linux-sg2042/include/linux/mfd/dbx500-prcmu.h

763 lines
16 KiB
C

/*
* Copyright (C) ST Ericsson SA 2011
*
* License Terms: GNU General Public License v2
*
* STE Ux500 PRCMU API
*/
#ifndef __MACH_PRCMU_H
#define __MACH_PRCMU_H
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/err.h>
/* PRCMU Wakeup defines */
enum prcmu_wakeup_index {
PRCMU_WAKEUP_INDEX_RTC,
PRCMU_WAKEUP_INDEX_RTT0,
PRCMU_WAKEUP_INDEX_RTT1,
PRCMU_WAKEUP_INDEX_HSI0,
PRCMU_WAKEUP_INDEX_HSI1,
PRCMU_WAKEUP_INDEX_USB,
PRCMU_WAKEUP_INDEX_ABB,
PRCMU_WAKEUP_INDEX_ABB_FIFO,
PRCMU_WAKEUP_INDEX_ARM,
PRCMU_WAKEUP_INDEX_CD_IRQ,
NUM_PRCMU_WAKEUP_INDICES
};
#define PRCMU_WAKEUP(_name) (BIT(PRCMU_WAKEUP_INDEX_##_name))
/* EPOD (power domain) IDs */
/*
* DB8500 EPODs
* - EPOD_ID_SVAMMDSP: power domain for SVA MMDSP
* - EPOD_ID_SVAPIPE: power domain for SVA pipe
* - EPOD_ID_SIAMMDSP: power domain for SIA MMDSP
* - EPOD_ID_SIAPIPE: power domain for SIA pipe
* - EPOD_ID_SGA: power domain for SGA
* - EPOD_ID_B2R2_MCDE: power domain for B2R2 and MCDE
* - EPOD_ID_ESRAM12: power domain for ESRAM 1 and 2
* - EPOD_ID_ESRAM34: power domain for ESRAM 3 and 4
* - NUM_EPOD_ID: number of power domains
*
* TODO: These should be prefixed.
*/
#define EPOD_ID_SVAMMDSP 0
#define EPOD_ID_SVAPIPE 1
#define EPOD_ID_SIAMMDSP 2
#define EPOD_ID_SIAPIPE 3
#define EPOD_ID_SGA 4
#define EPOD_ID_B2R2_MCDE 5
#define EPOD_ID_ESRAM12 6
#define EPOD_ID_ESRAM34 7
#define NUM_EPOD_ID 8
/*
* state definition for EPOD (power domain)
* - EPOD_STATE_NO_CHANGE: The EPOD should remain unchanged
* - EPOD_STATE_OFF: The EPOD is switched off
* - EPOD_STATE_RAMRET: The EPOD is switched off with its internal RAM in
* retention
* - EPOD_STATE_ON_CLK_OFF: The EPOD is switched on, clock is still off
* - EPOD_STATE_ON: Same as above, but with clock enabled
*/
#define EPOD_STATE_NO_CHANGE 0x00
#define EPOD_STATE_OFF 0x01
#define EPOD_STATE_RAMRET 0x02
#define EPOD_STATE_ON_CLK_OFF 0x03
#define EPOD_STATE_ON 0x04
/*
* CLKOUT sources
*/
#define PRCMU_CLKSRC_CLK38M 0x00
#define PRCMU_CLKSRC_ACLK 0x01
#define PRCMU_CLKSRC_SYSCLK 0x02
#define PRCMU_CLKSRC_LCDCLK 0x03
#define PRCMU_CLKSRC_SDMMCCLK 0x04
#define PRCMU_CLKSRC_TVCLK 0x05
#define PRCMU_CLKSRC_TIMCLK 0x06
#define PRCMU_CLKSRC_CLK009 0x07
/* These are only valid for CLKOUT1: */
#define PRCMU_CLKSRC_SIAMMDSPCLK 0x40
#define PRCMU_CLKSRC_I2CCLK 0x41
#define PRCMU_CLKSRC_MSP02CLK 0x42
#define PRCMU_CLKSRC_ARMPLL_OBSCLK 0x43
#define PRCMU_CLKSRC_HSIRXCLK 0x44
#define PRCMU_CLKSRC_HSITXCLK 0x45
#define PRCMU_CLKSRC_ARMCLKFIX 0x46
#define PRCMU_CLKSRC_HDMICLK 0x47
/*
* Clock identifiers.
*/
enum prcmu_clock {
PRCMU_SGACLK,
PRCMU_UARTCLK,
PRCMU_MSP02CLK,
PRCMU_MSP1CLK,
PRCMU_I2CCLK,
PRCMU_SDMMCCLK,
PRCMU_SPARE1CLK,
PRCMU_SLIMCLK,
PRCMU_PER1CLK,
PRCMU_PER2CLK,
PRCMU_PER3CLK,
PRCMU_PER5CLK,
PRCMU_PER6CLK,
PRCMU_PER7CLK,
PRCMU_LCDCLK,
PRCMU_BMLCLK,
PRCMU_HSITXCLK,
PRCMU_HSIRXCLK,
PRCMU_HDMICLK,
PRCMU_APEATCLK,
PRCMU_APETRACECLK,
PRCMU_MCDECLK,
PRCMU_IPI2CCLK,
PRCMU_DSIALTCLK,
PRCMU_DMACLK,
PRCMU_B2R2CLK,
PRCMU_TVCLK,
PRCMU_SSPCLK,
PRCMU_RNGCLK,
PRCMU_UICCCLK,
PRCMU_PWMCLK,
PRCMU_IRDACLK,
PRCMU_IRRCCLK,
PRCMU_SIACLK,
PRCMU_SVACLK,
PRCMU_ACLK,
PRCMU_NUM_REG_CLOCKS,
PRCMU_SYSCLK = PRCMU_NUM_REG_CLOCKS,
PRCMU_CDCLK,
PRCMU_TIMCLK,
PRCMU_PLLSOC0,
PRCMU_PLLSOC1,
PRCMU_PLLDDR,
PRCMU_PLLDSI,
PRCMU_DSI0CLK,
PRCMU_DSI1CLK,
PRCMU_DSI0ESCCLK,
PRCMU_DSI1ESCCLK,
PRCMU_DSI2ESCCLK,
};
/**
* enum ape_opp - APE OPP states definition
* @APE_OPP_INIT:
* @APE_NO_CHANGE: The APE operating point is unchanged
* @APE_100_OPP: The new APE operating point is ape100opp
* @APE_50_OPP: 50%
* @APE_50_PARTLY_25_OPP: 50%, except some clocks at 25%.
*/
enum ape_opp {
APE_OPP_INIT = 0x00,
APE_NO_CHANGE = 0x01,
APE_100_OPP = 0x02,
APE_50_OPP = 0x03,
APE_50_PARTLY_25_OPP = 0xFF,
};
/**
* enum arm_opp - ARM OPP states definition
* @ARM_OPP_INIT:
* @ARM_NO_CHANGE: The ARM operating point is unchanged
* @ARM_100_OPP: The new ARM operating point is arm100opp
* @ARM_50_OPP: The new ARM operating point is arm50opp
* @ARM_MAX_OPP: Operating point is "max" (more than 100)
* @ARM_MAX_FREQ100OPP: Set max opp if available, else 100
* @ARM_EXTCLK: The new ARM operating point is armExtClk
*/
enum arm_opp {
ARM_OPP_INIT = 0x00,
ARM_NO_CHANGE = 0x01,
ARM_100_OPP = 0x02,
ARM_50_OPP = 0x03,
ARM_MAX_OPP = 0x04,
ARM_MAX_FREQ100OPP = 0x05,
ARM_EXTCLK = 0x07
};
/**
* enum ddr_opp - DDR OPP states definition
* @DDR_100_OPP: The new DDR operating point is ddr100opp
* @DDR_50_OPP: The new DDR operating point is ddr50opp
* @DDR_25_OPP: The new DDR operating point is ddr25opp
*/
enum ddr_opp {
DDR_100_OPP = 0x00,
DDR_50_OPP = 0x01,
DDR_25_OPP = 0x02,
};
/*
* Definitions for controlling ESRAM0 in deep sleep.
*/
#define ESRAM0_DEEP_SLEEP_STATE_OFF 1
#define ESRAM0_DEEP_SLEEP_STATE_RET 2
/**
* enum ddr_pwrst - DDR power states definition
* @DDR_PWR_STATE_UNCHANGED: SDRAM and DDR controller state is unchanged
* @DDR_PWR_STATE_ON:
* @DDR_PWR_STATE_OFFLOWLAT:
* @DDR_PWR_STATE_OFFHIGHLAT:
*/
enum ddr_pwrst {
DDR_PWR_STATE_UNCHANGED = 0x00,
DDR_PWR_STATE_ON = 0x01,
DDR_PWR_STATE_OFFLOWLAT = 0x02,
DDR_PWR_STATE_OFFHIGHLAT = 0x03
};
#include <linux/mfd/db8500-prcmu.h>
#if defined(CONFIG_UX500_SOC_DB8500)
#include <mach/id.h>
static inline void __init prcmu_early_init(void)
{
return db8500_prcmu_early_init();
}
static inline int prcmu_set_power_state(u8 state, bool keep_ulp_clk,
bool keep_ap_pll)
{
return db8500_prcmu_set_power_state(state, keep_ulp_clk,
keep_ap_pll);
}
static inline u8 prcmu_get_power_state_result(void)
{
return db8500_prcmu_get_power_state_result();
}
static inline int prcmu_gic_decouple(void)
{
return db8500_prcmu_gic_decouple();
}
static inline int prcmu_gic_recouple(void)
{
return db8500_prcmu_gic_recouple();
}
static inline bool prcmu_gic_pending_irq(void)
{
return db8500_prcmu_gic_pending_irq();
}
static inline bool prcmu_is_cpu_in_wfi(int cpu)
{
return db8500_prcmu_is_cpu_in_wfi(cpu);
}
static inline int prcmu_copy_gic_settings(void)
{
return db8500_prcmu_copy_gic_settings();
}
static inline bool prcmu_pending_irq(void)
{
return db8500_prcmu_pending_irq();
}
static inline int prcmu_set_epod(u16 epod_id, u8 epod_state)
{
return db8500_prcmu_set_epod(epod_id, epod_state);
}
static inline void prcmu_enable_wakeups(u32 wakeups)
{
db8500_prcmu_enable_wakeups(wakeups);
}
static inline void prcmu_disable_wakeups(void)
{
prcmu_enable_wakeups(0);
}
static inline void prcmu_config_abb_event_readout(u32 abb_events)
{
db8500_prcmu_config_abb_event_readout(abb_events);
}
static inline void prcmu_get_abb_event_buffer(void __iomem **buf)
{
db8500_prcmu_get_abb_event_buffer(buf);
}
int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size);
int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size);
int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size);
int prcmu_config_clkout(u8 clkout, u8 source, u8 div);
static inline int prcmu_request_clock(u8 clock, bool enable)
{
return db8500_prcmu_request_clock(clock, enable);
}
unsigned long prcmu_clock_rate(u8 clock);
long prcmu_round_clock_rate(u8 clock, unsigned long rate);
int prcmu_set_clock_rate(u8 clock, unsigned long rate);
static inline int prcmu_set_ddr_opp(u8 opp)
{
return db8500_prcmu_set_ddr_opp(opp);
}
static inline int prcmu_get_ddr_opp(void)
{
return db8500_prcmu_get_ddr_opp();
}
static inline int prcmu_set_arm_opp(u8 opp)
{
return db8500_prcmu_set_arm_opp(opp);
}
static inline int prcmu_get_arm_opp(void)
{
return db8500_prcmu_get_arm_opp();
}
static inline int prcmu_set_ape_opp(u8 opp)
{
return db8500_prcmu_set_ape_opp(opp);
}
static inline int prcmu_get_ape_opp(void)
{
return db8500_prcmu_get_ape_opp();
}
static inline void prcmu_system_reset(u16 reset_code)
{
return db8500_prcmu_system_reset(reset_code);
}
static inline u16 prcmu_get_reset_code(void)
{
return db8500_prcmu_get_reset_code();
}
int prcmu_ac_wake_req(void);
void prcmu_ac_sleep_req(void);
static inline void prcmu_modem_reset(void)
{
return db8500_prcmu_modem_reset();
}
static inline bool prcmu_is_ac_wake_requested(void)
{
return db8500_prcmu_is_ac_wake_requested();
}
static inline int prcmu_set_display_clocks(void)
{
return db8500_prcmu_set_display_clocks();
}
static inline int prcmu_disable_dsipll(void)
{
return db8500_prcmu_disable_dsipll();
}
static inline int prcmu_enable_dsipll(void)
{
return db8500_prcmu_enable_dsipll();
}
static inline int prcmu_config_esram0_deep_sleep(u8 state)
{
return db8500_prcmu_config_esram0_deep_sleep(state);
}
static inline int prcmu_config_hotdog(u8 threshold)
{
return db8500_prcmu_config_hotdog(threshold);
}
static inline int prcmu_config_hotmon(u8 low, u8 high)
{
return db8500_prcmu_config_hotmon(low, high);
}
static inline int prcmu_start_temp_sense(u16 cycles32k)
{
return db8500_prcmu_start_temp_sense(cycles32k);
}
static inline int prcmu_stop_temp_sense(void)
{
return db8500_prcmu_stop_temp_sense();
}
static inline u32 prcmu_read(unsigned int reg)
{
return db8500_prcmu_read(reg);
}
static inline void prcmu_write(unsigned int reg, u32 value)
{
db8500_prcmu_write(reg, value);
}
static inline void prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
{
db8500_prcmu_write_masked(reg, mask, value);
}
static inline int prcmu_enable_a9wdog(u8 id)
{
return db8500_prcmu_enable_a9wdog(id);
}
static inline int prcmu_disable_a9wdog(u8 id)
{
return db8500_prcmu_disable_a9wdog(id);
}
static inline int prcmu_kick_a9wdog(u8 id)
{
return db8500_prcmu_kick_a9wdog(id);
}
static inline int prcmu_load_a9wdog(u8 id, u32 timeout)
{
return db8500_prcmu_load_a9wdog(id, timeout);
}
static inline int prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
{
return db8500_prcmu_config_a9wdog(num, sleep_auto_off);
}
#else
static inline void __init prcmu_early_init(void) {}
static inline int prcmu_set_power_state(u8 state, bool keep_ulp_clk,
bool keep_ap_pll)
{
return 0;
}
static inline int prcmu_set_epod(u16 epod_id, u8 epod_state)
{
return 0;
}
static inline void prcmu_enable_wakeups(u32 wakeups) {}
static inline void prcmu_disable_wakeups(void) {}
static inline int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
{
return -ENOSYS;
}
static inline int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
{
return -ENOSYS;
}
static inline int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask,
u8 size)
{
return -ENOSYS;
}
static inline int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
{
return 0;
}
static inline int prcmu_request_clock(u8 clock, bool enable)
{
return 0;
}
static inline long prcmu_round_clock_rate(u8 clock, unsigned long rate)
{
return 0;
}
static inline int prcmu_set_clock_rate(u8 clock, unsigned long rate)
{
return 0;
}
static inline unsigned long prcmu_clock_rate(u8 clock)
{
return 0;
}
static inline int prcmu_set_ape_opp(u8 opp)
{
return 0;
}
static inline int prcmu_get_ape_opp(void)
{
return APE_100_OPP;
}
static inline int prcmu_set_arm_opp(u8 opp)
{
return 0;
}
static inline int prcmu_get_arm_opp(void)
{
return ARM_100_OPP;
}
static inline int prcmu_set_ddr_opp(u8 opp)
{
return 0;
}
static inline int prcmu_get_ddr_opp(void)
{
return DDR_100_OPP;
}
static inline void prcmu_system_reset(u16 reset_code) {}
static inline u16 prcmu_get_reset_code(void)
{
return 0;
}
static inline int prcmu_ac_wake_req(void)
{
return 0;
}
static inline void prcmu_ac_sleep_req(void) {}
static inline void prcmu_modem_reset(void) {}
static inline bool prcmu_is_ac_wake_requested(void)
{
return false;
}
static inline int prcmu_set_display_clocks(void)
{
return 0;
}
static inline int prcmu_disable_dsipll(void)
{
return 0;
}
static inline int prcmu_enable_dsipll(void)
{
return 0;
}
static inline int prcmu_config_esram0_deep_sleep(u8 state)
{
return 0;
}
static inline void prcmu_config_abb_event_readout(u32 abb_events) {}
static inline void prcmu_get_abb_event_buffer(void __iomem **buf)
{
*buf = NULL;
}
static inline int prcmu_config_hotdog(u8 threshold)
{
return 0;
}
static inline int prcmu_config_hotmon(u8 low, u8 high)
{
return 0;
}
static inline int prcmu_start_temp_sense(u16 cycles32k)
{
return 0;
}
static inline int prcmu_stop_temp_sense(void)
{
return 0;
}
static inline u32 prcmu_read(unsigned int reg)
{
return 0;
}
static inline void prcmu_write(unsigned int reg, u32 value) {}
static inline void prcmu_write_masked(unsigned int reg, u32 mask, u32 value) {}
#endif
static inline void prcmu_set(unsigned int reg, u32 bits)
{
prcmu_write_masked(reg, bits, bits);
}
static inline void prcmu_clear(unsigned int reg, u32 bits)
{
prcmu_write_masked(reg, bits, 0);
}
#if defined(CONFIG_UX500_SOC_DB8500)
/**
* prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
*/
static inline void prcmu_enable_spi2(void)
{
if (cpu_is_u8500())
prcmu_set(DB8500_PRCM_GPIOCR, DB8500_PRCM_GPIOCR_SPI2_SELECT);
}
/**
* prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
*/
static inline void prcmu_disable_spi2(void)
{
if (cpu_is_u8500())
prcmu_clear(DB8500_PRCM_GPIOCR, DB8500_PRCM_GPIOCR_SPI2_SELECT);
}
/**
* prcmu_enable_stm_mod_uart - Enables pin muxing for STMMOD
* and UARTMOD on OtherAlternateC3.
*/
static inline void prcmu_enable_stm_mod_uart(void)
{
if (cpu_is_u8500()) {
prcmu_set(DB8500_PRCM_GPIOCR,
(DB8500_PRCM_GPIOCR_DBG_STM_MOD_CMD1 |
DB8500_PRCM_GPIOCR_DBG_UARTMOD_CMD0));
}
}
/**
* prcmu_disable_stm_mod_uart - Disables pin muxing for STMMOD
* and UARTMOD on OtherAlternateC3.
*/
static inline void prcmu_disable_stm_mod_uart(void)
{
if (cpu_is_u8500()) {
prcmu_clear(DB8500_PRCM_GPIOCR,
(DB8500_PRCM_GPIOCR_DBG_STM_MOD_CMD1 |
DB8500_PRCM_GPIOCR_DBG_UARTMOD_CMD0));
}
}
/**
* prcmu_enable_stm_ape - Enables pin muxing for STM APE on OtherAlternateC1.
*/
static inline void prcmu_enable_stm_ape(void)
{
if (cpu_is_u8500()) {
prcmu_set(DB8500_PRCM_GPIOCR,
DB8500_PRCM_GPIOCR_DBG_STM_APE_CMD);
}
}
/**
* prcmu_disable_stm_ape - Disables pin muxing for STM APE on OtherAlternateC1.
*/
static inline void prcmu_disable_stm_ape(void)
{
if (cpu_is_u8500()) {
prcmu_clear(DB8500_PRCM_GPIOCR,
DB8500_PRCM_GPIOCR_DBG_STM_APE_CMD);
}
}
#else
static inline void prcmu_enable_spi2(void) {}
static inline void prcmu_disable_spi2(void) {}
static inline void prcmu_enable_stm_mod_uart(void) {}
static inline void prcmu_disable_stm_mod_uart(void) {}
static inline void prcmu_enable_stm_ape(void) {}
static inline void prcmu_disable_stm_ape(void) {}
#endif
/* PRCMU QoS APE OPP class */
#define PRCMU_QOS_APE_OPP 1
#define PRCMU_QOS_DDR_OPP 2
#define PRCMU_QOS_ARM_OPP 3
#define PRCMU_QOS_DEFAULT_VALUE -1
#ifdef CONFIG_DBX500_PRCMU_QOS_POWER
unsigned long prcmu_qos_get_cpufreq_opp_delay(void);
void prcmu_qos_set_cpufreq_opp_delay(unsigned long);
void prcmu_qos_force_opp(int, s32);
int prcmu_qos_requirement(int pm_qos_class);
int prcmu_qos_add_requirement(int pm_qos_class, char *name, s32 value);
int prcmu_qos_update_requirement(int pm_qos_class, char *name, s32 new_value);
void prcmu_qos_remove_requirement(int pm_qos_class, char *name);
int prcmu_qos_add_notifier(int prcmu_qos_class,
struct notifier_block *notifier);
int prcmu_qos_remove_notifier(int prcmu_qos_class,
struct notifier_block *notifier);
#else
static inline unsigned long prcmu_qos_get_cpufreq_opp_delay(void)
{
return 0;
}
static inline void prcmu_qos_set_cpufreq_opp_delay(unsigned long n) {}
static inline void prcmu_qos_force_opp(int prcmu_qos_class, s32 i) {}
static inline int prcmu_qos_requirement(int prcmu_qos_class)
{
return 0;
}
static inline int prcmu_qos_add_requirement(int prcmu_qos_class,
char *name, s32 value)
{
return 0;
}
static inline int prcmu_qos_update_requirement(int prcmu_qos_class,
char *name, s32 new_value)
{
return 0;
}
static inline void prcmu_qos_remove_requirement(int prcmu_qos_class, char *name)
{
}
static inline int prcmu_qos_add_notifier(int prcmu_qos_class,
struct notifier_block *notifier)
{
return 0;
}
static inline int prcmu_qos_remove_notifier(int prcmu_qos_class,
struct notifier_block *notifier)
{
return 0;
}
#endif
#endif /* __MACH_PRCMU_H */