linux-sg2042/drivers/mtd/nand/tmio_nand.c

543 lines
14 KiB
C

/*
* Toshiba TMIO NAND flash controller driver
*
* Slightly murky pre-git history of the driver:
*
* Copyright (c) Ian Molton 2004, 2005, 2008
* Original work, independent of sharps code. Included hardware ECC support.
* Hard ECC did not work for writes in the early revisions.
* Copyright (c) Dirk Opfer 2005.
* Modifications developed from sharps code but
* NOT containing any, ported onto Ians base.
* Copyright (c) Chris Humbert 2005
* Copyright (c) Dmitry Baryshkov 2008
* Minor fixes
*
* Parts copyright Sebastian Carlier
*
* This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mfd/core.h>
#include <linux/mfd/tmio.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/slab.h>
/*--------------------------------------------------------------------------*/
/*
* NAND Flash Host Controller Configuration Register
*/
#define CCR_COMMAND 0x04 /* w Command */
#define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */
#define CCR_INTP 0x3d /* b Interrupt Pin */
#define CCR_INTE 0x48 /* b Interrupt Enable */
#define CCR_EC 0x4a /* b Event Control */
#define CCR_ICC 0x4c /* b Internal Clock Control */
#define CCR_ECCC 0x5b /* b ECC Control */
#define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */
#define CCR_NFM 0x61 /* b NAND Flash Monitor */
#define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */
#define CCR_NFDC 0x63 /* b NAND Flash Detect Control */
/*
* NAND Flash Control Register
*/
#define FCR_DATA 0x00 /* bwl Data Register */
#define FCR_MODE 0x04 /* b Mode Register */
#define FCR_STATUS 0x05 /* b Status Register */
#define FCR_ISR 0x06 /* b Interrupt Status Register */
#define FCR_IMR 0x07 /* b Interrupt Mask Register */
/* FCR_MODE Register Command List */
#define FCR_MODE_DATA 0x94 /* Data Data_Mode */
#define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */
#define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */
#define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */
#define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */
#define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */
#define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */
#define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */
#define FCR_MODE_LED_OFF 0x00 /* LED OFF */
#define FCR_MODE_LED_ON 0x04 /* LED ON */
#define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */
#define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */
#define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */
#define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */
#define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */
#define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */
#define FCR_MODE_WE 0x80
#define FCR_MODE_ECC1 0x40
#define FCR_MODE_ECC0 0x20
#define FCR_MODE_CE 0x10
#define FCR_MODE_PCNT1 0x08
#define FCR_MODE_PCNT0 0x04
#define FCR_MODE_ALE 0x02
#define FCR_MODE_CLE 0x01
#define FCR_STATUS_BUSY 0x80
/*--------------------------------------------------------------------------*/
struct tmio_nand {
struct mtd_info mtd;
struct nand_chip chip;
struct platform_device *dev;
void __iomem *ccr;
void __iomem *fcr;
unsigned long fcr_base;
unsigned int irq;
/* for tmio_nand_read_byte */
u8 read;
unsigned read_good:1;
};
#define mtd_to_tmio(m) container_of(m, struct tmio_nand, mtd)
/*--------------------------------------------------------------------------*/
static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct tmio_nand *tmio = mtd_to_tmio(mtd);
struct nand_chip *chip = mtd->priv;
if (ctrl & NAND_CTRL_CHANGE) {
u8 mode;
if (ctrl & NAND_NCE) {
mode = FCR_MODE_DATA;
if (ctrl & NAND_CLE)
mode |= FCR_MODE_CLE;
else
mode &= ~FCR_MODE_CLE;
if (ctrl & NAND_ALE)
mode |= FCR_MODE_ALE;
else
mode &= ~FCR_MODE_ALE;
} else {
mode = FCR_MODE_STANDBY;
}
tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
tmio->read_good = 0;
}
if (cmd != NAND_CMD_NONE)
tmio_iowrite8(cmd, chip->IO_ADDR_W);
}
static int tmio_nand_dev_ready(struct mtd_info *mtd)
{
struct tmio_nand *tmio = mtd_to_tmio(mtd);
return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
}
static irqreturn_t tmio_irq(int irq, void *__tmio)
{
struct tmio_nand *tmio = __tmio;
struct nand_chip *nand_chip = &tmio->chip;
/* disable RDYREQ interrupt */
tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
if (unlikely(!waitqueue_active(&nand_chip->controller->wq)))
dev_warn(&tmio->dev->dev, "spurious interrupt\n");
wake_up(&nand_chip->controller->wq);
return IRQ_HANDLED;
}
/*
*The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
*This interrupt is normally disabled, but for long operations like
*erase and write, we enable it to wake us up. The irq handler
*disables the interrupt.
*/
static int
tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip)
{
struct tmio_nand *tmio = mtd_to_tmio(mtd);
long timeout;
/* enable RDYREQ interrupt */
tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
timeout = wait_event_timeout(nand_chip->controller->wq,
tmio_nand_dev_ready(mtd),
msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20));
if (unlikely(!tmio_nand_dev_ready(mtd))) {
tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n",
nand_chip->state == FL_ERASING ? "erase" : "program",
nand_chip->state == FL_ERASING ? 400 : 20);
} else if (unlikely(!timeout)) {
tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
}
nand_chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
return nand_chip->read_byte(mtd);
}
/*
*The TMIO controller combines two 8-bit data bytes into one 16-bit
*word. This function separates them so nand_base.c works as expected,
*especially its NAND_CMD_READID routines.
*
*To prevent stale data from being read, tmio_nand_hwcontrol() clears
*tmio->read_good.
*/
static u_char tmio_nand_read_byte(struct mtd_info *mtd)
{
struct tmio_nand *tmio = mtd_to_tmio(mtd);
unsigned int data;
if (tmio->read_good--)
return tmio->read;
data = tmio_ioread16(tmio->fcr + FCR_DATA);
tmio->read = data >> 8;
return data;
}
/*
*The TMIO controller converts an 8-bit NAND interface to a 16-bit
*bus interface, so all data reads and writes must be 16-bit wide.
*Thus, we implement 16-bit versions of the read, write, and verify
*buffer functions.
*/
static void
tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct tmio_nand *tmio = mtd_to_tmio(mtd);
tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
}
static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct tmio_nand *tmio = mtd_to_tmio(mtd);
tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
}
static int
tmio_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct tmio_nand *tmio = mtd_to_tmio(mtd);
u16 *p = (u16 *) buf;
for (len >>= 1; len; len--)
if (*(p++) != tmio_ioread16(tmio->fcr + FCR_DATA))
return -EFAULT;
return 0;
}
static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct tmio_nand *tmio = mtd_to_tmio(mtd);
tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
tmio_ioread8(tmio->fcr + FCR_DATA); /* dummy read */
tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
}
static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct tmio_nand *tmio = mtd_to_tmio(mtd);
unsigned int ecc;
tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
ecc_code[1] = ecc; /* 000-255 LP7-0 */
ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */
ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
ecc_code[2] = ecc; /* 000-255 CP5-0,11b */
ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */
ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
ecc_code[3] = ecc; /* 256-511 LP15-8 */
ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */
tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE);
return 0;
}
static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
unsigned char *read_ecc, unsigned char *calc_ecc)
{
int r0, r1;
/* assume ecc.size = 512 and ecc.bytes = 6 */
r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256);
if (r0 < 0)
return r0;
r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256);
if (r1 < 0)
return r1;
return r0 + r1;
}
static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
{
const struct mfd_cell *cell = mfd_get_cell(dev);
int ret;
if (cell->enable) {
ret = cell->enable(dev);
if (ret)
return ret;
}
/* (4Ch) CLKRUN Enable 1st spcrunc */
tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
/* (10h)BaseAddress 0x1000 spba.spba2 */
tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
/* (04h)Command Register I/O spcmd */
tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
/* (62h) Power Supply Control ssmpwc */
/* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
/* (63h) Detect Control ssmdtc */
tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
/* Interrupt status register clear sintst */
tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
/* After power supply, Media are reset smode */
tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE);
tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE);
tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA);
/* Standby Mode smode */
tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE);
mdelay(5);
return 0;
}
static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
{
const struct mfd_cell *cell = mfd_get_cell(dev);
tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE);
if (cell->disable)
cell->disable(dev);
}
static int tmio_probe(struct platform_device *dev)
{
struct tmio_nand_data *data = dev->dev.platform_data;
struct resource *fcr = platform_get_resource(dev,
IORESOURCE_MEM, 0);
struct resource *ccr = platform_get_resource(dev,
IORESOURCE_MEM, 1);
int irq = platform_get_irq(dev, 0);
struct tmio_nand *tmio;
struct mtd_info *mtd;
struct nand_chip *nand_chip;
int retval;
if (data == NULL)
dev_warn(&dev->dev, "NULL platform data!\n");
tmio = kzalloc(sizeof *tmio, GFP_KERNEL);
if (!tmio) {
retval = -ENOMEM;
goto err_kzalloc;
}
tmio->dev = dev;
platform_set_drvdata(dev, tmio);
mtd = &tmio->mtd;
nand_chip = &tmio->chip;
mtd->priv = nand_chip;
mtd->name = "tmio-nand";
tmio->ccr = ioremap(ccr->start, resource_size(ccr));
if (!tmio->ccr) {
retval = -EIO;
goto err_iomap_ccr;
}
tmio->fcr_base = fcr->start & 0xfffff;
tmio->fcr = ioremap(fcr->start, resource_size(fcr));
if (!tmio->fcr) {
retval = -EIO;
goto err_iomap_fcr;
}
retval = tmio_hw_init(dev, tmio);
if (retval)
goto err_hwinit;
/* Set address of NAND IO lines */
nand_chip->IO_ADDR_R = tmio->fcr;
nand_chip->IO_ADDR_W = tmio->fcr;
/* Set address of hardware control function */
nand_chip->cmd_ctrl = tmio_nand_hwcontrol;
nand_chip->dev_ready = tmio_nand_dev_ready;
nand_chip->read_byte = tmio_nand_read_byte;
nand_chip->write_buf = tmio_nand_write_buf;
nand_chip->read_buf = tmio_nand_read_buf;
nand_chip->verify_buf = tmio_nand_verify_buf;
/* set eccmode using hardware ECC */
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.size = 512;
nand_chip->ecc.bytes = 6;
nand_chip->ecc.strength = 2;
nand_chip->ecc.hwctl = tmio_nand_enable_hwecc;
nand_chip->ecc.calculate = tmio_nand_calculate_ecc;
nand_chip->ecc.correct = tmio_nand_correct_data;
if (data)
nand_chip->badblock_pattern = data->badblock_pattern;
/* 15 us command delay time */
nand_chip->chip_delay = 15;
retval = request_irq(irq, &tmio_irq,
IRQF_DISABLED, dev_name(&dev->dev), tmio);
if (retval) {
dev_err(&dev->dev, "request_irq error %d\n", retval);
goto err_irq;
}
tmio->irq = irq;
nand_chip->waitfunc = tmio_nand_wait;
/* Scan to find existence of the device */
if (nand_scan(mtd, 1)) {
retval = -ENODEV;
goto err_scan;
}
/* Register the partitions */
retval = mtd_device_parse_register(mtd, NULL, NULL,
data ? data->partition : NULL,
data ? data->num_partitions : 0);
if (!retval)
return retval;
nand_release(mtd);
err_scan:
if (tmio->irq)
free_irq(tmio->irq, tmio);
err_irq:
tmio_hw_stop(dev, tmio);
err_hwinit:
iounmap(tmio->fcr);
err_iomap_fcr:
iounmap(tmio->ccr);
err_iomap_ccr:
kfree(tmio);
err_kzalloc:
return retval;
}
static int tmio_remove(struct platform_device *dev)
{
struct tmio_nand *tmio = platform_get_drvdata(dev);
nand_release(&tmio->mtd);
if (tmio->irq)
free_irq(tmio->irq, tmio);
tmio_hw_stop(dev, tmio);
iounmap(tmio->fcr);
iounmap(tmio->ccr);
kfree(tmio);
return 0;
}
#ifdef CONFIG_PM
static int tmio_suspend(struct platform_device *dev, pm_message_t state)
{
const struct mfd_cell *cell = mfd_get_cell(dev);
if (cell->suspend)
cell->suspend(dev);
tmio_hw_stop(dev, platform_get_drvdata(dev));
return 0;
}
static int tmio_resume(struct platform_device *dev)
{
const struct mfd_cell *cell = mfd_get_cell(dev);
/* FIXME - is this required or merely another attack of the broken
* SHARP platform? Looks suspicious.
*/
tmio_hw_init(dev, platform_get_drvdata(dev));
if (cell->resume)
cell->resume(dev);
return 0;
}
#else
#define tmio_suspend NULL
#define tmio_resume NULL
#endif
static struct platform_driver tmio_driver = {
.driver.name = "tmio-nand",
.driver.owner = THIS_MODULE,
.probe = tmio_probe,
.remove = tmio_remove,
.suspend = tmio_suspend,
.resume = tmio_resume,
};
module_platform_driver(tmio_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
MODULE_ALIAS("platform:tmio-nand");