linux-sg2042/arch/alpha/kernel/core_t2.c

618 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* linux/arch/alpha/kernel/core_t2.c
*
* Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
* December 1996.
*
* based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
*
* Code common to all T2 core logic chips.
*/
#define __EXTERN_INLINE
#include <asm/io.h>
#include <asm/core_t2.h>
#undef __EXTERN_INLINE
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/ptrace.h>
#include <asm/delay.h>
#include "proto.h"
#include "pci_impl.h"
/* For dumping initial DMA window settings. */
#define DEBUG_PRINT_INITIAL_SETTINGS 0
/* For dumping final DMA window settings. */
#define DEBUG_PRINT_FINAL_SETTINGS 0
/*
* By default, we direct-map starting at 2GB, in order to allow the
* maximum size direct-map window (2GB) to match the maximum amount of
* memory (2GB) that can be present on SABLEs. But that limits the
* floppy to DMA only via the scatter/gather window set up for 8MB
* ISA DMA, since the maximum ISA DMA address is 2GB-1.
*
* For now, this seems a reasonable trade-off: even though most SABLEs
* have less than 1GB of memory, floppy usage/performance will not
* really be affected by forcing it to go via scatter/gather...
*/
#define T2_DIRECTMAP_2G 1
#if T2_DIRECTMAP_2G
# define T2_DIRECTMAP_START 0x80000000UL
# define T2_DIRECTMAP_LENGTH 0x80000000UL
#else
# define T2_DIRECTMAP_START 0x40000000UL
# define T2_DIRECTMAP_LENGTH 0x40000000UL
#endif
/* The ISA scatter/gather window settings. */
#define T2_ISA_SG_START 0x00800000UL
#define T2_ISA_SG_LENGTH 0x00800000UL
/*
* NOTE: Herein lie back-to-back mb instructions. They are magic.
* One plausible explanation is that the i/o controller does not properly
* handle the system transaction. Another involves timing. Ho hum.
*/
/*
* BIOS32-style PCI interface:
*/
#define DEBUG_CONFIG 0
#if DEBUG_CONFIG
# define DBG(args) printk args
#else
# define DBG(args)
#endif
DEFINE_SPINLOCK(t2_hae_lock);
static volatile unsigned int t2_mcheck_any_expected;
static volatile unsigned int t2_mcheck_last_taken;
/* Place to save the DMA Window registers as set up by SRM
for restoration during shutdown. */
static struct
{
struct {
unsigned long wbase;
unsigned long wmask;
unsigned long tbase;
} window[2];
unsigned long hae_1;
unsigned long hae_2;
unsigned long hae_3;
unsigned long hae_4;
unsigned long hbase;
} t2_saved_config __attribute((common));
/*
* Given a bus, device, and function number, compute resulting
* configuration space address and setup the T2_HAXR2 register
* accordingly. It is therefore not safe to have concurrent
* invocations to configuration space access routines, but there
* really shouldn't be any need for this.
*
* Type 0:
*
* 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
* 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 31:11 Device select bit.
* 10:8 Function number
* 7:2 Register number
*
* Type 1:
*
* 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
* 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 31:24 reserved
* 23:16 bus number (8 bits = 128 possible buses)
* 15:11 Device number (5 bits)
* 10:8 function number
* 7:2 register number
*
* Notes:
* The function number selects which function of a multi-function device
* (e.g., SCSI and Ethernet).
*
* The register selects a DWORD (32 bit) register offset. Hence it
* doesn't get shifted by 2 bits as we want to "drop" the bottom two
* bits.
*/
static int
mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,
unsigned long *pci_addr, unsigned char *type1)
{
unsigned long addr;
u8 bus = pbus->number;
DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
" addr=0x%lx, type1=0x%x)\n",
bus, device_fn, where, pci_addr, type1));
if (bus == 0) {
int device = device_fn >> 3;
/* Type 0 configuration cycle. */
if (device > 8) {
DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
device));
return -1;
}
*type1 = 0;
addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
} else {
/* Type 1 configuration cycle. */
*type1 = 1;
addr = (bus << 16) | (device_fn << 8) | (where);
}
*pci_addr = addr;
DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
return 0;
}
/*
* NOTE: both conf_read() and conf_write() may set HAE_3 when needing
* to do type1 access. This is protected by the use of spinlock IRQ
* primitives in the wrapper functions pci_{read,write}_config_*()
* defined in drivers/pci/pci.c.
*/
static unsigned int
conf_read(unsigned long addr, unsigned char type1)
{
unsigned int value, cpu, taken;
unsigned long t2_cfg = 0;
cpu = smp_processor_id();
DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));
/* If Type1 access, must set T2 CFG. */
if (type1) {
t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
*(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
mb();
}
mb();
draina();
mcheck_expected(cpu) = 1;
mcheck_taken(cpu) = 0;
t2_mcheck_any_expected |= (1 << cpu);
mb();
/* Access configuration space. */
value = *(vuip)addr;
mb();
mb(); /* magic */
/* Wait for possible mcheck. Also, this lets other CPUs clear
their mchecks as well, as they can reliably tell when
another CPU is in the midst of handling a real mcheck via
the "taken" function. */
udelay(100);
if ((taken = mcheck_taken(cpu))) {
mcheck_taken(cpu) = 0;
t2_mcheck_last_taken |= (1 << cpu);
value = 0xffffffffU;
mb();
}
mcheck_expected(cpu) = 0;
t2_mcheck_any_expected = 0;
mb();
/* If Type1 access, must reset T2 CFG so normal IO space ops work. */
if (type1) {
*(vulp)T2_HAE_3 = t2_cfg;
mb();
}
return value;
}
static void
conf_write(unsigned long addr, unsigned int value, unsigned char type1)
{
unsigned int cpu, taken;
unsigned long t2_cfg = 0;
cpu = smp_processor_id();
/* If Type1 access, must set T2 CFG. */
if (type1) {
t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
*(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
mb();
}
mb();
draina();
mcheck_expected(cpu) = 1;
mcheck_taken(cpu) = 0;
t2_mcheck_any_expected |= (1 << cpu);
mb();
/* Access configuration space. */
*(vuip)addr = value;
mb();
mb(); /* magic */
/* Wait for possible mcheck. Also, this lets other CPUs clear
their mchecks as well, as they can reliably tell when
this CPU is in the midst of handling a real mcheck via
the "taken" function. */
udelay(100);
if ((taken = mcheck_taken(cpu))) {
mcheck_taken(cpu) = 0;
t2_mcheck_last_taken |= (1 << cpu);
mb();
}
mcheck_expected(cpu) = 0;
t2_mcheck_any_expected = 0;
mb();
/* If Type1 access, must reset T2 CFG so normal IO space ops work. */
if (type1) {
*(vulp)T2_HAE_3 = t2_cfg;
mb();
}
}
static int
t2_read_config(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *value)
{
unsigned long addr, pci_addr;
unsigned char type1;
int shift;
long mask;
if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
return PCIBIOS_DEVICE_NOT_FOUND;
mask = (size - 1) * 8;
shift = (where & 3) * 8;
addr = (pci_addr << 5) + mask + T2_CONF;
*value = conf_read(addr, type1) >> (shift);
return PCIBIOS_SUCCESSFUL;
}
static int
t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
u32 value)
{
unsigned long addr, pci_addr;
unsigned char type1;
long mask;
if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
return PCIBIOS_DEVICE_NOT_FOUND;
mask = (size - 1) * 8;
addr = (pci_addr << 5) + mask + T2_CONF;
conf_write(addr, value << ((where & 3) * 8), type1);
return PCIBIOS_SUCCESSFUL;
}
struct pci_ops t2_pci_ops =
{
.read = t2_read_config,
.write = t2_write_config,
};
static void __init
t2_direct_map_window1(unsigned long base, unsigned long length)
{
unsigned long temp;
__direct_map_base = base;
__direct_map_size = length;
temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
*(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */
temp = (length - 1) & 0xfff00000UL;
*(vulp)T2_WMASK1 = temp;
*(vulp)T2_TBASE1 = 0;
#if DEBUG_PRINT_FINAL_SETTINGS
printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
__func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
#endif
}
static void __init
t2_sg_map_window2(struct pci_controller *hose,
unsigned long base,
unsigned long length)
{
unsigned long temp;
/* Note we can only do 1 SG window, as the other is for direct, so
do an ISA SG area, especially for the floppy. */
hose->sg_isa = iommu_arena_new(hose, base, length, 0);
hose->sg_pci = NULL;
temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
*(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */
temp = (length - 1) & 0xfff00000UL;
*(vulp)T2_WMASK2 = temp;
*(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1;
mb();
t2_pci_tbi(hose, 0, -1); /* flush TLB all */
#if DEBUG_PRINT_FINAL_SETTINGS
printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
__func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
#endif
}
static void __init
t2_save_configuration(void)
{
#if DEBUG_PRINT_INITIAL_SETTINGS
printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */
printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2);
printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3);
printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4);
printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE);
printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__,
*(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__,
*(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
#endif
/*
* Save the DMA Window registers.
*/
t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1;
t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1;
t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1;
t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2;
t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2;
t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2;
t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */
t2_saved_config.hae_2 = *(vulp)T2_HAE_2;
t2_saved_config.hae_3 = *(vulp)T2_HAE_3;
t2_saved_config.hae_4 = *(vulp)T2_HAE_4;
t2_saved_config.hbase = *(vulp)T2_HBASE;
}
void __init
t2_init_arch(void)
{
struct pci_controller *hose;
unsigned long temp;
unsigned int i;
for (i = 0; i < NR_CPUS; i++) {
mcheck_expected(i) = 0;
mcheck_taken(i) = 0;
}
t2_mcheck_any_expected = 0;
t2_mcheck_last_taken = 0;
/* Enable scatter/gather TLB use. */
temp = *(vulp)T2_IOCSR;
if (!(temp & (0x1UL << 26))) {
printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
temp);
*(vulp)T2_IOCSR = temp | (0x1UL << 26);
mb();
*(vulp)T2_IOCSR; /* read it back to make sure */
}
t2_save_configuration();
/*
* Create our single hose.
*/
pci_isa_hose = hose = alloc_pci_controller();
hose->io_space = &ioport_resource;
hose->mem_space = &iomem_resource;
hose->index = 0;
hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
hose->sparse_io_base = T2_IO - IDENT_ADDR;
hose->dense_io_base = 0;
/*
* Set up the PCI->physical memory translation windows.
*
* Window 1 is direct mapped.
* Window 2 is scatter/gather (for ISA).
*/
t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH);
/* Always make an ISA DMA window. */
t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH);
*(vulp)T2_HBASE = 0x0; /* Disable HOLES. */
/* Zero HAE. */
*(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */
*(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */
*(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */
/*
* We also now zero out HAE_4, the dense memory HAE, so that
* we need not account for its "offset" when accessing dense
* memory resources which we allocated in our normal way. This
* HAE would need to stay untouched were we to keep the SRM
* resource settings.
*
* Thus we can now run standard X servers on SABLE/LYNX. :-)
*/
*(vulp)T2_HAE_4 = 0; mb();
}
void
t2_kill_arch(int mode)
{
/*
* Restore the DMA Window registers.
*/
*(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase;
*(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask;
*(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase;
*(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase;
*(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask;
*(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase;
mb();
*(vulp)T2_HAE_1 = srm_hae;
*(vulp)T2_HAE_2 = t2_saved_config.hae_2;
*(vulp)T2_HAE_3 = t2_saved_config.hae_3;
*(vulp)T2_HAE_4 = t2_saved_config.hae_4;
*(vulp)T2_HBASE = t2_saved_config.hbase;
mb();
*(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */
}
void
t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
{
unsigned long t2_iocsr;
t2_iocsr = *(vulp)T2_IOCSR;
/* set the TLB Clear bit */
*(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28);
mb();
*(vulp)T2_IOCSR; /* read it back to make sure */
/* clear the TLB Clear bit */
*(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28);
mb();
*(vulp)T2_IOCSR; /* read it back to make sure */
}
#define SIC_SEIC (1UL << 33) /* System Event Clear */
static void
t2_clear_errors(int cpu)
{
struct sable_cpu_csr *cpu_regs;
cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu);
cpu_regs->sic &= ~SIC_SEIC;
/* Clear CPU errors. */
cpu_regs->bcce |= cpu_regs->bcce;
cpu_regs->cbe |= cpu_regs->cbe;
cpu_regs->bcue |= cpu_regs->bcue;
cpu_regs->dter |= cpu_regs->dter;
*(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
*(vulp)T2_PERR1 |= *(vulp)T2_PERR1;
mb();
mb(); /* magic */
}
/*
* SABLE seems to have a "broadcast" style machine check, in that all
* CPUs receive it. And, the issuing CPU, in the case of PCI Config
* space read/write faults, will also receive a second mcheck, upon
* lowering IPL during completion processing in pci_read_config_byte()
* et al.
*
* Hence all the taken/expected/any_expected/last_taken stuff...
*/
void
t2_machine_check(unsigned long vector, unsigned long la_ptr)
{
int cpu = smp_processor_id();
#ifdef CONFIG_VERBOSE_MCHECK
struct el_common *mchk_header = (struct el_common *)la_ptr;
#endif
/* Clear the error before any reporting. */
mb();
mb(); /* magic */
draina();
t2_clear_errors(cpu);
/* This should not actually be done until the logout frame is
examined, but, since we don't do that, go on and do this... */
wrmces(0x7);
mb();
/* Now, do testing for the anomalous conditions. */
if (!mcheck_expected(cpu) && t2_mcheck_any_expected) {
/*
* FUNKY: Received mcheck on a CPU and not
* expecting it, but another CPU is expecting one.
*
* Just dismiss it for now on this CPU...
*/
#ifdef CONFIG_VERBOSE_MCHECK
if (alpha_verbose_mcheck > 1) {
printk("t2_machine_check(cpu%d): any_expected 0x%x -"
" (assumed) spurious -"
" code 0x%x\n", cpu, t2_mcheck_any_expected,
(unsigned int)mchk_header->code);
}
#endif
return;
}
if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) {
if (t2_mcheck_last_taken & (1 << cpu)) {
#ifdef CONFIG_VERBOSE_MCHECK
if (alpha_verbose_mcheck > 1) {
printk("t2_machine_check(cpu%d): last_taken 0x%x - "
"unexpected mcheck - code 0x%x\n",
cpu, t2_mcheck_last_taken,
(unsigned int)mchk_header->code);
}
#endif
t2_mcheck_last_taken = 0;
mb();
return;
} else {
t2_mcheck_last_taken = 0;
mb();
}
}
#ifdef CONFIG_VERBOSE_MCHECK
if (alpha_verbose_mcheck > 1) {
printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
"any_expected 0x%x - code 0x%x\n",
(mcheck_expected(cpu) ? "EX" : "UN"), cpu,
t2_mcheck_last_taken, t2_mcheck_any_expected,
(unsigned int)mchk_header->code);
}
#endif
process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu));
}