linux-sg2042/drivers/usb/gadget/s3c-hsudc.c

1399 lines
36 KiB
C

/* linux/drivers/usb/gadget/s3c-hsudc.c
*
* Copyright (c) 2010 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* S3C24XX USB 2.0 High-speed USB controller gadget driver
*
* The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
* Each endpoint can be configured as either in or out endpoint. Endpoints
* can be configured for Bulk or Interrupt transfer mode.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <linux/prefetch.h>
#include <mach/regs-s3c2443-clock.h>
#include <plat/udc.h>
#define S3C_HSUDC_REG(x) (x)
/* Non-Indexed Registers */
#define S3C_IR S3C_HSUDC_REG(0x00) /* Index Register */
#define S3C_EIR S3C_HSUDC_REG(0x04) /* EP Intr Status */
#define S3C_EIR_EP0 (1<<0)
#define S3C_EIER S3C_HSUDC_REG(0x08) /* EP Intr Enable */
#define S3C_FAR S3C_HSUDC_REG(0x0c) /* Gadget Address */
#define S3C_FNR S3C_HSUDC_REG(0x10) /* Frame Number */
#define S3C_EDR S3C_HSUDC_REG(0x14) /* EP Direction */
#define S3C_TR S3C_HSUDC_REG(0x18) /* Test Register */
#define S3C_SSR S3C_HSUDC_REG(0x1c) /* System Status */
#define S3C_SSR_DTZIEN_EN (0xff8f)
#define S3C_SSR_ERR (0xff80)
#define S3C_SSR_VBUSON (1 << 8)
#define S3C_SSR_HSP (1 << 4)
#define S3C_SSR_SDE (1 << 3)
#define S3C_SSR_RESUME (1 << 2)
#define S3C_SSR_SUSPEND (1 << 1)
#define S3C_SSR_RESET (1 << 0)
#define S3C_SCR S3C_HSUDC_REG(0x20) /* System Control */
#define S3C_SCR_DTZIEN_EN (1 << 14)
#define S3C_SCR_RRD_EN (1 << 5)
#define S3C_SCR_SUS_EN (1 << 1)
#define S3C_SCR_RST_EN (1 << 0)
#define S3C_EP0SR S3C_HSUDC_REG(0x24) /* EP0 Status */
#define S3C_EP0SR_EP0_LWO (1 << 6)
#define S3C_EP0SR_STALL (1 << 4)
#define S3C_EP0SR_TX_SUCCESS (1 << 1)
#define S3C_EP0SR_RX_SUCCESS (1 << 0)
#define S3C_EP0CR S3C_HSUDC_REG(0x28) /* EP0 Control */
#define S3C_BR(_x) S3C_HSUDC_REG(0x60 + (_x * 4))
/* Indexed Registers */
#define S3C_ESR S3C_HSUDC_REG(0x2c) /* EPn Status */
#define S3C_ESR_FLUSH (1 << 6)
#define S3C_ESR_STALL (1 << 5)
#define S3C_ESR_LWO (1 << 4)
#define S3C_ESR_PSIF_ONE (1 << 2)
#define S3C_ESR_PSIF_TWO (2 << 2)
#define S3C_ESR_TX_SUCCESS (1 << 1)
#define S3C_ESR_RX_SUCCESS (1 << 0)
#define S3C_ECR S3C_HSUDC_REG(0x30) /* EPn Control */
#define S3C_ECR_DUEN (1 << 7)
#define S3C_ECR_FLUSH (1 << 6)
#define S3C_ECR_STALL (1 << 1)
#define S3C_ECR_IEMS (1 << 0)
#define S3C_BRCR S3C_HSUDC_REG(0x34) /* Read Count */
#define S3C_BWCR S3C_HSUDC_REG(0x38) /* Write Count */
#define S3C_MPR S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
#define WAIT_FOR_SETUP (0)
#define DATA_STATE_XMIT (1)
#define DATA_STATE_RECV (2)
/**
* struct s3c_hsudc_ep - Endpoint representation used by driver.
* @ep: USB gadget layer representation of device endpoint.
* @name: Endpoint name (as required by ep autoconfiguration).
* @dev: Reference to the device controller to which this EP belongs.
* @desc: Endpoint descriptor obtained from the gadget driver.
* @queue: Transfer request queue for the endpoint.
* @stopped: Maintains state of endpoint, set if EP is halted.
* @bEndpointAddress: EP address (including direction bit).
* @fifo: Base address of EP FIFO.
*/
struct s3c_hsudc_ep {
struct usb_ep ep;
char name[20];
struct s3c_hsudc *dev;
const struct usb_endpoint_descriptor *desc;
struct list_head queue;
u8 stopped;
u8 wedge;
u8 bEndpointAddress;
void __iomem *fifo;
};
/**
* struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
* @req: Reference to USB gadget transfer request.
* @queue: Used for inserting this request to the endpoint request queue.
*/
struct s3c_hsudc_req {
struct usb_request req;
struct list_head queue;
};
/**
* struct s3c_hsudc - Driver's abstraction of the device controller.
* @gadget: Instance of usb_gadget which is referenced by gadget driver.
* @driver: Reference to currenty active gadget driver.
* @dev: The device reference used by probe function.
* @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
* @regs: Remapped base address of controller's register space.
* @mem_rsrc: Device memory resource used for remapping device register space.
* irq: IRQ number used by the controller.
* uclk: Reference to the controller clock.
* ep0state: Current state of EP0.
* ep: List of endpoints supported by the controller.
*/
struct s3c_hsudc {
struct usb_gadget gadget;
struct usb_gadget_driver *driver;
struct device *dev;
struct s3c24xx_hsudc_platdata *pd;
struct otg_transceiver *transceiver;
spinlock_t lock;
void __iomem *regs;
struct resource *mem_rsrc;
int irq;
struct clk *uclk;
int ep0state;
struct s3c_hsudc_ep ep[];
};
#define ep_maxpacket(_ep) ((_ep)->ep.maxpacket)
#define ep_is_in(_ep) ((_ep)->bEndpointAddress & USB_DIR_IN)
#define ep_index(_ep) ((_ep)->bEndpointAddress & \
USB_ENDPOINT_NUMBER_MASK)
static struct s3c_hsudc *the_controller;
static const char driver_name[] = "s3c-udc";
static const char ep0name[] = "ep0-control";
static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
{
return container_of(req, struct s3c_hsudc_req, req);
}
static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
{
return container_of(ep, struct s3c_hsudc_ep, ep);
}
static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
{
return container_of(gadget, struct s3c_hsudc, gadget);
}
static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
{
ep_addr &= USB_ENDPOINT_NUMBER_MASK;
writel(ep_addr, hsudc->regs + S3C_IR);
}
static inline void __orr32(void __iomem *ptr, u32 val)
{
writel(readl(ptr) | val, ptr);
}
static void s3c_hsudc_init_phy(void)
{
u32 cfg;
cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
writel(cfg, S3C2443_PWRCFG);
cfg = readl(S3C2443_URSTCON);
cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
writel(cfg, S3C2443_URSTCON);
mdelay(1);
cfg = readl(S3C2443_URSTCON);
cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
writel(cfg, S3C2443_URSTCON);
cfg = readl(S3C2443_PHYCTRL);
cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
writel(cfg, S3C2443_PHYCTRL);
cfg = readl(S3C2443_PHYPWR);
cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
S3C2443_PHYPWR_ANALOG_PD);
cfg |= S3C2443_PHYPWR_COMMON_ON;
writel(cfg, S3C2443_PHYPWR);
cfg = readl(S3C2443_UCLKCON);
cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
S3C2443_UCLKCON_TCLKEN);
writel(cfg, S3C2443_UCLKCON);
}
static void s3c_hsudc_uninit_phy(void)
{
u32 cfg;
cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
writel(cfg, S3C2443_PWRCFG);
writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
writel(cfg, S3C2443_UCLKCON);
}
/**
* s3c_hsudc_complete_request - Complete a transfer request.
* @hsep: Endpoint to which the request belongs.
* @hsreq: Transfer request to be completed.
* @status: Transfer completion status for the transfer request.
*/
static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
struct s3c_hsudc_req *hsreq, int status)
{
unsigned int stopped = hsep->stopped;
struct s3c_hsudc *hsudc = hsep->dev;
list_del_init(&hsreq->queue);
hsreq->req.status = status;
if (!ep_index(hsep)) {
hsudc->ep0state = WAIT_FOR_SETUP;
hsep->bEndpointAddress &= ~USB_DIR_IN;
}
hsep->stopped = 1;
spin_unlock(&hsudc->lock);
if (hsreq->req.complete != NULL)
hsreq->req.complete(&hsep->ep, &hsreq->req);
spin_lock(&hsudc->lock);
hsep->stopped = stopped;
}
/**
* s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
* @hsep: Endpoint for which queued requests have to be terminated.
* @status: Transfer completion status for the transfer request.
*/
static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
{
struct s3c_hsudc_req *hsreq;
while (!list_empty(&hsep->queue)) {
hsreq = list_entry(hsep->queue.next,
struct s3c_hsudc_req, queue);
s3c_hsudc_complete_request(hsep, hsreq, status);
}
}
/**
* s3c_hsudc_stop_activity - Stop activity on all endpoints.
* @hsudc: Device controller for which EP activity is to be stopped.
* @driver: Reference to the gadget driver which is currently active.
*
* All the endpoints are stopped and any pending transfer requests if any on
* the endpoint are terminated.
*/
static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc,
struct usb_gadget_driver *driver)
{
struct s3c_hsudc_ep *hsep;
int epnum;
hsudc->gadget.speed = USB_SPEED_UNKNOWN;
for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
hsep = &hsudc->ep[epnum];
hsep->stopped = 1;
s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
}
spin_unlock(&hsudc->lock);
driver->disconnect(&hsudc->gadget);
spin_lock(&hsudc->lock);
}
/**
* s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
* @hsudc: Device controller from which setup packet is to be read.
* @buf: The buffer into which the setup packet is read.
*
* The setup packet received in the EP0 fifo is read and stored into a
* given buffer address.
*/
static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
{
int count;
count = readl(hsudc->regs + S3C_BRCR);
while (count--)
*buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
}
/**
* s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
* @hsep: Endpoint to which the data is to be written.
* @hsreq: Transfer request from which the next chunk of data is written.
*
* Write the next chunk of data from a transfer request to the endpoint FIFO.
* If the transfer request completes, 1 is returned, otherwise 0 is returned.
*/
static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
struct s3c_hsudc_req *hsreq)
{
u16 *buf;
u32 max = ep_maxpacket(hsep);
u32 count, length;
bool is_last;
void __iomem *fifo = hsep->fifo;
buf = hsreq->req.buf + hsreq->req.actual;
prefetch(buf);
length = hsreq->req.length - hsreq->req.actual;
length = min(length, max);
hsreq->req.actual += length;
writel(length, hsep->dev->regs + S3C_BWCR);
for (count = 0; count < length; count += 2)
writel(*buf++, fifo);
if (count != max) {
is_last = true;
} else {
if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
is_last = false;
else
is_last = true;
}
if (is_last) {
s3c_hsudc_complete_request(hsep, hsreq, 0);
return 1;
}
return 0;
}
/**
* s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
* @hsep: Endpoint from which the data is to be read.
* @hsreq: Transfer request to which the next chunk of data read is written.
*
* Read the next chunk of data from the endpoint FIFO and a write it to the
* transfer request buffer. If the transfer request completes, 1 is returned,
* otherwise 0 is returned.
*/
static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
struct s3c_hsudc_req *hsreq)
{
struct s3c_hsudc *hsudc = hsep->dev;
u32 csr, offset;
u16 *buf, word;
u32 buflen, rcnt, rlen;
void __iomem *fifo = hsep->fifo;
u32 is_short = 0;
offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
csr = readl(hsudc->regs + offset);
if (!(csr & S3C_ESR_RX_SUCCESS))
return -EINVAL;
buf = hsreq->req.buf + hsreq->req.actual;
prefetchw(buf);
buflen = hsreq->req.length - hsreq->req.actual;
rcnt = readl(hsudc->regs + S3C_BRCR);
rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
hsreq->req.actual += min(rlen, buflen);
is_short = (rlen < hsep->ep.maxpacket);
while (rcnt-- != 0) {
word = (u16)readl(fifo);
if (buflen) {
*buf++ = word;
buflen--;
} else {
hsreq->req.status = -EOVERFLOW;
}
}
writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
if (is_short || hsreq->req.actual == hsreq->req.length) {
s3c_hsudc_complete_request(hsep, hsreq, 0);
return 1;
}
return 0;
}
/**
* s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
* @hsudc - Device controller for which the interrupt is to be handled.
* @ep_idx - Endpoint number on which an interrupt is pending.
*
* Handles interrupt for a in-endpoint. The interrupts that are handled are
* stall and data transmit complete interrupt.
*/
static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
{
struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
struct s3c_hsudc_req *hsreq;
u32 csr;
csr = readl((u32)hsudc->regs + S3C_ESR);
if (csr & S3C_ESR_STALL) {
writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
return;
}
if (csr & S3C_ESR_TX_SUCCESS) {
writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
if (list_empty(&hsep->queue))
return;
hsreq = list_entry(hsep->queue.next,
struct s3c_hsudc_req, queue);
if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
(csr & S3C_ESR_PSIF_TWO))
s3c_hsudc_write_fifo(hsep, hsreq);
}
}
/**
* s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
* @hsudc - Device controller for which the interrupt is to be handled.
* @ep_idx - Endpoint number on which an interrupt is pending.
*
* Handles interrupt for a out-endpoint. The interrupts that are handled are
* stall, flush and data ready interrupt.
*/
static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
{
struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
struct s3c_hsudc_req *hsreq;
u32 csr;
csr = readl((u32)hsudc->regs + S3C_ESR);
if (csr & S3C_ESR_STALL) {
writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
return;
}
if (csr & S3C_ESR_FLUSH) {
__orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
return;
}
if (csr & S3C_ESR_RX_SUCCESS) {
if (list_empty(&hsep->queue))
return;
hsreq = list_entry(hsep->queue.next,
struct s3c_hsudc_req, queue);
if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
(csr & S3C_ESR_PSIF_TWO))
s3c_hsudc_read_fifo(hsep, hsreq);
}
}
/** s3c_hsudc_set_halt - Set or clear a endpoint halt.
* @_ep: Endpoint on which halt has to be set or cleared.
* @value: 1 for setting halt on endpoint, 0 to clear halt.
*
* Set or clear endpoint halt. If halt is set, the endpoint is stopped.
* If halt is cleared, for in-endpoints, if there are any pending
* transfer requests, transfers are started.
*/
static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
{
struct s3c_hsudc_ep *hsep = our_ep(_ep);
struct s3c_hsudc *hsudc = hsep->dev;
struct s3c_hsudc_req *hsreq;
unsigned long irqflags;
u32 ecr;
u32 offset;
if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
return -EAGAIN;
spin_lock_irqsave(&hsudc->lock, irqflags);
set_index(hsudc, ep_index(hsep));
offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
ecr = readl(hsudc->regs + offset);
if (value) {
ecr |= S3C_ECR_STALL;
if (ep_index(hsep))
ecr |= S3C_ECR_FLUSH;
hsep->stopped = 1;
} else {
ecr &= ~S3C_ECR_STALL;
hsep->stopped = hsep->wedge = 0;
}
writel(ecr, hsudc->regs + offset);
if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
hsreq = list_entry(hsep->queue.next,
struct s3c_hsudc_req, queue);
if (hsreq)
s3c_hsudc_write_fifo(hsep, hsreq);
}
spin_unlock_irqrestore(&hsudc->lock, irqflags);
return 0;
}
/** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
* @_ep: Endpoint on which wedge has to be set.
*
* Sets the halt feature with the clear requests ignored.
*/
static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
{
struct s3c_hsudc_ep *hsep = our_ep(_ep);
if (!hsep)
return -EINVAL;
hsep->wedge = 1;
return usb_ep_set_halt(_ep);
}
/** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
* @_ep: Device controller on which the set/clear feature needs to be handled.
* @ctrl: Control request as received on the endpoint 0.
*
* Handle set feature or clear feature control requests on the control endpoint.
*/
static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
struct usb_ctrlrequest *ctrl)
{
struct s3c_hsudc_ep *hsep;
bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
hsep = &hsudc->ep[ep_num];
switch (le16_to_cpu(ctrl->wValue)) {
case USB_ENDPOINT_HALT:
if (set || (!set && !hsep->wedge))
s3c_hsudc_set_halt(&hsep->ep, set);
return 0;
}
}
return -ENOENT;
}
/**
* s3c_hsudc_process_req_status - Handle get status control request.
* @hsudc: Device controller on which get status request has be handled.
* @ctrl: Control request as received on the endpoint 0.
*
* Handle get status control request received on control endpoint.
*/
static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
struct usb_ctrlrequest *ctrl)
{
struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
struct s3c_hsudc_req hsreq;
struct s3c_hsudc_ep *hsep;
__le16 reply;
u8 epnum;
switch (ctrl->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
reply = cpu_to_le16(0);
break;
case USB_RECIP_INTERFACE:
reply = cpu_to_le16(0);
break;
case USB_RECIP_ENDPOINT:
epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
hsep = &hsudc->ep[epnum];
reply = cpu_to_le16(hsep->stopped ? 1 : 0);
break;
}
INIT_LIST_HEAD(&hsreq.queue);
hsreq.req.length = 2;
hsreq.req.buf = &reply;
hsreq.req.actual = 0;
hsreq.req.complete = NULL;
s3c_hsudc_write_fifo(hsep0, &hsreq);
}
/**
* s3c_hsudc_process_setup - Process control request received on endpoint 0.
* @hsudc: Device controller on which control request has been received.
*
* Read the control request received on endpoint 0, decode it and handle
* the request.
*/
static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
{
struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
struct usb_ctrlrequest ctrl = {0};
int ret;
s3c_hsudc_nuke_ep(hsep, -EPROTO);
s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
if (ctrl.bRequestType & USB_DIR_IN) {
hsep->bEndpointAddress |= USB_DIR_IN;
hsudc->ep0state = DATA_STATE_XMIT;
} else {
hsep->bEndpointAddress &= ~USB_DIR_IN;
hsudc->ep0state = DATA_STATE_RECV;
}
switch (ctrl.bRequest) {
case USB_REQ_SET_ADDRESS:
if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
break;
hsudc->ep0state = WAIT_FOR_SETUP;
return;
case USB_REQ_GET_STATUS:
if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
break;
s3c_hsudc_process_req_status(hsudc, &ctrl);
return;
case USB_REQ_SET_FEATURE:
case USB_REQ_CLEAR_FEATURE:
if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
break;
s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
hsudc->ep0state = WAIT_FOR_SETUP;
return;
}
if (hsudc->driver) {
spin_unlock(&hsudc->lock);
ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
spin_lock(&hsudc->lock);
if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
hsep->bEndpointAddress &= ~USB_DIR_IN;
hsudc->ep0state = WAIT_FOR_SETUP;
}
if (ret < 0) {
dev_err(hsudc->dev, "setup failed, returned %d\n",
ret);
s3c_hsudc_set_halt(&hsep->ep, 1);
hsudc->ep0state = WAIT_FOR_SETUP;
hsep->bEndpointAddress &= ~USB_DIR_IN;
}
}
}
/** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
* @hsudc: Device controller on which endpoint 0 interrupt has occured.
*
* Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
* when a stall handshake is sent to host or data is sent/received on
* endpoint 0.
*/
static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
{
struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
struct s3c_hsudc_req *hsreq;
u32 csr = readl(hsudc->regs + S3C_EP0SR);
u32 ecr;
if (csr & S3C_EP0SR_STALL) {
ecr = readl(hsudc->regs + S3C_EP0CR);
ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
writel(ecr, hsudc->regs + S3C_EP0CR);
writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
hsep->stopped = 0;
s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
hsudc->ep0state = WAIT_FOR_SETUP;
hsep->bEndpointAddress &= ~USB_DIR_IN;
return;
}
if (csr & S3C_EP0SR_TX_SUCCESS) {
writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
if (ep_is_in(hsep)) {
if (list_empty(&hsep->queue))
return;
hsreq = list_entry(hsep->queue.next,
struct s3c_hsudc_req, queue);
s3c_hsudc_write_fifo(hsep, hsreq);
}
}
if (csr & S3C_EP0SR_RX_SUCCESS) {
if (hsudc->ep0state == WAIT_FOR_SETUP)
s3c_hsudc_process_setup(hsudc);
else {
if (!ep_is_in(hsep)) {
if (list_empty(&hsep->queue))
return;
hsreq = list_entry(hsep->queue.next,
struct s3c_hsudc_req, queue);
s3c_hsudc_read_fifo(hsep, hsreq);
}
}
}
}
/**
* s3c_hsudc_ep_enable - Enable a endpoint.
* @_ep: The endpoint to be enabled.
* @desc: Endpoint descriptor.
*
* Enables a endpoint when called from the gadget driver. Endpoint stall if
* any is cleared, transfer type is configured and endpoint interrupt is
* enabled.
*/
static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct s3c_hsudc_ep *hsep;
struct s3c_hsudc *hsudc;
unsigned long flags;
u32 ecr = 0;
hsep = container_of(_ep, struct s3c_hsudc_ep, ep);
if (!_ep || !desc || hsep->desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| hsep->bEndpointAddress != desc->bEndpointAddress
|| ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
return -EINVAL;
if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
&& usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
|| !desc->wMaxPacketSize)
return -ERANGE;
hsudc = hsep->dev;
if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
spin_lock_irqsave(&hsudc->lock, flags);
set_index(hsudc, hsep->bEndpointAddress);
ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
writel(ecr, hsudc->regs + S3C_ECR);
hsep->stopped = hsep->wedge = 0;
hsep->desc = desc;
hsep->ep.maxpacket = usb_endpoint_maxp(desc);
s3c_hsudc_set_halt(_ep, 0);
__set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
spin_unlock_irqrestore(&hsudc->lock, flags);
return 0;
}
/**
* s3c_hsudc_ep_disable - Disable a endpoint.
* @_ep: The endpoint to be disabled.
* @desc: Endpoint descriptor.
*
* Disables a endpoint when called from the gadget driver.
*/
static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
{
struct s3c_hsudc_ep *hsep = our_ep(_ep);
struct s3c_hsudc *hsudc = hsep->dev;
unsigned long flags;
if (!_ep || !hsep->desc)
return -EINVAL;
spin_lock_irqsave(&hsudc->lock, flags);
set_index(hsudc, hsep->bEndpointAddress);
__clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
hsep->desc = 0;
hsep->stopped = 1;
spin_unlock_irqrestore(&hsudc->lock, flags);
return 0;
}
/**
* s3c_hsudc_alloc_request - Allocate a new request.
* @_ep: Endpoint for which request is allocated (not used).
* @gfp_flags: Flags used for the allocation.
*
* Allocates a single transfer request structure when called from gadget driver.
*/
static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
gfp_t gfp_flags)
{
struct s3c_hsudc_req *hsreq;
hsreq = kzalloc(sizeof *hsreq, gfp_flags);
if (!hsreq)
return 0;
INIT_LIST_HEAD(&hsreq->queue);
return &hsreq->req;
}
/**
* s3c_hsudc_free_request - Deallocate a request.
* @ep: Endpoint for which request is deallocated (not used).
* @_req: Request to be deallocated.
*
* Allocates a single transfer request structure when called from gadget driver.
*/
static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
{
struct s3c_hsudc_req *hsreq;
hsreq = container_of(_req, struct s3c_hsudc_req, req);
WARN_ON(!list_empty(&hsreq->queue));
kfree(hsreq);
}
/**
* s3c_hsudc_queue - Queue a transfer request for the endpoint.
* @_ep: Endpoint for which the request is queued.
* @_req: Request to be queued.
* @gfp_flags: Not used.
*
* Start or enqueue a request for a endpoint when called from gadget driver.
*/
static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
gfp_t gfp_flags)
{
struct s3c_hsudc_req *hsreq;
struct s3c_hsudc_ep *hsep;
struct s3c_hsudc *hsudc;
unsigned long flags;
u32 offset;
u32 csr;
hsreq = container_of(_req, struct s3c_hsudc_req, req);
if ((!_req || !_req->complete || !_req->buf ||
!list_empty(&hsreq->queue)))
return -EINVAL;
hsep = container_of(_ep, struct s3c_hsudc_ep, ep);
hsudc = hsep->dev;
if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
spin_lock_irqsave(&hsudc->lock, flags);
set_index(hsudc, hsep->bEndpointAddress);
_req->status = -EINPROGRESS;
_req->actual = 0;
if (!ep_index(hsep) && _req->length == 0) {
hsudc->ep0state = WAIT_FOR_SETUP;
s3c_hsudc_complete_request(hsep, hsreq, 0);
spin_unlock_irqrestore(&hsudc->lock, flags);
return 0;
}
if (list_empty(&hsep->queue) && !hsep->stopped) {
offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
if (ep_is_in(hsep)) {
csr = readl((u32)hsudc->regs + offset);
if (!(csr & S3C_ESR_TX_SUCCESS) &&
(s3c_hsudc_write_fifo(hsep, hsreq) == 1))
hsreq = 0;
} else {
csr = readl((u32)hsudc->regs + offset);
if ((csr & S3C_ESR_RX_SUCCESS)
&& (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
hsreq = 0;
}
}
if (hsreq != 0)
list_add_tail(&hsreq->queue, &hsep->queue);
spin_unlock_irqrestore(&hsudc->lock, flags);
return 0;
}
/**
* s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
* @_ep: Endpoint from which the request is dequeued.
* @_req: Request to be dequeued.
*
* Dequeue a request from a endpoint when called from gadget driver.
*/
static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct s3c_hsudc_ep *hsep = our_ep(_ep);
struct s3c_hsudc *hsudc = hsep->dev;
struct s3c_hsudc_req *hsreq;
unsigned long flags;
hsep = container_of(_ep, struct s3c_hsudc_ep, ep);
if (!_ep || hsep->ep.name == ep0name)
return -EINVAL;
spin_lock_irqsave(&hsudc->lock, flags);
list_for_each_entry(hsreq, &hsep->queue, queue) {
if (&hsreq->req == _req)
break;
}
if (&hsreq->req != _req) {
spin_unlock_irqrestore(&hsudc->lock, flags);
return -EINVAL;
}
set_index(hsudc, hsep->bEndpointAddress);
s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
spin_unlock_irqrestore(&hsudc->lock, flags);
return 0;
}
static struct usb_ep_ops s3c_hsudc_ep_ops = {
.enable = s3c_hsudc_ep_enable,
.disable = s3c_hsudc_ep_disable,
.alloc_request = s3c_hsudc_alloc_request,
.free_request = s3c_hsudc_free_request,
.queue = s3c_hsudc_queue,
.dequeue = s3c_hsudc_dequeue,
.set_halt = s3c_hsudc_set_halt,
.set_wedge = s3c_hsudc_set_wedge,
};
/**
* s3c_hsudc_initep - Initialize a endpoint to default state.
* @hsudc - Reference to the device controller.
* @hsep - Endpoint to be initialized.
* @epnum - Address to be assigned to the endpoint.
*
* Initialize a endpoint with default configuration.
*/
static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
struct s3c_hsudc_ep *hsep, int epnum)
{
char *dir;
if ((epnum % 2) == 0) {
dir = "out";
} else {
dir = "in";
hsep->bEndpointAddress = USB_DIR_IN;
}
hsep->bEndpointAddress |= epnum;
if (epnum)
snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
else
snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
INIT_LIST_HEAD(&hsep->queue);
INIT_LIST_HEAD(&hsep->ep.ep_list);
if (epnum)
list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
hsep->dev = hsudc;
hsep->ep.name = hsep->name;
hsep->ep.maxpacket = epnum ? 512 : 64;
hsep->ep.ops = &s3c_hsudc_ep_ops;
hsep->fifo = hsudc->regs + S3C_BR(epnum);
hsep->desc = 0;
hsep->stopped = 0;
hsep->wedge = 0;
set_index(hsudc, epnum);
writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
}
/**
* s3c_hsudc_setup_ep - Configure all endpoints to default state.
* @hsudc: Reference to device controller.
*
* Configures all endpoints to default state.
*/
static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
{
int epnum;
hsudc->ep0state = WAIT_FOR_SETUP;
INIT_LIST_HEAD(&hsudc->gadget.ep_list);
for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
}
/**
* s3c_hsudc_reconfig - Reconfigure the device controller to default state.
* @hsudc: Reference to device controller.
*
* Reconfigures the device controller registers to a default state.
*/
static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
{
writel(0xAA, hsudc->regs + S3C_EDR);
writel(1, hsudc->regs + S3C_EIER);
writel(0, hsudc->regs + S3C_TR);
writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
writel(0, hsudc->regs + S3C_EP0CR);
s3c_hsudc_setup_ep(hsudc);
}
/**
* s3c_hsudc_irq - Interrupt handler for device controller.
* @irq: Not used.
* @_dev: Reference to the device controller.
*
* Interrupt handler for the device controller. This handler handles controller
* interrupts and endpoint interrupts.
*/
static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
{
struct s3c_hsudc *hsudc = _dev;
struct s3c_hsudc_ep *hsep;
u32 ep_intr;
u32 sys_status;
u32 ep_idx;
spin_lock(&hsudc->lock);
sys_status = readl(hsudc->regs + S3C_SSR);
ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
spin_unlock(&hsudc->lock);
return IRQ_HANDLED;
}
if (sys_status) {
if (sys_status & S3C_SSR_VBUSON)
writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
if (sys_status & S3C_SSR_ERR)
writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
if (sys_status & S3C_SSR_SDE) {
writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
USB_SPEED_HIGH : USB_SPEED_FULL;
}
if (sys_status & S3C_SSR_SUSPEND) {
writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
&& hsudc->driver && hsudc->driver->suspend)
hsudc->driver->suspend(&hsudc->gadget);
}
if (sys_status & S3C_SSR_RESUME) {
writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
&& hsudc->driver && hsudc->driver->resume)
hsudc->driver->resume(&hsudc->gadget);
}
if (sys_status & S3C_SSR_RESET) {
writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
hsep = &hsudc->ep[ep_idx];
hsep->stopped = 1;
s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
}
s3c_hsudc_reconfig(hsudc);
hsudc->ep0state = WAIT_FOR_SETUP;
}
}
if (ep_intr & S3C_EIR_EP0) {
writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
set_index(hsudc, 0);
s3c_hsudc_handle_ep0_intr(hsudc);
}
ep_intr >>= 1;
ep_idx = 1;
while (ep_intr) {
if (ep_intr & 1) {
hsep = &hsudc->ep[ep_idx];
set_index(hsudc, ep_idx);
writel(1 << ep_idx, hsudc->regs + S3C_EIR);
if (ep_is_in(hsep))
s3c_hsudc_epin_intr(hsudc, ep_idx);
else
s3c_hsudc_epout_intr(hsudc, ep_idx);
}
ep_intr >>= 1;
ep_idx++;
}
spin_unlock(&hsudc->lock);
return IRQ_HANDLED;
}
static int s3c_hsudc_start(struct usb_gadget_driver *driver,
int (*bind)(struct usb_gadget *))
{
struct s3c_hsudc *hsudc = the_controller;
int ret;
if (!driver
|| (driver->speed != USB_SPEED_FULL &&
driver->speed != USB_SPEED_HIGH)
|| !bind
|| !driver->unbind || !driver->disconnect || !driver->setup)
return -EINVAL;
if (!hsudc)
return -ENODEV;
if (hsudc->driver)
return -EBUSY;
hsudc->driver = driver;
hsudc->gadget.dev.driver = &driver->driver;
hsudc->gadget.speed = USB_SPEED_UNKNOWN;
ret = device_add(&hsudc->gadget.dev);
if (ret) {
dev_err(hsudc->dev, "failed to probe gadget device");
return ret;
}
ret = bind(&hsudc->gadget);
if (ret) {
dev_err(hsudc->dev, "%s: bind failed\n", hsudc->gadget.name);
device_del(&hsudc->gadget.dev);
hsudc->driver = NULL;
hsudc->gadget.dev.driver = NULL;
return ret;
}
/* connect to bus through transceiver */
if (hsudc->transceiver) {
ret = otg_set_peripheral(hsudc->transceiver, &hsudc->gadget);
if (ret) {
dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
hsudc->gadget.name);
driver->unbind(&hsudc->gadget);
device_del(&hsudc->gadget.dev);
hsudc->driver = NULL;
hsudc->gadget.dev.driver = NULL;
return ret;
}
}
enable_irq(hsudc->irq);
dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name);
s3c_hsudc_reconfig(hsudc);
s3c_hsudc_init_phy();
if (hsudc->pd->gpio_init)
hsudc->pd->gpio_init();
return 0;
}
static int s3c_hsudc_stop(struct usb_gadget_driver *driver)
{
struct s3c_hsudc *hsudc = the_controller;
unsigned long flags;
if (!hsudc)
return -ENODEV;
if (!driver || driver != hsudc->driver || !driver->unbind)
return -EINVAL;
spin_lock_irqsave(&hsudc->lock, flags);
hsudc->driver = 0;
s3c_hsudc_uninit_phy();
if (hsudc->pd->gpio_uninit)
hsudc->pd->gpio_uninit();
s3c_hsudc_stop_activity(hsudc, driver);
spin_unlock_irqrestore(&hsudc->lock, flags);
if (hsudc->transceiver)
(void) otg_set_peripheral(hsudc->transceiver, NULL);
driver->unbind(&hsudc->gadget);
device_del(&hsudc->gadget.dev);
disable_irq(hsudc->irq);
dev_info(hsudc->dev, "unregistered gadget driver '%s'\n",
driver->driver.name);
return 0;
}
static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
{
return readl(hsudc->regs + S3C_FNR) & 0x3FF;
}
static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
{
return s3c_hsudc_read_frameno(to_hsudc(gadget));
}
static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
struct s3c_hsudc *hsudc = the_controller;
if (!hsudc)
return -ENODEV;
if (hsudc->transceiver)
return otg_set_power(hsudc->transceiver, mA);
return -EOPNOTSUPP;
}
static struct usb_gadget_ops s3c_hsudc_gadget_ops = {
.get_frame = s3c_hsudc_gadget_getframe,
.start = s3c_hsudc_start,
.stop = s3c_hsudc_stop,
.vbus_draw = s3c_hsudc_vbus_draw,
};
static int s3c_hsudc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct resource *res;
struct s3c_hsudc *hsudc;
struct s3c24xx_hsudc_platdata *pd = pdev->dev.platform_data;
int ret;
hsudc = kzalloc(sizeof(struct s3c_hsudc) +
sizeof(struct s3c_hsudc_ep) * pd->epnum,
GFP_KERNEL);
if (!hsudc) {
dev_err(dev, "cannot allocate memory\n");
return -ENOMEM;
}
the_controller = hsudc;
platform_set_drvdata(pdev, dev);
hsudc->dev = dev;
hsudc->pd = pdev->dev.platform_data;
hsudc->transceiver = otg_get_transceiver();
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "unable to obtain driver resource data\n");
ret = -ENODEV;
goto err_res;
}
hsudc->mem_rsrc = request_mem_region(res->start, resource_size(res),
dev_name(&pdev->dev));
if (!hsudc->mem_rsrc) {
dev_err(dev, "failed to reserve register area\n");
ret = -ENODEV;
goto err_res;
}
hsudc->regs = ioremap(res->start, resource_size(res));
if (!hsudc->regs) {
dev_err(dev, "error mapping device register area\n");
ret = -EBUSY;
goto err_remap;
}
spin_lock_init(&hsudc->lock);
device_initialize(&hsudc->gadget.dev);
dev_set_name(&hsudc->gadget.dev, "gadget");
hsudc->gadget.is_dualspeed = 1;
hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
hsudc->gadget.name = dev_name(dev);
hsudc->gadget.dev.parent = dev;
hsudc->gadget.dev.dma_mask = dev->dma_mask;
hsudc->gadget.ep0 = &hsudc->ep[0].ep;
hsudc->gadget.is_otg = 0;
hsudc->gadget.is_a_peripheral = 0;
s3c_hsudc_setup_ep(hsudc);
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "unable to obtain IRQ number\n");
goto err_irq;
}
hsudc->irq = ret;
ret = request_irq(hsudc->irq, s3c_hsudc_irq, 0, driver_name, hsudc);
if (ret < 0) {
dev_err(dev, "irq request failed\n");
goto err_irq;
}
hsudc->uclk = clk_get(&pdev->dev, "usb-device");
if (IS_ERR(hsudc->uclk)) {
dev_err(dev, "failed to find usb-device clock source\n");
ret = PTR_ERR(hsudc->uclk);
goto err_clk;
}
clk_enable(hsudc->uclk);
local_irq_disable();
disable_irq(hsudc->irq);
local_irq_enable();
ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
if (ret)
goto err_add_udc;
return 0;
err_add_udc:
clk_disable(hsudc->uclk);
clk_put(hsudc->uclk);
err_clk:
free_irq(hsudc->irq, hsudc);
err_irq:
iounmap(hsudc->regs);
err_remap:
release_resource(hsudc->mem_rsrc);
kfree(hsudc->mem_rsrc);
err_res:
kfree(hsudc);
return ret;
}
static struct platform_driver s3c_hsudc_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "s3c-hsudc",
},
.probe = s3c_hsudc_probe,
};
MODULE_ALIAS("platform:s3c-hsudc");
static int __init s3c_hsudc_modinit(void)
{
return platform_driver_register(&s3c_hsudc_driver);
}
static void __exit s3c_hsudc_modexit(void)
{
platform_driver_unregister(&s3c_hsudc_driver);
}
module_init(s3c_hsudc_modinit);
module_exit(s3c_hsudc_modexit);
MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
MODULE_LICENSE("GPL");