xf8) >> 3), &shmem->burst);
sbus_writel(SHMEM_IMASK_RX, &shmem->imask);
/* Release the LANAI. */
myri_disable_irq(mp->lregs, mp->cregs);
myri_reset_off(mp->lregs, mp->cregs);
myri_disable_irq(mp->lregs, mp->cregs);
/* Wait for the reset to complete. */
for (i = 0; i < 5000; i++) {
if (sbus_readl(&shmem->channel.state) != STATE_READY)
break;
else
udelay(10);
}
if (i == 5000)
printk(KERN_ERR "myricom: Chip would not reset after firmware load.\n");
i = myri_do_handshake(mp);
if (i)
printk(KERN_ERR "myricom: Handshake with LANAI failed.\n");
if (mp->eeprom.cpuvers == CPUVERS_4_0)
sbus_writel(0, mp->lregs + LANAI_VERS);
return i;
}
static void myri_clean_rings(struct myri_eth *mp)
{
struct sendq __iomem *sq = mp->sq;
struct recvq __iomem *rq = mp->rq;
int i;
sbus_writel(0, &rq->tail);
sbus_writel(0, &rq->head);
for (i = 0; i < (RX_RING_SIZE+1); i++) {
if (mp->rx_skbs[i] != NULL) {
struct myri_rxd __iomem *rxd = &rq->myri_rxd[i];
u32 dma_addr;
dma_addr = sbus_readl(&rxd->myri_scatters[0].addr);
sbus_unmap_single(mp->myri_sdev, dma_addr, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
dev_kfree_skb(mp->rx_skbs[i]);
mp->rx_skbs[i] = NULL;
}
}
mp->tx_old = 0;
sbus_writel(0, &sq->tail);
sbus_writel(0, &sq->head);
for (i = 0; i < TX_RING_SIZE; i++) {
if (mp->tx_skbs[i] != NULL) {
struct sk_buff *skb = mp->tx_skbs[i];
struct myri_txd __iomem *txd = &sq->myri_txd[i];
u32 dma_addr;
dma_addr = sbus_readl(&txd->myri_gathers[0].addr);
sbus_unmap_single(mp->myri_sdev, dma_addr, (skb->len + 3) & ~3, SBUS_DMA_TODEVICE);
dev_kfree_skb(mp->tx_skbs[i]);
mp->tx_skbs[i] = NULL;
}
}
}
static void myri_init_rings(struct myri_eth *mp, int from_irq)
{
struct recvq __iomem *rq = mp->rq;
struct myri_rxd __iomem *rxd = &rq->myri_rxd[0];
struct net_device *dev = mp->dev;
int gfp_flags = GFP_KERNEL;
int i;
if (from_irq || in_interrupt())
gfp_flags = GFP_ATOMIC;
myri_clean_rings(mp);
for (i = 0; i < RX_RING_SIZE; i++) {
struct sk_buff *skb = myri_alloc_skb(RX_ALLOC_SIZE, gfp_flags);
u32 dma_addr;
if (!skb)
continue;
mp->rx_skbs[i] = skb;
skb->dev = dev;
skb_put(skb, RX_ALLOC_SIZE);
dma_addr = sbus_map_single(mp->myri_sdev, skb->data, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
sbus_writel(dma_addr, &rxd[i].myri_scatters[0].addr);
sbus_writel(RX_ALLOC_SIZE, &rxd[i].myri_scatters[0].len);
sbus_writel(i, &rxd[i].ctx);
sbus_writel(1, &rxd[i].num_sg);
}
sbus_writel(0, &rq->head);
sbus_writel(RX_RING_SIZE, &rq->tail);
}
static int myri_init(struct myri_eth *mp, int from_irq)
{
myri_init_rings(mp, from_irq);
return 0;
}
static void myri_is_not_so_happy(struct myri_eth *mp)
{
}
#ifdef DEBUG_HEADER
static void dump_ehdr(struct ethhdr *ehdr)
{
printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
"h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2],
ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4],
ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2],
ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4],
ehdr->h_proto);
}
static void dump_ehdr_and_myripad(unsigned char *stuff)
{
struct ethhdr *ehdr = (struct ethhdr *) (stuff + 2);
printk("pad[%02x:%02x]", stuff[0], stuff[1]);
printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
"h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2],
ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4],
ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2],
ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4],
ehdr->h_proto);
}
#endif
static void myri_tx(struct myri_eth *mp, struct net_device *dev)
{
struct sendq __iomem *sq= mp->sq;
int entry = mp->tx_old;
int limit = sbus_readl(&sq->head);
DTX(("entry[%d] limit[%d] ", entry, limit));
if (entry == limit)
return;
while (entry != limit) {
struct sk_buff *skb = mp->tx_skbs[entry];
u32 dma_addr;
DTX(("SKB[%d] ", entry));
dma_addr = sbus_readl(&sq->myri_txd[entry].myri_gathers[0].addr);
sbus_unmap_single(mp->myri_sdev, dma_addr, skb->len, SBUS_DMA_TODEVICE);
dev_kfree_skb(skb);
mp->tx_skbs[entry] = NULL;
mp->enet_stats.tx_packets++;
entry = NEXT_TX(entry);
}
mp->tx_old = entry;
}
/* Determine the packet's protocol ID. The rule here is that we
* assume 802.3 if the type field is short enough to be a length.
* This is normal practice and works for any 'now in use' protocol.
*/
static unsigned short myri_type_trans(struct sk_buff *skb, struct net_device *dev)
{
struct ethhdr *eth;
unsigned char *rawp;
skb->mac.raw = (((unsigned char *)skb->data) + MYRI_PAD_LEN);
skb_pull(skb, dev->hard_header_len);
eth = eth_hdr(skb);
#ifdef DEBUG_HEADER
DHDR(("myri_type_trans: "));
dump_ehdr(eth);
#endif
if (*eth->h_dest & 1) {
if (memcmp(eth->h_dest, dev->broadcast, ETH_ALEN)==0)
skb->pkt_type = PACKET_BROADCAST;
else
skb->pkt_type = PACKET_MULTICAST;
} else if (dev->flags & (IFF_PROMISC|IFF_ALLMULTI)) {
if (memcmp(eth->h_dest, dev->dev_addr, ETH_ALEN))
skb->pkt_type = PACKET_OTHERHOST;
}
if (ntohs(eth->h_proto) >= 1536)
return eth->h_proto;
rawp = skb->data;
/* This is a magic hack to spot IPX packets. Older Novell breaks
* the protocol design and runs IPX over 802.3 without an 802.2 LLC
* layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
* won't work for fault tolerant netware but does for the rest.
*/
if (*(unsigned short *)rawp == 0xFFFF)
return htons(ETH_P_802_3);
/* Real 802.2 LLC */
return htons(ETH_P_802_2);
}
static void myri_rx(struct myri_eth *mp, struct net_device *dev)
{
struct recvq __iomem *rq = mp->rq;
struct recvq __iomem *rqa = mp->rqack;
int entry = sbus_readl(&rqa->head);
int limit = sbus_readl(&rqa->tail);
int drops;
DRX(("entry[%d] limit[%d] ", entry, limit));
if (entry == limit)
return;
drops = 0;
DRX(("\n"));
while (entry != limit) {
struct myri_rxd __iomem *rxdack = &rqa->myri_rxd[entry];
u32 csum = sbus_readl(&rxdack->csum);
int len = sbus_readl(&rxdack->myri_scatters[0].len);
int index = sbus_readl(&rxdack->ctx);
struct myri_rxd __iomem *rxd = &rq->myri_rxd[sbus_readl(&rq->tail)];
struct sk_buff *skb = mp->rx_skbs[index];
/* Ack it. */
sbus_writel(NEXT_RX(entry), &rqa->head);
/* Check for errors. */
DRX(("rxd[%d]: %p len[%d] csum[%08x] ", entry, rxd, len, csum));
sbus_dma_sync_single_for_cpu(mp->myri_sdev,
sbus_readl(&rxd->myri_scatters[0].addr),
RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
if (len < (ETH_HLEN + MYRI_PAD_LEN) || (skb->data[0] != MYRI_PAD_LEN)) {
DRX(("ERROR["));
mp->enet_stats.rx_errors++;
if (len < (ETH_HLEN + MYRI_PAD_LEN)) {
DRX(("BAD_LENGTH] "));
mp->enet_stats.rx_length_errors++;
} else {
DRX(("NO_PADDING] "));
mp->enet_stats.rx_frame_errors++;
}
/* Return it to the LANAI. */
drop_it:
drops++;
DRX(("DROP "));
mp->enet_stats.rx_dropped++;
sbus_dma_sync_single_for_device(mp->myri_sdev,
sbus_readl(&rxd->myri_scatters[0].addr),
RX_ALLOC_SIZE,
SBUS_DMA_FROMDEVICE);
sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
sbus_writel(index, &rxd->ctx);
sbus_writel(1, &rxd->num_sg);
sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
goto next;
}
DRX(("len[%d] ", len));
if (len > RX_COPY_THRESHOLD) {
struct sk_buff *new_skb;
u32 dma_addr;
DRX(("BIGBUFF "));
new_skb = myri_alloc_skb(RX_ALLOC_SIZE, GFP_ATOMIC);
if (new_skb == NULL) {
DRX(("skb_alloc(FAILED) "));
goto drop_it;
}
sbus_unmap_single(mp->myri_sdev,
sbus_readl(&rxd->myri_scatters[0].addr),
RX_ALLOC_SIZE,
SBUS_DMA_FROMDEVICE);
mp->rx_skbs[index] = new_skb;
new_skb->dev = dev;
skb_put(new_skb, RX_ALLOC_SIZE);
dma_addr = sbus_map_single(mp->myri_sdev,
new_skb->data,
RX_ALLOC_SIZE,
SBUS_DMA_FROMDEVICE);
sbus_writel(dma_addr, &rxd->myri_scatters[0].addr);
sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
sbus_writel(index, &rxd->ctx);
sbus_writel(1, &rxd->num_sg);
sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
/* Trim the original skb for the netif. */
DRX(("trim(%d) ", len));
skb_trim(skb, len);
} else {
struct sk_buff *copy_skb = dev_alloc_skb(len);
DRX(("SMALLBUFF "));
if (copy_skb == NULL) {
DRX(("dev_alloc_skb(FAILED) "));
goto drop_it;
}
/* DMA sync already done above. */
copy_skb->dev = dev;
DRX(("resv_and_put "));
skb_put(copy_skb, len);
memcpy(copy_skb->data, skb->data, len);
/* Reuse original ring buffer. */
DRX(("reuse "));
sbus_dma_sync_single_for_device(mp->myri_sdev,
sbus_readl(&rxd->myri_scatters[0].addr),
RX_ALLOC_SIZE,
SBUS_DMA_FROMDEVICE);
sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
sbus_writel(index, &rxd->ctx);
sbus_writel(1, &rxd->num_sg);
sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
skb = copy_skb;
}
/* Just like the happy meal we get checksums from this card. */
skb->csum = csum;
skb->ip_summed = CHECKSUM_UNNECESSARY; /* XXX */
skb->protocol = myri_type_trans(skb, dev);
DRX(("prot[%04x] netif_rx ", skb->protocol));
netif_rx(skb);
dev->last_rx = jiffies;
mp->enet_stats.rx_packets++;
mp->enet_stats.rx_bytes += len;
next:
DRX(("NEXT\n"));
entry = NEXT_RX(entry);
}
}
static irqreturn_t myri_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct myri_eth *mp = (struct myri_eth *) dev->priv;
void __iomem *lregs = mp->lregs;
struct myri_channel __iomem *chan = &mp->shmem->channel;
unsigned long flags;
u32 status;
int handled = 0;
spin_lock_irqsave(&mp->irq_lock, flags);
status = sbus_readl(lregs + LANAI_ISTAT);
DIRQ(("myri_interrupt: status[%08x] ", status));
if (status & ISTAT_HOST) {
u32 softstate;
handled = 1;
DIRQ(("IRQ_DISAB "));
myri_disable_irq(lregs, mp->cregs);
softstate = sbus_readl(&chan->state);
DIRQ(("state[%08x] ", softstate));
if (softstate != STATE_READY) {
DIRQ(("myri_not_so_happy "));
myri_is_not_so_happy(mp);
}
DIRQ(("\nmyri_rx: "));
myri_rx(mp, dev);
DIRQ(("\nistat=ISTAT_HOST "));
sbus_writel(ISTAT_HOST, lregs + LANAI_ISTAT);
DIRQ(("IRQ_ENAB "));
myri_enable_irq(lregs, mp->cregs);
}
DIRQ(("\n"));
spin_unlock_irqrestore(&mp->irq_lock, flags);
return IRQ_RETVAL(handled);
}
static int myri_open(struct net_device *dev)
{
struct myri_eth *mp = (struct myri_eth *) dev->priv;
return myri_init(mp, in_interrupt());
}
static int myri_close(struct net_device *dev)
{
struct myri_eth *mp = (struct myri_eth *) dev->priv;
myri_clean_rings(mp);
return 0;
}
static void myri_tx_timeout(struct net_device *dev)
{
struct myri_eth *mp = (struct myri_eth *) dev->priv;
printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
mp->enet_stats.tx_errors++;
myri_init(mp, 0);
netif_wake_queue(dev);
}
static int myri_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct myri_eth *mp = (struct myri_eth *) dev->priv;
struct sendq __iomem *sq = mp->sq;
struct myri_txd __iomem *txd;
unsigned long flags;
unsigned int head, tail;
int len, entry;
u32 dma_addr;
DTX(("myri_start_xmit: "));
myri_tx(mp, dev);
netif_stop_queue(dev);
/* This is just to prevent multiple PIO reads for TX_BUFFS_AVAIL. */
head = sbus_readl(&sq->head);
tail = sbus_readl(&sq->tail);
if (!TX_BUFFS_AVAIL(head, tail)) {
DTX(("no buffs available, returning 1\n"));
return 1;
}
spin_lock_irqsave(&mp->irq_lock, flags);
DHDR(("xmit[skbdata(%p)]\n", skb->data));
#ifdef DEBUG_HEADER
dump_ehdr_and_myripad(((unsigned char *) skb->data));
#endif
/* XXX Maybe this can go as well. */
len = skb->len;
if (len & 3) {
DTX(("len&3 "));
len = (len + 4) & (~3);
}
entry = sbus_readl(&sq->tail);
txd = &sq->myri_txd[entry];
mp->tx_skbs[entry] = skb;
/* Must do this before we sbus map it. */
if (skb->data[MYRI_PAD_LEN] & 0x1) {
sbus_writew(0xffff, &txd->addr[0]);
sbus_writew(0xffff, &txd->addr[1]);
sbus_writew(0xffff, &txd->addr[2]);
sbus_writew(0xffff, &txd->addr[3]);
} else {
sbus_writew(0xffff, &txd->addr[0]);
sbus_writew((skb->data[0] << 8) | skb->data[1], &txd->addr[1]);
sbus_writew((skb->data[2] << 8) | skb->data[3], &txd->addr[2]);
sbus_writew((skb->data[4] << 8) | skb->data[5], &txd->addr[3]);
}
dma_addr = sbus_map_single(mp->myri_sdev, skb->data, len, SBUS_DMA_TODEVICE);
sbus_writel(dma_addr, &txd->myri_gathers[0].addr);
sbus_writel(len, &txd->myri_gathers[0].len);
sbus_writel(1, &txd->num_sg);
sbus_writel(KERNEL_CHANNEL, &txd->chan);
sbus_writel(len, &txd->len);
sbus_writel((u32)-1, &txd->csum_off);
sbus_writel(0, &txd->csum_field);
sbus_writel(NEXT_TX(entry), &sq->tail);
DTX(("BangTheChip "));
bang_the_chip(mp);
DTX(("tbusy=0, returning 0\n"));
netif_start_queue(dev);
spin_unlock_irqrestore(&mp->irq_lock, flags);
return 0;
}
/* Create the MyriNet MAC header for an arbitrary protocol layer
*
* saddr=NULL means use device source address
* daddr=NULL means leave destination address (eg unresolved arp)
*/
static int myri_header(struct sk_buff *skb, struct net_device *dev, unsigned short type,
void *daddr, void *saddr, unsigned len)
{
struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
unsigned char *pad = (unsigned char *) skb_push(skb, MYRI_PAD_LEN);
#ifdef DEBUG_HEADER
DHDR(("myri_header: pad[%02x,%02x] ", pad[0], pad[1]));
dump_ehdr(eth);
#endif
/* Set the MyriNET padding identifier. */
pad[0] = MYRI_PAD_LEN;
pad[1] = 0xab;
/* Set the protocol type. For a packet of type ETH_P_802_3 we put the length
* in here instead. It is up to the 802.2 layer to carry protocol information.
*/
if (type != ETH_P_802_3)
eth->h_proto = htons(type);
else
eth->h_proto = htons(len);
/* Set the source hardware address. */
if (saddr)
memcpy(eth->h_source, saddr, dev->addr_len);
else
memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
/* Anyway, the loopback-device should never use this function... */
if (dev->flags & IFF_LOOPBACK) {
int i;
for (i = 0; i < dev->addr_len; i++)
eth->h_dest[i] = 0;
return(dev->hard_header_len);
}
if (daddr) {
memcpy(eth->h_dest, daddr, dev->addr_len);
return dev->hard_header_len;
}
return -dev->hard_header_len;
}
/* Rebuild the MyriNet MAC header. This is called after an ARP
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
*/
static int myri_rebuild_header(struct sk_buff *skb)
{
unsigned char *pad = (unsigned char *) skb->data;
struct ethhdr *eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
struct net_device *dev = skb->dev;
#ifdef DEBUG_HEADER
DHDR(("myri_rebuild_header: pad[%02x,%02x] ", pad[0], pad[1]));
dump_ehdr(eth);
#endif
/* Refill MyriNet padding identifiers, this is just being anal. */
pad[0] = MYRI_PAD_LEN;
pad[1] = 0xab;
switch (eth->h_proto)
{
#ifdef CONFIG_INET
case __constant_htons(ETH_P_IP):
return arp_find(eth->h_dest, skb);
#endif
default:
printk(KERN_DEBUG
"%s: unable to resolve type %X addresses.\n",
dev->name, (int)eth->h_proto);
memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
return 0;
break;
}
return 0;
}
int myri_header_cache(struct neighbour *neigh, struct hh_cache *hh)
{
unsigned short type = hh->hh_type;
unsigned char *pad;
struct ethhdr *eth;
struct net_device *dev = neigh->dev;
pad = ((unsigned char *) hh->hh_data) +
HH_DATA_OFF(sizeof(*eth) + MYRI_PAD_LEN);
eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
if (type == __constant_htons(ETH_P_802_3))
return -1;
/* Refill MyriNet padding identifiers, this is just being anal. */
pad[0] = MYRI_PAD_LEN;
pad[1] = 0xab;
eth->h_proto = type;
memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
memcpy(eth->h_dest, neigh->ha, dev->addr_len);
hh->hh_len = 16;
return 0;
}
/* Called by Address Resolution module to notify changes in address. */
void myri_header_cache_update(struct hh_cache *hh, struct net_device *dev, unsigned char * haddr)
{
memcpy(((u8*)hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
haddr, dev->addr_len);
}
static int myri_change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu < (ETH_HLEN + MYRI_PAD_LEN)) || (new_mtu > MYRINET_MTU))
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static struct net_device_stats *myri_get_stats(struct net_device *dev)
{ return &(((struct myri_eth *)dev->priv)->enet_stats); }
static void myri_set_multicast(struct net_device *dev)
{
/* Do nothing, all MyriCOM nodes transmit multicast frames
* as broadcast packets...
*/
}
static inline void set_boardid_from_idprom(struct myri_eth *mp, int num)
{
mp->eeprom.id[0] = 0;
mp->eeprom.id[1] = idprom->id_machtype;
mp->eeprom.id[2] = (idprom->id_sernum >> 16) & 0xff;
mp->eeprom.id[3] = (idprom->id_sernum >> 8) & 0xff;
mp->eeprom.id[4] = (idprom->id_sernum >> 0) & 0xff;
mp->eeprom.id[5] = num;
}
static inline void determine_reg_space_size(struct myri_eth *mp)
{
switch(mp->eeprom.cpuvers) {
case CPUVERS_2_3:
case CPUVERS_3_0:
case CPUVERS_3_1:
case CPUVERS_3_2:
mp->reg_size = (3 * 128 * 1024) + 4096;
break;
case CPUVERS_4_0:
case CPUVERS_4_1:
mp->reg_size = ((4096<<1) + mp->eeprom.ramsz);
break;
case CPUVERS_4_2:
case CPUVERS_5_0:
default:
printk("myricom: AIEEE weird cpu version %04x assuming pre4.0\n",
mp->eeprom.cpuvers);
mp->reg_size = (3 * 128 * 1024) + 4096;
};
}
#ifdef DEBUG_DETECT
static void dump_eeprom(struct myri_eth *mp)
{
printk("EEPROM: clockval[%08x] cpuvers[%04x] "
"id[%02x,%02x,%02x,%02x,%02x,%02x]\n",
mp->eeprom.cval, mp->eeprom.cpuvers,
mp->eeprom.id[0], mp->eeprom.id[1], mp->eeprom.id[2],
mp->eeprom.id[3], mp->eeprom.id[4], mp->eeprom.id[5]);
printk("EEPROM: ramsz[%08x]\n", mp->eeprom.ramsz);
printk("EEPROM: fvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
mp->eeprom.fvers[0], mp->eeprom.fvers[1], mp->eeprom.fvers[2],
mp->eeprom.fvers[3], mp->eeprom.fvers[4], mp->eeprom.fvers[5],
mp->eeprom.fvers[6], mp->eeprom.fvers[7]);
printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
mp->eeprom.fvers[8], mp->eeprom.fvers[9], mp->eeprom.fvers[10],
mp->eeprom.fvers[11], mp->eeprom.fvers[12], mp->eeprom.fvers[13],
mp->eeprom.fvers[14], mp->eeprom.fvers[15]);
printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
mp->eeprom.fvers[16], mp->eeprom.fvers[17], mp->eeprom.fvers[18],
mp->eeprom.fvers[19], mp->eeprom.fvers[20], mp->eeprom.fvers[21],
mp->eeprom.fvers[22], mp->eeprom.fvers[23]);
printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
mp->eeprom.fvers[24], mp->eeprom.fvers[25], mp->eeprom.fvers[26],
mp->eeprom.fvers[27], mp->eeprom.fvers[28], mp->eeprom.fvers[29],
mp->eeprom.fvers[30], mp->eeprom.fvers[31]);
printk("EEPROM: mvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
mp->eeprom.mvers[0], mp->eeprom.mvers[1], mp->eeprom.mvers[2],
mp->eeprom.mvers[3], mp->eeprom.mvers[4], mp->eeprom.mvers[5],
mp->eeprom.mvers[6], mp->eeprom.mvers[7]);
printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
mp->eeprom.mvers[8], mp->eeprom.mvers[9], mp->eeprom.mvers[10],
mp->eeprom.mvers[11], mp->eeprom.mvers[12], mp->eeprom.mvers[13],
mp->eeprom.mvers[14], mp->eeprom.mvers[15]);
printk("EEPROM: dlval[%04x] brd_type[%04x] bus_type[%04x] prod_code[%04x]\n",
mp->eeprom.dlval, mp->eeprom.brd_type, mp->eeprom.bus_type,
mp->eeprom.prod_code);
printk("EEPROM: serial_num[%08x]\n", mp->eeprom.serial_num);
}
#endif
static int __init myri_ether_init(struct sbus_dev *sdev, int num)
{
static unsigned version_printed;
struct net_device *dev;
struct myri_eth *mp;
unsigned char prop_buf[32];
int i;
DET(("myri_ether_init(%p,%d):\n", sdev, num));
dev = alloc_etherdev(sizeof(struct myri_eth));
if (!dev)
return -ENOMEM;
if (version_printed++ == 0)
printk(version);
mp = (struct myri_eth *) dev->priv;
spin_lock_init(&mp->irq_lock);
mp->myri_sdev = sdev;
/* Clean out skb arrays. */
for (i = 0; i < (RX_RING_SIZE + 1); i++)
mp->rx_skbs[i] = NULL;
for (i = 0; i < TX_RING_SIZE; i++)
mp->tx_skbs[i] = NULL;
/* First check for EEPROM information. */
i = prom_getproperty(sdev->prom_node, "myrinet-eeprom-info",
(char *)&mp->eeprom, sizeof(struct myri_eeprom));
DET(("prom_getprop(myrinet-eeprom-info) returns %d\n", i));
if (i == 0 || i == -1) {
/* No eeprom property, must cook up the values ourselves. */
DET(("No EEPROM: "));
mp->eeprom.bus_type = BUS_TYPE_SBUS;
mp->eeprom.cpuvers = prom_getintdefault(sdev->prom_node,"cpu_version",0);
mp->eeprom.cval = prom_getintdefault(sdev->prom_node,"clock_value",0);
mp->eeprom.ramsz = prom_getintdefault(sdev->prom_node,"sram_size",0);
DET(("cpuvers[%d] cval[%d] ramsz[%d]\n", mp->eeprom.cpuvers,
mp->eeprom.cval, mp->eeprom.ramsz));
if (mp->eeprom.cpuvers == 0) {
DET(("EEPROM: cpuvers was zero, setting to %04x\n",CPUVERS_2_3));
mp->eeprom.cpuvers = CPUVERS_2_3;
}
if (mp->eeprom.cpuvers < CPUVERS_3_0) {
DET(("EEPROM: cpuvers < CPUVERS_3_0, clockval set to zero.\n"));
mp->eeprom.cval = 0;
}
if (mp->eeprom.ramsz == 0) {
DET(("EEPROM: ramsz == 0, setting to 128k\n"));
mp->eeprom.ramsz = (128 * 1024);
}
i = prom_getproperty(sdev->prom_node, "myrinet-board-id",
&prop_buf[0], 10);
DET(("EEPROM: prom_getprop(myrinet-board-id) returns %d\n", i));
if ((i != 0) && (i != -1))
memcpy(&mp->eeprom.id[0], &prop_buf[0], 6);
else
set_boardid_from_idprom(mp, num);
i = prom_getproperty(sdev->prom_node, "fpga_version",
&mp->eeprom.fvers[0], 32);
DET(("EEPROM: prom_getprop(fpga_version) returns %d\n", i));
if (i == 0 || i == -1)
memset(&mp->eeprom.fvers[0], 0, 32);
if (mp->eeprom.cpuvers == CPUVERS_4_1) {
DET(("EEPROM: cpuvers CPUVERS_4_1, "));
if (mp->eeprom.ramsz == (128 * 1024)) {
DET(("ramsize 128k, setting to 256k, "));
mp->eeprom.ramsz = (256 * 1024);
}
if ((mp->eeprom.cval==0x40414041)||(mp->eeprom.cval==0x90449044)){
DET(("changing cval from %08x to %08x ",
mp->eeprom.cval, 0x50e450e4));
mp->eeprom.cval = 0x50e450e4;
}
DET(("\n"));
}
}
#ifdef DEBUG_DETECT
dump_eeprom(mp);
#endif
for (i = 0; i < 6; i++)
dev->dev_addr[i] = mp->eeprom.id[i];
determine_reg_space_size(mp);
/* Map in the MyriCOM register/localram set. */
if (mp->eeprom.cpuvers < CPUVERS_4_0) {
/* XXX Makes no sense, if control reg is non-existant this
* XXX driver cannot function at all... maybe pre-4.0 is
* XXX only a valid version for PCI cards? Ask feldy...
*/
DET(("Mapping regs for cpuvers < CPUVERS_4_0\n"));
mp->regs = sbus_ioremap(&sdev->resource[0], 0,
mp->reg_size, "MyriCOM Regs");
if (!mp->regs) {
printk("MyriCOM: Cannot map MyriCOM registers.\n");
goto err;
}
mp->lanai = mp->regs + (256 * 1024);
mp->lregs = mp->lanai + (0x10000 * 2);
} else {
DET(("Mapping regs for cpuvers >= CPUVERS_4_0\n"));
mp->cregs = sbus_ioremap(&sdev->resource[0], 0,
PAGE_SIZE, "MyriCOM Control Regs");
mp->lregs = sbus_ioremap(&sdev->resource[0], (256 * 1024),
PAGE_SIZE, "MyriCOM LANAI Regs");
mp->lanai =
sbus_ioremap(&sdev->resource[0], (512 * 1024),
mp->eeprom.ramsz, "MyriCOM SRAM");
}
DET(("Registers mapped: cregs[%p] lregs[%p] lanai[%p]\n",
mp->cregs, mp->lregs, mp->lanai));
if (mp->eeprom.cpuvers >= CPUVERS_4_0)
mp->shmem_base = 0xf000;
else
mp->shmem_base = 0x8000;
DET(("Shared memory base is %04x, ", mp->shmem_base));
mp->shmem = (struct myri_shmem __iomem *)
(mp->lanai + (mp->shmem_base * 2));
DET(("shmem mapped at %p\n", mp->shmem));
mp->rqack = &mp->shmem->channel.recvqa;
mp->rq = &mp->shmem->channel.recvq;
mp->sq = &mp->shmem->channel.sendq;
/* Reset the board. */
DET(("Resetting LANAI\n"));
myri_reset_off(mp->lregs, mp->cregs);
myri_reset_on(mp->cregs);
/* Turn IRQ's off. */
myri_disable_irq(mp->lregs, mp->cregs);
/* Reset once more. */
myri_reset_on(mp->cregs);
/* Get the supported DVMA burst sizes from our SBUS. */
mp->myri_bursts = prom_getintdefault(mp->myri_sdev->bus->prom_node,
"burst-sizes", 0x00);
if (!sbus_can_burst64(sdev))
mp->myri_bursts &= ~(DMA_BURST64);
DET(("MYRI bursts %02x\n", mp->myri_bursts));
/* Encode SBUS interrupt level in second control register. */
i = prom_getint(sdev->prom_node, "interrupts");
if (i == 0)
i = 4;
DET(("prom_getint(interrupts)==%d, irqlvl set to %04x\n",
i, (1 << i)));
sbus_writel((1 << i), mp->cregs + MYRICTRL_IRQLVL);
mp->dev = dev;
dev->open = &myri_open;
dev->stop = &myri_close;
dev->hard_start_xmit = &myri_start_xmit;
dev->tx_timeout = &myri_tx_timeout;
dev->watchdog_timeo = 5*HZ;
dev->get_stats = &myri_get_stats;
dev->set_multicast_list = &myri_set_multicast;
dev->irq = sdev->irqs[0];
/* Register interrupt handler now. */
DET(("Requesting MYRIcom IRQ line.\n"));
if (request_irq(dev->irq, &myri_interrupt,
SA_SHIRQ, "MyriCOM Ethernet", (void *) dev)) {
printk("MyriCOM: Cannot register interrupt handler.\n");
goto err;
}
dev->mtu = MYRINET_MTU;
dev->change_mtu = myri_change_mtu;
dev->hard_header = myri_header;
dev->rebuild_header = myri_rebuild_header;
dev->hard_header_len = (ETH_HLEN + MYRI_PAD_LEN);
dev->hard_header_cache = myri_header_cache;
dev->header_cache_update= myri_header_cache_update;
/* Load code onto the LANai. */
DET(("Loading LANAI firmware\n"));
myri_load_lanai(mp);
if (register_netdev(dev)) {
printk("MyriCOM: Cannot register device.\n");
goto err_free_irq;
}
#ifdef MODULE
mp->next_module = root_myri_dev;
root_myri_dev = mp;
#endif
printk("%s: MyriCOM MyriNET Ethernet ", dev->name);
for (i = 0; i < 6; i++)
printk("%2.2x%c", dev->dev_addr[i],
i == 5 ? ' ' : ':');
printk("\n");
return 0;
err_free_irq:
free_irq(dev->irq, dev);
err:
/* This will also free the co-allocated 'dev->priv' */
free_netdev(dev);
return -ENODEV;
}
static int __init myri_sbus_match(struct sbus_dev *sdev)
{
char *name = sdev->prom_name;
if (!strcmp(name, "MYRICOM,mlanai") ||
!strcmp(name, "myri"))
return 1;
return 0;
}
static int __init myri_sbus_probe(void)
{
struct sbus_bus *bus;
struct sbus_dev *sdev = NULL;
static int called;
int cards = 0, v;
#ifdef MODULE
root_myri_dev = NULL;
#endif
if (called)
return -ENODEV;
called++;
for_each_sbus(bus) {
for_each_sbusdev(sdev, bus) {
if (myri_sbus_match(sdev)) {
cards++;
DET(("Found myricom myrinet as %s\n", sdev->prom_name));
if ((v = myri_ether_init(sdev, (cards - 1))))
return v;
}
}
}
if (!cards)
return -ENODEV;
return 0;
}
static void __exit myri_sbus_cleanup(void)
{
#ifdef MODULE
while (root_myri_dev) {
struct myri_eth *next = root_myri_dev->next_module;
unregister_netdev(root_myri_dev->dev);
/* this will also free the co-allocated 'root_myri_dev' */
free_netdev(root_myri_dev->dev);
root_myri_dev = next;
}
#endif /* MODULE */
}
module_init(myri_sbus_probe);
module_exit(myri_sbus_cleanup);
MODULE_LICENSE("GPL");