3123 lines
79 KiB
C
3123 lines
79 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
|
|
/* COMMON Applications Kept Enhanced (CAKE) discipline
|
|
*
|
|
* Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
|
|
* Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
|
|
* Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
|
|
* Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
|
|
* (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
|
|
* Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
|
|
*
|
|
* The CAKE Principles:
|
|
* (or, how to have your cake and eat it too)
|
|
*
|
|
* This is a combination of several shaping, AQM and FQ techniques into one
|
|
* easy-to-use package:
|
|
*
|
|
* - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
|
|
* equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
|
|
* eliminating the need for any sort of burst parameter (eg. token bucket
|
|
* depth). Burst support is limited to that necessary to overcome scheduling
|
|
* latency.
|
|
*
|
|
* - A Diffserv-aware priority queue, giving more priority to certain classes,
|
|
* up to a specified fraction of bandwidth. Above that bandwidth threshold,
|
|
* the priority is reduced to avoid starving other tins.
|
|
*
|
|
* - Each priority tin has a separate Flow Queue system, to isolate traffic
|
|
* flows from each other. This prevents a burst on one flow from increasing
|
|
* the delay to another. Flows are distributed to queues using a
|
|
* set-associative hash function.
|
|
*
|
|
* - Each queue is actively managed by Cobalt, which is a combination of the
|
|
* Codel and Blue AQM algorithms. This serves flows fairly, and signals
|
|
* congestion early via ECN (if available) and/or packet drops, to keep
|
|
* latency low. The codel parameters are auto-tuned based on the bandwidth
|
|
* setting, as is necessary at low bandwidths.
|
|
*
|
|
* The configuration parameters are kept deliberately simple for ease of use.
|
|
* Everything has sane defaults. Complete generality of configuration is *not*
|
|
* a goal.
|
|
*
|
|
* The priority queue operates according to a weighted DRR scheme, combined with
|
|
* a bandwidth tracker which reuses the shaper logic to detect which side of the
|
|
* bandwidth sharing threshold the tin is operating. This determines whether a
|
|
* priority-based weight (high) or a bandwidth-based weight (low) is used for
|
|
* that tin in the current pass.
|
|
*
|
|
* This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
|
|
* granted us permission to leverage.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/string.h>
|
|
#include <linux/in.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/reciprocal_div.h>
|
|
#include <net/netlink.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/pkt_sched.h>
|
|
#include <net/pkt_cls.h>
|
|
#include <net/tcp.h>
|
|
#include <net/flow_dissector.h>
|
|
|
|
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
|
|
#include <net/netfilter/nf_conntrack_core.h>
|
|
#endif
|
|
|
|
#define CAKE_SET_WAYS (8)
|
|
#define CAKE_MAX_TINS (8)
|
|
#define CAKE_QUEUES (1024)
|
|
#define CAKE_FLOW_MASK 63
|
|
#define CAKE_FLOW_NAT_FLAG 64
|
|
|
|
/* struct cobalt_params - contains codel and blue parameters
|
|
* @interval: codel initial drop rate
|
|
* @target: maximum persistent sojourn time & blue update rate
|
|
* @mtu_time: serialisation delay of maximum-size packet
|
|
* @p_inc: increment of blue drop probability (0.32 fxp)
|
|
* @p_dec: decrement of blue drop probability (0.32 fxp)
|
|
*/
|
|
struct cobalt_params {
|
|
u64 interval;
|
|
u64 target;
|
|
u64 mtu_time;
|
|
u32 p_inc;
|
|
u32 p_dec;
|
|
};
|
|
|
|
/* struct cobalt_vars - contains codel and blue variables
|
|
* @count: codel dropping frequency
|
|
* @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
|
|
* @drop_next: time to drop next packet, or when we dropped last
|
|
* @blue_timer: Blue time to next drop
|
|
* @p_drop: BLUE drop probability (0.32 fxp)
|
|
* @dropping: set if in dropping state
|
|
* @ecn_marked: set if marked
|
|
*/
|
|
struct cobalt_vars {
|
|
u32 count;
|
|
u32 rec_inv_sqrt;
|
|
ktime_t drop_next;
|
|
ktime_t blue_timer;
|
|
u32 p_drop;
|
|
bool dropping;
|
|
bool ecn_marked;
|
|
};
|
|
|
|
enum {
|
|
CAKE_SET_NONE = 0,
|
|
CAKE_SET_SPARSE,
|
|
CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
|
|
CAKE_SET_BULK,
|
|
CAKE_SET_DECAYING
|
|
};
|
|
|
|
struct cake_flow {
|
|
/* this stuff is all needed per-flow at dequeue time */
|
|
struct sk_buff *head;
|
|
struct sk_buff *tail;
|
|
struct list_head flowchain;
|
|
s32 deficit;
|
|
u32 dropped;
|
|
struct cobalt_vars cvars;
|
|
u16 srchost; /* index into cake_host table */
|
|
u16 dsthost;
|
|
u8 set;
|
|
}; /* please try to keep this structure <= 64 bytes */
|
|
|
|
struct cake_host {
|
|
u32 srchost_tag;
|
|
u32 dsthost_tag;
|
|
u16 srchost_bulk_flow_count;
|
|
u16 dsthost_bulk_flow_count;
|
|
};
|
|
|
|
struct cake_heap_entry {
|
|
u16 t:3, b:10;
|
|
};
|
|
|
|
struct cake_tin_data {
|
|
struct cake_flow flows[CAKE_QUEUES];
|
|
u32 backlogs[CAKE_QUEUES];
|
|
u32 tags[CAKE_QUEUES]; /* for set association */
|
|
u16 overflow_idx[CAKE_QUEUES];
|
|
struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
|
|
u16 flow_quantum;
|
|
|
|
struct cobalt_params cparams;
|
|
u32 drop_overlimit;
|
|
u16 bulk_flow_count;
|
|
u16 sparse_flow_count;
|
|
u16 decaying_flow_count;
|
|
u16 unresponsive_flow_count;
|
|
|
|
u32 max_skblen;
|
|
|
|
struct list_head new_flows;
|
|
struct list_head old_flows;
|
|
struct list_head decaying_flows;
|
|
|
|
/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
|
|
ktime_t time_next_packet;
|
|
u64 tin_rate_ns;
|
|
u64 tin_rate_bps;
|
|
u16 tin_rate_shft;
|
|
|
|
u16 tin_quantum;
|
|
s32 tin_deficit;
|
|
u32 tin_backlog;
|
|
u32 tin_dropped;
|
|
u32 tin_ecn_mark;
|
|
|
|
u32 packets;
|
|
u64 bytes;
|
|
|
|
u32 ack_drops;
|
|
|
|
/* moving averages */
|
|
u64 avge_delay;
|
|
u64 peak_delay;
|
|
u64 base_delay;
|
|
|
|
/* hash function stats */
|
|
u32 way_directs;
|
|
u32 way_hits;
|
|
u32 way_misses;
|
|
u32 way_collisions;
|
|
}; /* number of tins is small, so size of this struct doesn't matter much */
|
|
|
|
struct cake_sched_data {
|
|
struct tcf_proto __rcu *filter_list; /* optional external classifier */
|
|
struct tcf_block *block;
|
|
struct cake_tin_data *tins;
|
|
|
|
struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
|
|
u16 overflow_timeout;
|
|
|
|
u16 tin_cnt;
|
|
u8 tin_mode;
|
|
u8 flow_mode;
|
|
u8 ack_filter;
|
|
u8 atm_mode;
|
|
|
|
u32 fwmark_mask;
|
|
u16 fwmark_shft;
|
|
|
|
/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
|
|
u16 rate_shft;
|
|
ktime_t time_next_packet;
|
|
ktime_t failsafe_next_packet;
|
|
u64 rate_ns;
|
|
u64 rate_bps;
|
|
u16 rate_flags;
|
|
s16 rate_overhead;
|
|
u16 rate_mpu;
|
|
u64 interval;
|
|
u64 target;
|
|
|
|
/* resource tracking */
|
|
u32 buffer_used;
|
|
u32 buffer_max_used;
|
|
u32 buffer_limit;
|
|
u32 buffer_config_limit;
|
|
|
|
/* indices for dequeue */
|
|
u16 cur_tin;
|
|
u16 cur_flow;
|
|
|
|
struct qdisc_watchdog watchdog;
|
|
const u8 *tin_index;
|
|
const u8 *tin_order;
|
|
|
|
/* bandwidth capacity estimate */
|
|
ktime_t last_packet_time;
|
|
ktime_t avg_window_begin;
|
|
u64 avg_packet_interval;
|
|
u64 avg_window_bytes;
|
|
u64 avg_peak_bandwidth;
|
|
ktime_t last_reconfig_time;
|
|
|
|
/* packet length stats */
|
|
u32 avg_netoff;
|
|
u16 max_netlen;
|
|
u16 max_adjlen;
|
|
u16 min_netlen;
|
|
u16 min_adjlen;
|
|
};
|
|
|
|
enum {
|
|
CAKE_FLAG_OVERHEAD = BIT(0),
|
|
CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
|
|
CAKE_FLAG_INGRESS = BIT(2),
|
|
CAKE_FLAG_WASH = BIT(3),
|
|
CAKE_FLAG_SPLIT_GSO = BIT(4)
|
|
};
|
|
|
|
/* COBALT operates the Codel and BLUE algorithms in parallel, in order to
|
|
* obtain the best features of each. Codel is excellent on flows which
|
|
* respond to congestion signals in a TCP-like way. BLUE is more effective on
|
|
* unresponsive flows.
|
|
*/
|
|
|
|
struct cobalt_skb_cb {
|
|
ktime_t enqueue_time;
|
|
u32 adjusted_len;
|
|
};
|
|
|
|
static u64 us_to_ns(u64 us)
|
|
{
|
|
return us * NSEC_PER_USEC;
|
|
}
|
|
|
|
static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
|
|
{
|
|
qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
|
|
return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
|
|
}
|
|
|
|
static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
|
|
{
|
|
return get_cobalt_cb(skb)->enqueue_time;
|
|
}
|
|
|
|
static void cobalt_set_enqueue_time(struct sk_buff *skb,
|
|
ktime_t now)
|
|
{
|
|
get_cobalt_cb(skb)->enqueue_time = now;
|
|
}
|
|
|
|
static u16 quantum_div[CAKE_QUEUES + 1] = {0};
|
|
|
|
/* Diffserv lookup tables */
|
|
|
|
static const u8 precedence[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
2, 2, 2, 2, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 3, 3,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
5, 5, 5, 5, 5, 5, 5, 5,
|
|
6, 6, 6, 6, 6, 6, 6, 6,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
};
|
|
|
|
static const u8 diffserv8[] = {
|
|
2, 0, 1, 2, 4, 2, 2, 2,
|
|
1, 2, 1, 2, 1, 2, 1, 2,
|
|
5, 2, 4, 2, 4, 2, 4, 2,
|
|
3, 2, 3, 2, 3, 2, 3, 2,
|
|
6, 2, 3, 2, 3, 2, 3, 2,
|
|
6, 2, 2, 2, 6, 2, 6, 2,
|
|
7, 2, 2, 2, 2, 2, 2, 2,
|
|
7, 2, 2, 2, 2, 2, 2, 2,
|
|
};
|
|
|
|
static const u8 diffserv4[] = {
|
|
0, 1, 0, 0, 2, 0, 0, 0,
|
|
1, 0, 0, 0, 0, 0, 0, 0,
|
|
2, 0, 2, 0, 2, 0, 2, 0,
|
|
2, 0, 2, 0, 2, 0, 2, 0,
|
|
3, 0, 2, 0, 2, 0, 2, 0,
|
|
3, 0, 0, 0, 3, 0, 3, 0,
|
|
3, 0, 0, 0, 0, 0, 0, 0,
|
|
3, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
static const u8 diffserv3[] = {
|
|
0, 1, 0, 0, 2, 0, 0, 0,
|
|
1, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 2, 0, 2, 0,
|
|
2, 0, 0, 0, 0, 0, 0, 0,
|
|
2, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
static const u8 besteffort[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
/* tin priority order for stats dumping */
|
|
|
|
static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
static const u8 bulk_order[] = {1, 0, 2, 3};
|
|
|
|
#define REC_INV_SQRT_CACHE (16)
|
|
static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
|
|
|
|
/* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
|
|
* new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
|
|
*
|
|
* Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
|
|
*/
|
|
|
|
static void cobalt_newton_step(struct cobalt_vars *vars)
|
|
{
|
|
u32 invsqrt, invsqrt2;
|
|
u64 val;
|
|
|
|
invsqrt = vars->rec_inv_sqrt;
|
|
invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
|
|
val = (3LL << 32) - ((u64)vars->count * invsqrt2);
|
|
|
|
val >>= 2; /* avoid overflow in following multiply */
|
|
val = (val * invsqrt) >> (32 - 2 + 1);
|
|
|
|
vars->rec_inv_sqrt = val;
|
|
}
|
|
|
|
static void cobalt_invsqrt(struct cobalt_vars *vars)
|
|
{
|
|
if (vars->count < REC_INV_SQRT_CACHE)
|
|
vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
|
|
else
|
|
cobalt_newton_step(vars);
|
|
}
|
|
|
|
/* There is a big difference in timing between the accurate values placed in
|
|
* the cache and the approximations given by a single Newton step for small
|
|
* count values, particularly when stepping from count 1 to 2 or vice versa.
|
|
* Above 16, a single Newton step gives sufficient accuracy in either
|
|
* direction, given the precision stored.
|
|
*
|
|
* The magnitude of the error when stepping up to count 2 is such as to give
|
|
* the value that *should* have been produced at count 4.
|
|
*/
|
|
|
|
static void cobalt_cache_init(void)
|
|
{
|
|
struct cobalt_vars v;
|
|
|
|
memset(&v, 0, sizeof(v));
|
|
v.rec_inv_sqrt = ~0U;
|
|
cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
|
|
|
|
for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
|
|
cobalt_newton_step(&v);
|
|
cobalt_newton_step(&v);
|
|
cobalt_newton_step(&v);
|
|
cobalt_newton_step(&v);
|
|
|
|
cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
|
|
}
|
|
}
|
|
|
|
static void cobalt_vars_init(struct cobalt_vars *vars)
|
|
{
|
|
memset(vars, 0, sizeof(*vars));
|
|
|
|
if (!cobalt_rec_inv_sqrt_cache[0]) {
|
|
cobalt_cache_init();
|
|
cobalt_rec_inv_sqrt_cache[0] = ~0;
|
|
}
|
|
}
|
|
|
|
/* CoDel control_law is t + interval/sqrt(count)
|
|
* We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
|
|
* both sqrt() and divide operation.
|
|
*/
|
|
static ktime_t cobalt_control(ktime_t t,
|
|
u64 interval,
|
|
u32 rec_inv_sqrt)
|
|
{
|
|
return ktime_add_ns(t, reciprocal_scale(interval,
|
|
rec_inv_sqrt));
|
|
}
|
|
|
|
/* Call this when a packet had to be dropped due to queue overflow. Returns
|
|
* true if the BLUE state was quiescent before but active after this call.
|
|
*/
|
|
static bool cobalt_queue_full(struct cobalt_vars *vars,
|
|
struct cobalt_params *p,
|
|
ktime_t now)
|
|
{
|
|
bool up = false;
|
|
|
|
if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
|
|
up = !vars->p_drop;
|
|
vars->p_drop += p->p_inc;
|
|
if (vars->p_drop < p->p_inc)
|
|
vars->p_drop = ~0;
|
|
vars->blue_timer = now;
|
|
}
|
|
vars->dropping = true;
|
|
vars->drop_next = now;
|
|
if (!vars->count)
|
|
vars->count = 1;
|
|
|
|
return up;
|
|
}
|
|
|
|
/* Call this when the queue was serviced but turned out to be empty. Returns
|
|
* true if the BLUE state was active before but quiescent after this call.
|
|
*/
|
|
static bool cobalt_queue_empty(struct cobalt_vars *vars,
|
|
struct cobalt_params *p,
|
|
ktime_t now)
|
|
{
|
|
bool down = false;
|
|
|
|
if (vars->p_drop &&
|
|
ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
|
|
if (vars->p_drop < p->p_dec)
|
|
vars->p_drop = 0;
|
|
else
|
|
vars->p_drop -= p->p_dec;
|
|
vars->blue_timer = now;
|
|
down = !vars->p_drop;
|
|
}
|
|
vars->dropping = false;
|
|
|
|
if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
|
|
vars->count--;
|
|
cobalt_invsqrt(vars);
|
|
vars->drop_next = cobalt_control(vars->drop_next,
|
|
p->interval,
|
|
vars->rec_inv_sqrt);
|
|
}
|
|
|
|
return down;
|
|
}
|
|
|
|
/* Call this with a freshly dequeued packet for possible congestion marking.
|
|
* Returns true as an instruction to drop the packet, false for delivery.
|
|
*/
|
|
static bool cobalt_should_drop(struct cobalt_vars *vars,
|
|
struct cobalt_params *p,
|
|
ktime_t now,
|
|
struct sk_buff *skb,
|
|
u32 bulk_flows)
|
|
{
|
|
bool next_due, over_target, drop = false;
|
|
ktime_t schedule;
|
|
u64 sojourn;
|
|
|
|
/* The 'schedule' variable records, in its sign, whether 'now' is before or
|
|
* after 'drop_next'. This allows 'drop_next' to be updated before the next
|
|
* scheduling decision is actually branched, without destroying that
|
|
* information. Similarly, the first 'schedule' value calculated is preserved
|
|
* in the boolean 'next_due'.
|
|
*
|
|
* As for 'drop_next', we take advantage of the fact that 'interval' is both
|
|
* the delay between first exceeding 'target' and the first signalling event,
|
|
* *and* the scaling factor for the signalling frequency. It's therefore very
|
|
* natural to use a single mechanism for both purposes, and eliminates a
|
|
* significant amount of reference Codel's spaghetti code. To help with this,
|
|
* both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
|
|
* as possible to 1.0 in fixed-point.
|
|
*/
|
|
|
|
sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
|
|
schedule = ktime_sub(now, vars->drop_next);
|
|
over_target = sojourn > p->target &&
|
|
sojourn > p->mtu_time * bulk_flows * 2 &&
|
|
sojourn > p->mtu_time * 4;
|
|
next_due = vars->count && ktime_to_ns(schedule) >= 0;
|
|
|
|
vars->ecn_marked = false;
|
|
|
|
if (over_target) {
|
|
if (!vars->dropping) {
|
|
vars->dropping = true;
|
|
vars->drop_next = cobalt_control(now,
|
|
p->interval,
|
|
vars->rec_inv_sqrt);
|
|
}
|
|
if (!vars->count)
|
|
vars->count = 1;
|
|
} else if (vars->dropping) {
|
|
vars->dropping = false;
|
|
}
|
|
|
|
if (next_due && vars->dropping) {
|
|
/* Use ECN mark if possible, otherwise drop */
|
|
drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
|
|
|
|
vars->count++;
|
|
if (!vars->count)
|
|
vars->count--;
|
|
cobalt_invsqrt(vars);
|
|
vars->drop_next = cobalt_control(vars->drop_next,
|
|
p->interval,
|
|
vars->rec_inv_sqrt);
|
|
schedule = ktime_sub(now, vars->drop_next);
|
|
} else {
|
|
while (next_due) {
|
|
vars->count--;
|
|
cobalt_invsqrt(vars);
|
|
vars->drop_next = cobalt_control(vars->drop_next,
|
|
p->interval,
|
|
vars->rec_inv_sqrt);
|
|
schedule = ktime_sub(now, vars->drop_next);
|
|
next_due = vars->count && ktime_to_ns(schedule) >= 0;
|
|
}
|
|
}
|
|
|
|
/* Simple BLUE implementation. Lack of ECN is deliberate. */
|
|
if (vars->p_drop)
|
|
drop |= (prandom_u32() < vars->p_drop);
|
|
|
|
/* Overload the drop_next field as an activity timeout */
|
|
if (!vars->count)
|
|
vars->drop_next = ktime_add_ns(now, p->interval);
|
|
else if (ktime_to_ns(schedule) > 0 && !drop)
|
|
vars->drop_next = now;
|
|
|
|
return drop;
|
|
}
|
|
|
|
static bool cake_update_flowkeys(struct flow_keys *keys,
|
|
const struct sk_buff *skb)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
|
|
struct nf_conntrack_tuple tuple = {};
|
|
bool rev = !skb->_nfct, upd = false;
|
|
__be32 ip;
|
|
|
|
if (skb_protocol(skb, true) != htons(ETH_P_IP))
|
|
return false;
|
|
|
|
if (!nf_ct_get_tuple_skb(&tuple, skb))
|
|
return false;
|
|
|
|
ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
|
|
if (ip != keys->addrs.v4addrs.src) {
|
|
keys->addrs.v4addrs.src = ip;
|
|
upd = true;
|
|
}
|
|
ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
|
|
if (ip != keys->addrs.v4addrs.dst) {
|
|
keys->addrs.v4addrs.dst = ip;
|
|
upd = true;
|
|
}
|
|
|
|
if (keys->ports.ports) {
|
|
__be16 port;
|
|
|
|
port = rev ? tuple.dst.u.all : tuple.src.u.all;
|
|
if (port != keys->ports.src) {
|
|
keys->ports.src = port;
|
|
upd = true;
|
|
}
|
|
port = rev ? tuple.src.u.all : tuple.dst.u.all;
|
|
if (port != keys->ports.dst) {
|
|
port = keys->ports.dst;
|
|
upd = true;
|
|
}
|
|
}
|
|
return upd;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/* Cake has several subtle multiple bit settings. In these cases you
|
|
* would be matching triple isolate mode as well.
|
|
*/
|
|
|
|
static bool cake_dsrc(int flow_mode)
|
|
{
|
|
return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
|
|
}
|
|
|
|
static bool cake_ddst(int flow_mode)
|
|
{
|
|
return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
|
|
}
|
|
|
|
static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
|
|
int flow_mode, u16 flow_override, u16 host_override)
|
|
{
|
|
bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
|
|
bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
|
|
bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
|
|
u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
|
|
u16 reduced_hash, srchost_idx, dsthost_idx;
|
|
struct flow_keys keys, host_keys;
|
|
bool use_skbhash = skb->l4_hash;
|
|
|
|
if (unlikely(flow_mode == CAKE_FLOW_NONE))
|
|
return 0;
|
|
|
|
/* If both overrides are set, or we can use the SKB hash and nat mode is
|
|
* disabled, we can skip packet dissection entirely. If nat mode is
|
|
* enabled there's another check below after doing the conntrack lookup.
|
|
*/
|
|
if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
|
|
goto skip_hash;
|
|
|
|
skb_flow_dissect_flow_keys(skb, &keys,
|
|
FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
|
|
|
|
/* Don't use the SKB hash if we change the lookup keys from conntrack */
|
|
if (nat_enabled && cake_update_flowkeys(&keys, skb))
|
|
use_skbhash = false;
|
|
|
|
/* If we can still use the SKB hash and don't need the host hash, we can
|
|
* skip the rest of the hashing procedure
|
|
*/
|
|
if (use_skbhash && !hash_hosts)
|
|
goto skip_hash;
|
|
|
|
/* flow_hash_from_keys() sorts the addresses by value, so we have
|
|
* to preserve their order in a separate data structure to treat
|
|
* src and dst host addresses as independently selectable.
|
|
*/
|
|
host_keys = keys;
|
|
host_keys.ports.ports = 0;
|
|
host_keys.basic.ip_proto = 0;
|
|
host_keys.keyid.keyid = 0;
|
|
host_keys.tags.flow_label = 0;
|
|
|
|
switch (host_keys.control.addr_type) {
|
|
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
|
|
host_keys.addrs.v4addrs.src = 0;
|
|
dsthost_hash = flow_hash_from_keys(&host_keys);
|
|
host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
|
|
host_keys.addrs.v4addrs.dst = 0;
|
|
srchost_hash = flow_hash_from_keys(&host_keys);
|
|
break;
|
|
|
|
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
|
|
memset(&host_keys.addrs.v6addrs.src, 0,
|
|
sizeof(host_keys.addrs.v6addrs.src));
|
|
dsthost_hash = flow_hash_from_keys(&host_keys);
|
|
host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
|
|
memset(&host_keys.addrs.v6addrs.dst, 0,
|
|
sizeof(host_keys.addrs.v6addrs.dst));
|
|
srchost_hash = flow_hash_from_keys(&host_keys);
|
|
break;
|
|
|
|
default:
|
|
dsthost_hash = 0;
|
|
srchost_hash = 0;
|
|
}
|
|
|
|
/* This *must* be after the above switch, since as a
|
|
* side-effect it sorts the src and dst addresses.
|
|
*/
|
|
if (hash_flows && !use_skbhash)
|
|
flow_hash = flow_hash_from_keys(&keys);
|
|
|
|
skip_hash:
|
|
if (flow_override)
|
|
flow_hash = flow_override - 1;
|
|
else if (use_skbhash)
|
|
flow_hash = skb->hash;
|
|
if (host_override) {
|
|
dsthost_hash = host_override - 1;
|
|
srchost_hash = host_override - 1;
|
|
}
|
|
|
|
if (!(flow_mode & CAKE_FLOW_FLOWS)) {
|
|
if (flow_mode & CAKE_FLOW_SRC_IP)
|
|
flow_hash ^= srchost_hash;
|
|
|
|
if (flow_mode & CAKE_FLOW_DST_IP)
|
|
flow_hash ^= dsthost_hash;
|
|
}
|
|
|
|
reduced_hash = flow_hash % CAKE_QUEUES;
|
|
|
|
/* set-associative hashing */
|
|
/* fast path if no hash collision (direct lookup succeeds) */
|
|
if (likely(q->tags[reduced_hash] == flow_hash &&
|
|
q->flows[reduced_hash].set)) {
|
|
q->way_directs++;
|
|
} else {
|
|
u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
|
|
u32 outer_hash = reduced_hash - inner_hash;
|
|
bool allocate_src = false;
|
|
bool allocate_dst = false;
|
|
u32 i, k;
|
|
|
|
/* check if any active queue in the set is reserved for
|
|
* this flow.
|
|
*/
|
|
for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
|
|
i++, k = (k + 1) % CAKE_SET_WAYS) {
|
|
if (q->tags[outer_hash + k] == flow_hash) {
|
|
if (i)
|
|
q->way_hits++;
|
|
|
|
if (!q->flows[outer_hash + k].set) {
|
|
/* need to increment host refcnts */
|
|
allocate_src = cake_dsrc(flow_mode);
|
|
allocate_dst = cake_ddst(flow_mode);
|
|
}
|
|
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* no queue is reserved for this flow, look for an
|
|
* empty one.
|
|
*/
|
|
for (i = 0; i < CAKE_SET_WAYS;
|
|
i++, k = (k + 1) % CAKE_SET_WAYS) {
|
|
if (!q->flows[outer_hash + k].set) {
|
|
q->way_misses++;
|
|
allocate_src = cake_dsrc(flow_mode);
|
|
allocate_dst = cake_ddst(flow_mode);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* With no empty queues, default to the original
|
|
* queue, accept the collision, update the host tags.
|
|
*/
|
|
q->way_collisions++;
|
|
if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
|
|
q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
|
|
q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
|
|
}
|
|
allocate_src = cake_dsrc(flow_mode);
|
|
allocate_dst = cake_ddst(flow_mode);
|
|
found:
|
|
/* reserve queue for future packets in same flow */
|
|
reduced_hash = outer_hash + k;
|
|
q->tags[reduced_hash] = flow_hash;
|
|
|
|
if (allocate_src) {
|
|
srchost_idx = srchost_hash % CAKE_QUEUES;
|
|
inner_hash = srchost_idx % CAKE_SET_WAYS;
|
|
outer_hash = srchost_idx - inner_hash;
|
|
for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
|
|
i++, k = (k + 1) % CAKE_SET_WAYS) {
|
|
if (q->hosts[outer_hash + k].srchost_tag ==
|
|
srchost_hash)
|
|
goto found_src;
|
|
}
|
|
for (i = 0; i < CAKE_SET_WAYS;
|
|
i++, k = (k + 1) % CAKE_SET_WAYS) {
|
|
if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
|
|
break;
|
|
}
|
|
q->hosts[outer_hash + k].srchost_tag = srchost_hash;
|
|
found_src:
|
|
srchost_idx = outer_hash + k;
|
|
if (q->flows[reduced_hash].set == CAKE_SET_BULK)
|
|
q->hosts[srchost_idx].srchost_bulk_flow_count++;
|
|
q->flows[reduced_hash].srchost = srchost_idx;
|
|
}
|
|
|
|
if (allocate_dst) {
|
|
dsthost_idx = dsthost_hash % CAKE_QUEUES;
|
|
inner_hash = dsthost_idx % CAKE_SET_WAYS;
|
|
outer_hash = dsthost_idx - inner_hash;
|
|
for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
|
|
i++, k = (k + 1) % CAKE_SET_WAYS) {
|
|
if (q->hosts[outer_hash + k].dsthost_tag ==
|
|
dsthost_hash)
|
|
goto found_dst;
|
|
}
|
|
for (i = 0; i < CAKE_SET_WAYS;
|
|
i++, k = (k + 1) % CAKE_SET_WAYS) {
|
|
if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
|
|
break;
|
|
}
|
|
q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
|
|
found_dst:
|
|
dsthost_idx = outer_hash + k;
|
|
if (q->flows[reduced_hash].set == CAKE_SET_BULK)
|
|
q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
|
|
q->flows[reduced_hash].dsthost = dsthost_idx;
|
|
}
|
|
}
|
|
|
|
return reduced_hash;
|
|
}
|
|
|
|
/* helper functions : might be changed when/if skb use a standard list_head */
|
|
/* remove one skb from head of slot queue */
|
|
|
|
static struct sk_buff *dequeue_head(struct cake_flow *flow)
|
|
{
|
|
struct sk_buff *skb = flow->head;
|
|
|
|
if (skb) {
|
|
flow->head = skb->next;
|
|
skb_mark_not_on_list(skb);
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
/* add skb to flow queue (tail add) */
|
|
|
|
static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
|
|
{
|
|
if (!flow->head)
|
|
flow->head = skb;
|
|
else
|
|
flow->tail->next = skb;
|
|
flow->tail = skb;
|
|
skb->next = NULL;
|
|
}
|
|
|
|
static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
|
|
struct ipv6hdr *buf)
|
|
{
|
|
unsigned int offset = skb_network_offset(skb);
|
|
struct iphdr *iph;
|
|
|
|
iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
|
|
|
|
if (!iph)
|
|
return NULL;
|
|
|
|
if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
|
|
return skb_header_pointer(skb, offset + iph->ihl * 4,
|
|
sizeof(struct ipv6hdr), buf);
|
|
|
|
else if (iph->version == 4)
|
|
return iph;
|
|
|
|
else if (iph->version == 6)
|
|
return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
|
|
buf);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
|
|
void *buf, unsigned int bufsize)
|
|
{
|
|
unsigned int offset = skb_network_offset(skb);
|
|
const struct ipv6hdr *ipv6h;
|
|
const struct tcphdr *tcph;
|
|
const struct iphdr *iph;
|
|
struct ipv6hdr _ipv6h;
|
|
struct tcphdr _tcph;
|
|
|
|
ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
|
|
|
|
if (!ipv6h)
|
|
return NULL;
|
|
|
|
if (ipv6h->version == 4) {
|
|
iph = (struct iphdr *)ipv6h;
|
|
offset += iph->ihl * 4;
|
|
|
|
/* special-case 6in4 tunnelling, as that is a common way to get
|
|
* v6 connectivity in the home
|
|
*/
|
|
if (iph->protocol == IPPROTO_IPV6) {
|
|
ipv6h = skb_header_pointer(skb, offset,
|
|
sizeof(_ipv6h), &_ipv6h);
|
|
|
|
if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
|
|
return NULL;
|
|
|
|
offset += sizeof(struct ipv6hdr);
|
|
|
|
} else if (iph->protocol != IPPROTO_TCP) {
|
|
return NULL;
|
|
}
|
|
|
|
} else if (ipv6h->version == 6) {
|
|
if (ipv6h->nexthdr != IPPROTO_TCP)
|
|
return NULL;
|
|
|
|
offset += sizeof(struct ipv6hdr);
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
|
|
if (!tcph)
|
|
return NULL;
|
|
|
|
return skb_header_pointer(skb, offset,
|
|
min(__tcp_hdrlen(tcph), bufsize), buf);
|
|
}
|
|
|
|
static const void *cake_get_tcpopt(const struct tcphdr *tcph,
|
|
int code, int *oplen)
|
|
{
|
|
/* inspired by tcp_parse_options in tcp_input.c */
|
|
int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
|
|
const u8 *ptr = (const u8 *)(tcph + 1);
|
|
|
|
while (length > 0) {
|
|
int opcode = *ptr++;
|
|
int opsize;
|
|
|
|
if (opcode == TCPOPT_EOL)
|
|
break;
|
|
if (opcode == TCPOPT_NOP) {
|
|
length--;
|
|
continue;
|
|
}
|
|
opsize = *ptr++;
|
|
if (opsize < 2 || opsize > length)
|
|
break;
|
|
|
|
if (opcode == code) {
|
|
*oplen = opsize;
|
|
return ptr;
|
|
}
|
|
|
|
ptr += opsize - 2;
|
|
length -= opsize;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Compare two SACK sequences. A sequence is considered greater if it SACKs more
|
|
* bytes than the other. In the case where both sequences ACKs bytes that the
|
|
* other doesn't, A is considered greater. DSACKs in A also makes A be
|
|
* considered greater.
|
|
*
|
|
* @return -1, 0 or 1 as normal compare functions
|
|
*/
|
|
static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
|
|
const struct tcphdr *tcph_b)
|
|
{
|
|
const struct tcp_sack_block_wire *sack_a, *sack_b;
|
|
u32 ack_seq_a = ntohl(tcph_a->ack_seq);
|
|
u32 bytes_a = 0, bytes_b = 0;
|
|
int oplen_a, oplen_b;
|
|
bool first = true;
|
|
|
|
sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
|
|
sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
|
|
|
|
/* pointers point to option contents */
|
|
oplen_a -= TCPOLEN_SACK_BASE;
|
|
oplen_b -= TCPOLEN_SACK_BASE;
|
|
|
|
if (sack_a && oplen_a >= sizeof(*sack_a) &&
|
|
(!sack_b || oplen_b < sizeof(*sack_b)))
|
|
return -1;
|
|
else if (sack_b && oplen_b >= sizeof(*sack_b) &&
|
|
(!sack_a || oplen_a < sizeof(*sack_a)))
|
|
return 1;
|
|
else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
|
|
(!sack_b || oplen_b < sizeof(*sack_b)))
|
|
return 0;
|
|
|
|
while (oplen_a >= sizeof(*sack_a)) {
|
|
const struct tcp_sack_block_wire *sack_tmp = sack_b;
|
|
u32 start_a = get_unaligned_be32(&sack_a->start_seq);
|
|
u32 end_a = get_unaligned_be32(&sack_a->end_seq);
|
|
int oplen_tmp = oplen_b;
|
|
bool found = false;
|
|
|
|
/* DSACK; always considered greater to prevent dropping */
|
|
if (before(start_a, ack_seq_a))
|
|
return -1;
|
|
|
|
bytes_a += end_a - start_a;
|
|
|
|
while (oplen_tmp >= sizeof(*sack_tmp)) {
|
|
u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
|
|
u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
|
|
|
|
/* first time through we count the total size */
|
|
if (first)
|
|
bytes_b += end_b - start_b;
|
|
|
|
if (!after(start_b, start_a) && !before(end_b, end_a)) {
|
|
found = true;
|
|
if (!first)
|
|
break;
|
|
}
|
|
oplen_tmp -= sizeof(*sack_tmp);
|
|
sack_tmp++;
|
|
}
|
|
|
|
if (!found)
|
|
return -1;
|
|
|
|
oplen_a -= sizeof(*sack_a);
|
|
sack_a++;
|
|
first = false;
|
|
}
|
|
|
|
/* If we made it this far, all ranges SACKed by A are covered by B, so
|
|
* either the SACKs are equal, or B SACKs more bytes.
|
|
*/
|
|
return bytes_b > bytes_a ? 1 : 0;
|
|
}
|
|
|
|
static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
|
|
u32 *tsval, u32 *tsecr)
|
|
{
|
|
const u8 *ptr;
|
|
int opsize;
|
|
|
|
ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
|
|
|
|
if (ptr && opsize == TCPOLEN_TIMESTAMP) {
|
|
*tsval = get_unaligned_be32(ptr);
|
|
*tsecr = get_unaligned_be32(ptr + 4);
|
|
}
|
|
}
|
|
|
|
static bool cake_tcph_may_drop(const struct tcphdr *tcph,
|
|
u32 tstamp_new, u32 tsecr_new)
|
|
{
|
|
/* inspired by tcp_parse_options in tcp_input.c */
|
|
int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
|
|
const u8 *ptr = (const u8 *)(tcph + 1);
|
|
u32 tstamp, tsecr;
|
|
|
|
/* 3 reserved flags must be unset to avoid future breakage
|
|
* ACK must be set
|
|
* ECE/CWR are handled separately
|
|
* All other flags URG/PSH/RST/SYN/FIN must be unset
|
|
* 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
|
|
* 0x00C00000 = CWR/ECE (handled separately)
|
|
* 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
|
|
*/
|
|
if (((tcp_flag_word(tcph) &
|
|
cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
|
|
return false;
|
|
|
|
while (length > 0) {
|
|
int opcode = *ptr++;
|
|
int opsize;
|
|
|
|
if (opcode == TCPOPT_EOL)
|
|
break;
|
|
if (opcode == TCPOPT_NOP) {
|
|
length--;
|
|
continue;
|
|
}
|
|
opsize = *ptr++;
|
|
if (opsize < 2 || opsize > length)
|
|
break;
|
|
|
|
switch (opcode) {
|
|
case TCPOPT_MD5SIG: /* doesn't influence state */
|
|
break;
|
|
|
|
case TCPOPT_SACK: /* stricter checking performed later */
|
|
if (opsize % 8 != 2)
|
|
return false;
|
|
break;
|
|
|
|
case TCPOPT_TIMESTAMP:
|
|
/* only drop timestamps lower than new */
|
|
if (opsize != TCPOLEN_TIMESTAMP)
|
|
return false;
|
|
tstamp = get_unaligned_be32(ptr);
|
|
tsecr = get_unaligned_be32(ptr + 4);
|
|
if (after(tstamp, tstamp_new) ||
|
|
after(tsecr, tsecr_new))
|
|
return false;
|
|
break;
|
|
|
|
case TCPOPT_MSS: /* these should only be set on SYN */
|
|
case TCPOPT_WINDOW:
|
|
case TCPOPT_SACK_PERM:
|
|
case TCPOPT_FASTOPEN:
|
|
case TCPOPT_EXP:
|
|
default: /* don't drop if any unknown options are present */
|
|
return false;
|
|
}
|
|
|
|
ptr += opsize - 2;
|
|
length -= opsize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
|
|
struct cake_flow *flow)
|
|
{
|
|
bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
|
|
struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
|
|
struct sk_buff *skb_check, *skb_prev = NULL;
|
|
const struct ipv6hdr *ipv6h, *ipv6h_check;
|
|
unsigned char _tcph[64], _tcph_check[64];
|
|
const struct tcphdr *tcph, *tcph_check;
|
|
const struct iphdr *iph, *iph_check;
|
|
struct ipv6hdr _iph, _iph_check;
|
|
const struct sk_buff *skb;
|
|
int seglen, num_found = 0;
|
|
u32 tstamp = 0, tsecr = 0;
|
|
__be32 elig_flags = 0;
|
|
int sack_comp;
|
|
|
|
/* no other possible ACKs to filter */
|
|
if (flow->head == flow->tail)
|
|
return NULL;
|
|
|
|
skb = flow->tail;
|
|
tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
|
|
iph = cake_get_iphdr(skb, &_iph);
|
|
if (!tcph)
|
|
return NULL;
|
|
|
|
cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
|
|
|
|
/* the 'triggering' packet need only have the ACK flag set.
|
|
* also check that SYN is not set, as there won't be any previous ACKs.
|
|
*/
|
|
if ((tcp_flag_word(tcph) &
|
|
(TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
|
|
return NULL;
|
|
|
|
/* the 'triggering' ACK is at the tail of the queue, we have already
|
|
* returned if it is the only packet in the flow. loop through the rest
|
|
* of the queue looking for pure ACKs with the same 5-tuple as the
|
|
* triggering one.
|
|
*/
|
|
for (skb_check = flow->head;
|
|
skb_check && skb_check != skb;
|
|
skb_prev = skb_check, skb_check = skb_check->next) {
|
|
iph_check = cake_get_iphdr(skb_check, &_iph_check);
|
|
tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
|
|
sizeof(_tcph_check));
|
|
|
|
/* only TCP packets with matching 5-tuple are eligible, and only
|
|
* drop safe headers
|
|
*/
|
|
if (!tcph_check || iph->version != iph_check->version ||
|
|
tcph_check->source != tcph->source ||
|
|
tcph_check->dest != tcph->dest)
|
|
continue;
|
|
|
|
if (iph_check->version == 4) {
|
|
if (iph_check->saddr != iph->saddr ||
|
|
iph_check->daddr != iph->daddr)
|
|
continue;
|
|
|
|
seglen = ntohs(iph_check->tot_len) -
|
|
(4 * iph_check->ihl);
|
|
} else if (iph_check->version == 6) {
|
|
ipv6h = (struct ipv6hdr *)iph;
|
|
ipv6h_check = (struct ipv6hdr *)iph_check;
|
|
|
|
if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
|
|
ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
|
|
continue;
|
|
|
|
seglen = ntohs(ipv6h_check->payload_len);
|
|
} else {
|
|
WARN_ON(1); /* shouldn't happen */
|
|
continue;
|
|
}
|
|
|
|
/* If the ECE/CWR flags changed from the previous eligible
|
|
* packet in the same flow, we should no longer be dropping that
|
|
* previous packet as this would lose information.
|
|
*/
|
|
if (elig_ack && (tcp_flag_word(tcph_check) &
|
|
(TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
|
|
elig_ack = NULL;
|
|
elig_ack_prev = NULL;
|
|
num_found--;
|
|
}
|
|
|
|
/* Check TCP options and flags, don't drop ACKs with segment
|
|
* data, and don't drop ACKs with a higher cumulative ACK
|
|
* counter than the triggering packet. Check ACK seqno here to
|
|
* avoid parsing SACK options of packets we are going to exclude
|
|
* anyway.
|
|
*/
|
|
if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
|
|
(seglen - __tcp_hdrlen(tcph_check)) != 0 ||
|
|
after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
|
|
continue;
|
|
|
|
/* Check SACK options. The triggering packet must SACK more data
|
|
* than the ACK under consideration, or SACK the same range but
|
|
* have a larger cumulative ACK counter. The latter is a
|
|
* pathological case, but is contained in the following check
|
|
* anyway, just to be safe.
|
|
*/
|
|
sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
|
|
|
|
if (sack_comp < 0 ||
|
|
(ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
|
|
sack_comp == 0))
|
|
continue;
|
|
|
|
/* At this point we have found an eligible pure ACK to drop; if
|
|
* we are in aggressive mode, we are done. Otherwise, keep
|
|
* searching unless this is the second eligible ACK we
|
|
* found.
|
|
*
|
|
* Since we want to drop ACK closest to the head of the queue,
|
|
* save the first eligible ACK we find, even if we need to loop
|
|
* again.
|
|
*/
|
|
if (!elig_ack) {
|
|
elig_ack = skb_check;
|
|
elig_ack_prev = skb_prev;
|
|
elig_flags = (tcp_flag_word(tcph_check)
|
|
& (TCP_FLAG_ECE | TCP_FLAG_CWR));
|
|
}
|
|
|
|
if (num_found++ > 0)
|
|
goto found;
|
|
}
|
|
|
|
/* We made it through the queue without finding two eligible ACKs . If
|
|
* we found a single eligible ACK we can drop it in aggressive mode if
|
|
* we can guarantee that this does not interfere with ECN flag
|
|
* information. We ensure this by dropping it only if the enqueued
|
|
* packet is consecutive with the eligible ACK, and their flags match.
|
|
*/
|
|
if (elig_ack && aggressive && elig_ack->next == skb &&
|
|
(elig_flags == (tcp_flag_word(tcph) &
|
|
(TCP_FLAG_ECE | TCP_FLAG_CWR))))
|
|
goto found;
|
|
|
|
return NULL;
|
|
|
|
found:
|
|
if (elig_ack_prev)
|
|
elig_ack_prev->next = elig_ack->next;
|
|
else
|
|
flow->head = elig_ack->next;
|
|
|
|
skb_mark_not_on_list(elig_ack);
|
|
|
|
return elig_ack;
|
|
}
|
|
|
|
static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
|
|
{
|
|
avg -= avg >> shift;
|
|
avg += sample >> shift;
|
|
return avg;
|
|
}
|
|
|
|
static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
|
|
{
|
|
if (q->rate_flags & CAKE_FLAG_OVERHEAD)
|
|
len -= off;
|
|
|
|
if (q->max_netlen < len)
|
|
q->max_netlen = len;
|
|
if (q->min_netlen > len)
|
|
q->min_netlen = len;
|
|
|
|
len += q->rate_overhead;
|
|
|
|
if (len < q->rate_mpu)
|
|
len = q->rate_mpu;
|
|
|
|
if (q->atm_mode == CAKE_ATM_ATM) {
|
|
len += 47;
|
|
len /= 48;
|
|
len *= 53;
|
|
} else if (q->atm_mode == CAKE_ATM_PTM) {
|
|
/* Add one byte per 64 bytes or part thereof.
|
|
* This is conservative and easier to calculate than the
|
|
* precise value.
|
|
*/
|
|
len += (len + 63) / 64;
|
|
}
|
|
|
|
if (q->max_adjlen < len)
|
|
q->max_adjlen = len;
|
|
if (q->min_adjlen > len)
|
|
q->min_adjlen = len;
|
|
|
|
return len;
|
|
}
|
|
|
|
static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
|
|
{
|
|
const struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
unsigned int hdr_len, last_len = 0;
|
|
u32 off = skb_network_offset(skb);
|
|
u32 len = qdisc_pkt_len(skb);
|
|
u16 segs = 1;
|
|
|
|
q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
|
|
|
|
if (!shinfo->gso_size)
|
|
return cake_calc_overhead(q, len, off);
|
|
|
|
/* borrowed from qdisc_pkt_len_init() */
|
|
hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
|
|
|
|
/* + transport layer */
|
|
if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
|
|
SKB_GSO_TCPV6))) {
|
|
const struct tcphdr *th;
|
|
struct tcphdr _tcphdr;
|
|
|
|
th = skb_header_pointer(skb, skb_transport_offset(skb),
|
|
sizeof(_tcphdr), &_tcphdr);
|
|
if (likely(th))
|
|
hdr_len += __tcp_hdrlen(th);
|
|
} else {
|
|
struct udphdr _udphdr;
|
|
|
|
if (skb_header_pointer(skb, skb_transport_offset(skb),
|
|
sizeof(_udphdr), &_udphdr))
|
|
hdr_len += sizeof(struct udphdr);
|
|
}
|
|
|
|
if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
|
|
segs = DIV_ROUND_UP(skb->len - hdr_len,
|
|
shinfo->gso_size);
|
|
else
|
|
segs = shinfo->gso_segs;
|
|
|
|
len = shinfo->gso_size + hdr_len;
|
|
last_len = skb->len - shinfo->gso_size * (segs - 1);
|
|
|
|
return (cake_calc_overhead(q, len, off) * (segs - 1) +
|
|
cake_calc_overhead(q, last_len, off));
|
|
}
|
|
|
|
static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
|
|
{
|
|
struct cake_heap_entry ii = q->overflow_heap[i];
|
|
struct cake_heap_entry jj = q->overflow_heap[j];
|
|
|
|
q->overflow_heap[i] = jj;
|
|
q->overflow_heap[j] = ii;
|
|
|
|
q->tins[ii.t].overflow_idx[ii.b] = j;
|
|
q->tins[jj.t].overflow_idx[jj.b] = i;
|
|
}
|
|
|
|
static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
|
|
{
|
|
struct cake_heap_entry ii = q->overflow_heap[i];
|
|
|
|
return q->tins[ii.t].backlogs[ii.b];
|
|
}
|
|
|
|
static void cake_heapify(struct cake_sched_data *q, u16 i)
|
|
{
|
|
static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
|
|
u32 mb = cake_heap_get_backlog(q, i);
|
|
u32 m = i;
|
|
|
|
while (m < a) {
|
|
u32 l = m + m + 1;
|
|
u32 r = l + 1;
|
|
|
|
if (l < a) {
|
|
u32 lb = cake_heap_get_backlog(q, l);
|
|
|
|
if (lb > mb) {
|
|
m = l;
|
|
mb = lb;
|
|
}
|
|
}
|
|
|
|
if (r < a) {
|
|
u32 rb = cake_heap_get_backlog(q, r);
|
|
|
|
if (rb > mb) {
|
|
m = r;
|
|
mb = rb;
|
|
}
|
|
}
|
|
|
|
if (m != i) {
|
|
cake_heap_swap(q, i, m);
|
|
i = m;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cake_heapify_up(struct cake_sched_data *q, u16 i)
|
|
{
|
|
while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
|
|
u16 p = (i - 1) >> 1;
|
|
u32 ib = cake_heap_get_backlog(q, i);
|
|
u32 pb = cake_heap_get_backlog(q, p);
|
|
|
|
if (ib > pb) {
|
|
cake_heap_swap(q, i, p);
|
|
i = p;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cake_advance_shaper(struct cake_sched_data *q,
|
|
struct cake_tin_data *b,
|
|
struct sk_buff *skb,
|
|
ktime_t now, bool drop)
|
|
{
|
|
u32 len = get_cobalt_cb(skb)->adjusted_len;
|
|
|
|
/* charge packet bandwidth to this tin
|
|
* and to the global shaper.
|
|
*/
|
|
if (q->rate_ns) {
|
|
u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
|
|
u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
|
|
u64 failsafe_dur = global_dur + (global_dur >> 1);
|
|
|
|
if (ktime_before(b->time_next_packet, now))
|
|
b->time_next_packet = ktime_add_ns(b->time_next_packet,
|
|
tin_dur);
|
|
|
|
else if (ktime_before(b->time_next_packet,
|
|
ktime_add_ns(now, tin_dur)))
|
|
b->time_next_packet = ktime_add_ns(now, tin_dur);
|
|
|
|
q->time_next_packet = ktime_add_ns(q->time_next_packet,
|
|
global_dur);
|
|
if (!drop)
|
|
q->failsafe_next_packet = \
|
|
ktime_add_ns(q->failsafe_next_packet,
|
|
failsafe_dur);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
ktime_t now = ktime_get();
|
|
u32 idx = 0, tin = 0, len;
|
|
struct cake_heap_entry qq;
|
|
struct cake_tin_data *b;
|
|
struct cake_flow *flow;
|
|
struct sk_buff *skb;
|
|
|
|
if (!q->overflow_timeout) {
|
|
int i;
|
|
/* Build fresh max-heap */
|
|
for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
|
|
cake_heapify(q, i);
|
|
}
|
|
q->overflow_timeout = 65535;
|
|
|
|
/* select longest queue for pruning */
|
|
qq = q->overflow_heap[0];
|
|
tin = qq.t;
|
|
idx = qq.b;
|
|
|
|
b = &q->tins[tin];
|
|
flow = &b->flows[idx];
|
|
skb = dequeue_head(flow);
|
|
if (unlikely(!skb)) {
|
|
/* heap has gone wrong, rebuild it next time */
|
|
q->overflow_timeout = 0;
|
|
return idx + (tin << 16);
|
|
}
|
|
|
|
if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
|
|
b->unresponsive_flow_count++;
|
|
|
|
len = qdisc_pkt_len(skb);
|
|
q->buffer_used -= skb->truesize;
|
|
b->backlogs[idx] -= len;
|
|
b->tin_backlog -= len;
|
|
sch->qstats.backlog -= len;
|
|
qdisc_tree_reduce_backlog(sch, 1, len);
|
|
|
|
flow->dropped++;
|
|
b->tin_dropped++;
|
|
sch->qstats.drops++;
|
|
|
|
if (q->rate_flags & CAKE_FLAG_INGRESS)
|
|
cake_advance_shaper(q, b, skb, now, true);
|
|
|
|
__qdisc_drop(skb, to_free);
|
|
sch->q.qlen--;
|
|
|
|
cake_heapify(q, 0);
|
|
|
|
return idx + (tin << 16);
|
|
}
|
|
|
|
static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
|
|
{
|
|
const int offset = skb_network_offset(skb);
|
|
u16 *buf, buf_;
|
|
u8 dscp;
|
|
|
|
switch (skb_protocol(skb, true)) {
|
|
case htons(ETH_P_IP):
|
|
buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
|
|
if (unlikely(!buf))
|
|
return 0;
|
|
|
|
/* ToS is in the second byte of iphdr */
|
|
dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
|
|
|
|
if (wash && dscp) {
|
|
const int wlen = offset + sizeof(struct iphdr);
|
|
|
|
if (!pskb_may_pull(skb, wlen) ||
|
|
skb_try_make_writable(skb, wlen))
|
|
return 0;
|
|
|
|
ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
|
|
}
|
|
|
|
return dscp;
|
|
|
|
case htons(ETH_P_IPV6):
|
|
buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
|
|
if (unlikely(!buf))
|
|
return 0;
|
|
|
|
/* Traffic class is in the first and second bytes of ipv6hdr */
|
|
dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
|
|
|
|
if (wash && dscp) {
|
|
const int wlen = offset + sizeof(struct ipv6hdr);
|
|
|
|
if (!pskb_may_pull(skb, wlen) ||
|
|
skb_try_make_writable(skb, wlen))
|
|
return 0;
|
|
|
|
ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
|
|
}
|
|
|
|
return dscp;
|
|
|
|
case htons(ETH_P_ARP):
|
|
return 0x38; /* CS7 - Net Control */
|
|
|
|
default:
|
|
/* If there is no Diffserv field, treat as best-effort */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
u32 tin, mark;
|
|
bool wash;
|
|
u8 dscp;
|
|
|
|
/* Tin selection: Default to diffserv-based selection, allow overriding
|
|
* using firewall marks or skb->priority. Call DSCP parsing early if
|
|
* wash is enabled, otherwise defer to below to skip unneeded parsing.
|
|
*/
|
|
mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
|
|
wash = !!(q->rate_flags & CAKE_FLAG_WASH);
|
|
if (wash)
|
|
dscp = cake_handle_diffserv(skb, wash);
|
|
|
|
if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
|
|
tin = 0;
|
|
|
|
else if (mark && mark <= q->tin_cnt)
|
|
tin = q->tin_order[mark - 1];
|
|
|
|
else if (TC_H_MAJ(skb->priority) == sch->handle &&
|
|
TC_H_MIN(skb->priority) > 0 &&
|
|
TC_H_MIN(skb->priority) <= q->tin_cnt)
|
|
tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
|
|
|
|
else {
|
|
if (!wash)
|
|
dscp = cake_handle_diffserv(skb, wash);
|
|
tin = q->tin_index[dscp];
|
|
|
|
if (unlikely(tin >= q->tin_cnt))
|
|
tin = 0;
|
|
}
|
|
|
|
return &q->tins[tin];
|
|
}
|
|
|
|
static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
|
|
struct sk_buff *skb, int flow_mode, int *qerr)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
struct tcf_proto *filter;
|
|
struct tcf_result res;
|
|
u16 flow = 0, host = 0;
|
|
int result;
|
|
|
|
filter = rcu_dereference_bh(q->filter_list);
|
|
if (!filter)
|
|
goto hash;
|
|
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
|
|
result = tcf_classify(skb, filter, &res, false);
|
|
|
|
if (result >= 0) {
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
switch (result) {
|
|
case TC_ACT_STOLEN:
|
|
case TC_ACT_QUEUED:
|
|
case TC_ACT_TRAP:
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
|
|
fallthrough;
|
|
case TC_ACT_SHOT:
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
|
|
flow = TC_H_MIN(res.classid);
|
|
if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
|
|
host = TC_H_MAJ(res.classid) >> 16;
|
|
}
|
|
hash:
|
|
*t = cake_select_tin(sch, skb);
|
|
return cake_hash(*t, skb, flow_mode, flow, host) + 1;
|
|
}
|
|
|
|
static void cake_reconfigure(struct Qdisc *sch);
|
|
|
|
static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct sk_buff **to_free)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
int len = qdisc_pkt_len(skb);
|
|
int ret;
|
|
struct sk_buff *ack = NULL;
|
|
ktime_t now = ktime_get();
|
|
struct cake_tin_data *b;
|
|
struct cake_flow *flow;
|
|
u32 idx;
|
|
|
|
/* choose flow to insert into */
|
|
idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
|
|
if (idx == 0) {
|
|
if (ret & __NET_XMIT_BYPASS)
|
|
qdisc_qstats_drop(sch);
|
|
__qdisc_drop(skb, to_free);
|
|
return ret;
|
|
}
|
|
idx--;
|
|
flow = &b->flows[idx];
|
|
|
|
/* ensure shaper state isn't stale */
|
|
if (!b->tin_backlog) {
|
|
if (ktime_before(b->time_next_packet, now))
|
|
b->time_next_packet = now;
|
|
|
|
if (!sch->q.qlen) {
|
|
if (ktime_before(q->time_next_packet, now)) {
|
|
q->failsafe_next_packet = now;
|
|
q->time_next_packet = now;
|
|
} else if (ktime_after(q->time_next_packet, now) &&
|
|
ktime_after(q->failsafe_next_packet, now)) {
|
|
u64 next = \
|
|
min(ktime_to_ns(q->time_next_packet),
|
|
ktime_to_ns(
|
|
q->failsafe_next_packet));
|
|
sch->qstats.overlimits++;
|
|
qdisc_watchdog_schedule_ns(&q->watchdog, next);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (unlikely(len > b->max_skblen))
|
|
b->max_skblen = len;
|
|
|
|
if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
|
|
struct sk_buff *segs, *nskb;
|
|
netdev_features_t features = netif_skb_features(skb);
|
|
unsigned int slen = 0, numsegs = 0;
|
|
|
|
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
|
|
if (IS_ERR_OR_NULL(segs))
|
|
return qdisc_drop(skb, sch, to_free);
|
|
|
|
skb_list_walk_safe(segs, segs, nskb) {
|
|
skb_mark_not_on_list(segs);
|
|
qdisc_skb_cb(segs)->pkt_len = segs->len;
|
|
cobalt_set_enqueue_time(segs, now);
|
|
get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
|
|
segs);
|
|
flow_queue_add(flow, segs);
|
|
|
|
sch->q.qlen++;
|
|
numsegs++;
|
|
slen += segs->len;
|
|
q->buffer_used += segs->truesize;
|
|
b->packets++;
|
|
}
|
|
|
|
/* stats */
|
|
b->bytes += slen;
|
|
b->backlogs[idx] += slen;
|
|
b->tin_backlog += slen;
|
|
sch->qstats.backlog += slen;
|
|
q->avg_window_bytes += slen;
|
|
|
|
qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
|
|
consume_skb(skb);
|
|
} else {
|
|
/* not splitting */
|
|
cobalt_set_enqueue_time(skb, now);
|
|
get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
|
|
flow_queue_add(flow, skb);
|
|
|
|
if (q->ack_filter)
|
|
ack = cake_ack_filter(q, flow);
|
|
|
|
if (ack) {
|
|
b->ack_drops++;
|
|
sch->qstats.drops++;
|
|
b->bytes += qdisc_pkt_len(ack);
|
|
len -= qdisc_pkt_len(ack);
|
|
q->buffer_used += skb->truesize - ack->truesize;
|
|
if (q->rate_flags & CAKE_FLAG_INGRESS)
|
|
cake_advance_shaper(q, b, ack, now, true);
|
|
|
|
qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
|
|
consume_skb(ack);
|
|
} else {
|
|
sch->q.qlen++;
|
|
q->buffer_used += skb->truesize;
|
|
}
|
|
|
|
/* stats */
|
|
b->packets++;
|
|
b->bytes += len;
|
|
b->backlogs[idx] += len;
|
|
b->tin_backlog += len;
|
|
sch->qstats.backlog += len;
|
|
q->avg_window_bytes += len;
|
|
}
|
|
|
|
if (q->overflow_timeout)
|
|
cake_heapify_up(q, b->overflow_idx[idx]);
|
|
|
|
/* incoming bandwidth capacity estimate */
|
|
if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
|
|
u64 packet_interval = \
|
|
ktime_to_ns(ktime_sub(now, q->last_packet_time));
|
|
|
|
if (packet_interval > NSEC_PER_SEC)
|
|
packet_interval = NSEC_PER_SEC;
|
|
|
|
/* filter out short-term bursts, eg. wifi aggregation */
|
|
q->avg_packet_interval = \
|
|
cake_ewma(q->avg_packet_interval,
|
|
packet_interval,
|
|
(packet_interval > q->avg_packet_interval ?
|
|
2 : 8));
|
|
|
|
q->last_packet_time = now;
|
|
|
|
if (packet_interval > q->avg_packet_interval) {
|
|
u64 window_interval = \
|
|
ktime_to_ns(ktime_sub(now,
|
|
q->avg_window_begin));
|
|
u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
|
|
|
|
b = div64_u64(b, window_interval);
|
|
q->avg_peak_bandwidth =
|
|
cake_ewma(q->avg_peak_bandwidth, b,
|
|
b > q->avg_peak_bandwidth ? 2 : 8);
|
|
q->avg_window_bytes = 0;
|
|
q->avg_window_begin = now;
|
|
|
|
if (ktime_after(now,
|
|
ktime_add_ms(q->last_reconfig_time,
|
|
250))) {
|
|
q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
|
|
cake_reconfigure(sch);
|
|
}
|
|
}
|
|
} else {
|
|
q->avg_window_bytes = 0;
|
|
q->last_packet_time = now;
|
|
}
|
|
|
|
/* flowchain */
|
|
if (!flow->set || flow->set == CAKE_SET_DECAYING) {
|
|
struct cake_host *srchost = &b->hosts[flow->srchost];
|
|
struct cake_host *dsthost = &b->hosts[flow->dsthost];
|
|
u16 host_load = 1;
|
|
|
|
if (!flow->set) {
|
|
list_add_tail(&flow->flowchain, &b->new_flows);
|
|
} else {
|
|
b->decaying_flow_count--;
|
|
list_move_tail(&flow->flowchain, &b->new_flows);
|
|
}
|
|
flow->set = CAKE_SET_SPARSE;
|
|
b->sparse_flow_count++;
|
|
|
|
if (cake_dsrc(q->flow_mode))
|
|
host_load = max(host_load, srchost->srchost_bulk_flow_count);
|
|
|
|
if (cake_ddst(q->flow_mode))
|
|
host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
|
|
|
|
flow->deficit = (b->flow_quantum *
|
|
quantum_div[host_load]) >> 16;
|
|
} else if (flow->set == CAKE_SET_SPARSE_WAIT) {
|
|
struct cake_host *srchost = &b->hosts[flow->srchost];
|
|
struct cake_host *dsthost = &b->hosts[flow->dsthost];
|
|
|
|
/* this flow was empty, accounted as a sparse flow, but actually
|
|
* in the bulk rotation.
|
|
*/
|
|
flow->set = CAKE_SET_BULK;
|
|
b->sparse_flow_count--;
|
|
b->bulk_flow_count++;
|
|
|
|
if (cake_dsrc(q->flow_mode))
|
|
srchost->srchost_bulk_flow_count++;
|
|
|
|
if (cake_ddst(q->flow_mode))
|
|
dsthost->dsthost_bulk_flow_count++;
|
|
|
|
}
|
|
|
|
if (q->buffer_used > q->buffer_max_used)
|
|
q->buffer_max_used = q->buffer_used;
|
|
|
|
if (q->buffer_used > q->buffer_limit) {
|
|
u32 dropped = 0;
|
|
|
|
while (q->buffer_used > q->buffer_limit) {
|
|
dropped++;
|
|
cake_drop(sch, to_free);
|
|
}
|
|
b->drop_overlimit += dropped;
|
|
}
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
struct cake_tin_data *b = &q->tins[q->cur_tin];
|
|
struct cake_flow *flow = &b->flows[q->cur_flow];
|
|
struct sk_buff *skb = NULL;
|
|
u32 len;
|
|
|
|
if (flow->head) {
|
|
skb = dequeue_head(flow);
|
|
len = qdisc_pkt_len(skb);
|
|
b->backlogs[q->cur_flow] -= len;
|
|
b->tin_backlog -= len;
|
|
sch->qstats.backlog -= len;
|
|
q->buffer_used -= skb->truesize;
|
|
sch->q.qlen--;
|
|
|
|
if (q->overflow_timeout)
|
|
cake_heapify(q, b->overflow_idx[q->cur_flow]);
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
/* Discard leftover packets from a tin no longer in use. */
|
|
static void cake_clear_tin(struct Qdisc *sch, u16 tin)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
struct sk_buff *skb;
|
|
|
|
q->cur_tin = tin;
|
|
for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
|
|
while (!!(skb = cake_dequeue_one(sch)))
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
static struct sk_buff *cake_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
struct cake_tin_data *b = &q->tins[q->cur_tin];
|
|
struct cake_host *srchost, *dsthost;
|
|
ktime_t now = ktime_get();
|
|
struct cake_flow *flow;
|
|
struct list_head *head;
|
|
bool first_flow = true;
|
|
struct sk_buff *skb;
|
|
u16 host_load;
|
|
u64 delay;
|
|
u32 len;
|
|
|
|
begin:
|
|
if (!sch->q.qlen)
|
|
return NULL;
|
|
|
|
/* global hard shaper */
|
|
if (ktime_after(q->time_next_packet, now) &&
|
|
ktime_after(q->failsafe_next_packet, now)) {
|
|
u64 next = min(ktime_to_ns(q->time_next_packet),
|
|
ktime_to_ns(q->failsafe_next_packet));
|
|
|
|
sch->qstats.overlimits++;
|
|
qdisc_watchdog_schedule_ns(&q->watchdog, next);
|
|
return NULL;
|
|
}
|
|
|
|
/* Choose a class to work on. */
|
|
if (!q->rate_ns) {
|
|
/* In unlimited mode, can't rely on shaper timings, just balance
|
|
* with DRR
|
|
*/
|
|
bool wrapped = false, empty = true;
|
|
|
|
while (b->tin_deficit < 0 ||
|
|
!(b->sparse_flow_count + b->bulk_flow_count)) {
|
|
if (b->tin_deficit <= 0)
|
|
b->tin_deficit += b->tin_quantum;
|
|
if (b->sparse_flow_count + b->bulk_flow_count)
|
|
empty = false;
|
|
|
|
q->cur_tin++;
|
|
b++;
|
|
if (q->cur_tin >= q->tin_cnt) {
|
|
q->cur_tin = 0;
|
|
b = q->tins;
|
|
|
|
if (wrapped) {
|
|
/* It's possible for q->qlen to be
|
|
* nonzero when we actually have no
|
|
* packets anywhere.
|
|
*/
|
|
if (empty)
|
|
return NULL;
|
|
} else {
|
|
wrapped = true;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* In shaped mode, choose:
|
|
* - Highest-priority tin with queue and meeting schedule, or
|
|
* - The earliest-scheduled tin with queue.
|
|
*/
|
|
ktime_t best_time = KTIME_MAX;
|
|
int tin, best_tin = 0;
|
|
|
|
for (tin = 0; tin < q->tin_cnt; tin++) {
|
|
b = q->tins + tin;
|
|
if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
|
|
ktime_t time_to_pkt = \
|
|
ktime_sub(b->time_next_packet, now);
|
|
|
|
if (ktime_to_ns(time_to_pkt) <= 0 ||
|
|
ktime_compare(time_to_pkt,
|
|
best_time) <= 0) {
|
|
best_time = time_to_pkt;
|
|
best_tin = tin;
|
|
}
|
|
}
|
|
}
|
|
|
|
q->cur_tin = best_tin;
|
|
b = q->tins + best_tin;
|
|
|
|
/* No point in going further if no packets to deliver. */
|
|
if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
|
|
return NULL;
|
|
}
|
|
|
|
retry:
|
|
/* service this class */
|
|
head = &b->decaying_flows;
|
|
if (!first_flow || list_empty(head)) {
|
|
head = &b->new_flows;
|
|
if (list_empty(head)) {
|
|
head = &b->old_flows;
|
|
if (unlikely(list_empty(head))) {
|
|
head = &b->decaying_flows;
|
|
if (unlikely(list_empty(head)))
|
|
goto begin;
|
|
}
|
|
}
|
|
}
|
|
flow = list_first_entry(head, struct cake_flow, flowchain);
|
|
q->cur_flow = flow - b->flows;
|
|
first_flow = false;
|
|
|
|
/* triple isolation (modified DRR++) */
|
|
srchost = &b->hosts[flow->srchost];
|
|
dsthost = &b->hosts[flow->dsthost];
|
|
host_load = 1;
|
|
|
|
/* flow isolation (DRR++) */
|
|
if (flow->deficit <= 0) {
|
|
/* Keep all flows with deficits out of the sparse and decaying
|
|
* rotations. No non-empty flow can go into the decaying
|
|
* rotation, so they can't get deficits
|
|
*/
|
|
if (flow->set == CAKE_SET_SPARSE) {
|
|
if (flow->head) {
|
|
b->sparse_flow_count--;
|
|
b->bulk_flow_count++;
|
|
|
|
if (cake_dsrc(q->flow_mode))
|
|
srchost->srchost_bulk_flow_count++;
|
|
|
|
if (cake_ddst(q->flow_mode))
|
|
dsthost->dsthost_bulk_flow_count++;
|
|
|
|
flow->set = CAKE_SET_BULK;
|
|
} else {
|
|
/* we've moved it to the bulk rotation for
|
|
* correct deficit accounting but we still want
|
|
* to count it as a sparse flow, not a bulk one.
|
|
*/
|
|
flow->set = CAKE_SET_SPARSE_WAIT;
|
|
}
|
|
}
|
|
|
|
if (cake_dsrc(q->flow_mode))
|
|
host_load = max(host_load, srchost->srchost_bulk_flow_count);
|
|
|
|
if (cake_ddst(q->flow_mode))
|
|
host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
|
|
|
|
WARN_ON(host_load > CAKE_QUEUES);
|
|
|
|
/* The shifted prandom_u32() is a way to apply dithering to
|
|
* avoid accumulating roundoff errors
|
|
*/
|
|
flow->deficit += (b->flow_quantum * quantum_div[host_load] +
|
|
(prandom_u32() >> 16)) >> 16;
|
|
list_move_tail(&flow->flowchain, &b->old_flows);
|
|
|
|
goto retry;
|
|
}
|
|
|
|
/* Retrieve a packet via the AQM */
|
|
while (1) {
|
|
skb = cake_dequeue_one(sch);
|
|
if (!skb) {
|
|
/* this queue was actually empty */
|
|
if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
|
|
b->unresponsive_flow_count--;
|
|
|
|
if (flow->cvars.p_drop || flow->cvars.count ||
|
|
ktime_before(now, flow->cvars.drop_next)) {
|
|
/* keep in the flowchain until the state has
|
|
* decayed to rest
|
|
*/
|
|
list_move_tail(&flow->flowchain,
|
|
&b->decaying_flows);
|
|
if (flow->set == CAKE_SET_BULK) {
|
|
b->bulk_flow_count--;
|
|
|
|
if (cake_dsrc(q->flow_mode))
|
|
srchost->srchost_bulk_flow_count--;
|
|
|
|
if (cake_ddst(q->flow_mode))
|
|
dsthost->dsthost_bulk_flow_count--;
|
|
|
|
b->decaying_flow_count++;
|
|
} else if (flow->set == CAKE_SET_SPARSE ||
|
|
flow->set == CAKE_SET_SPARSE_WAIT) {
|
|
b->sparse_flow_count--;
|
|
b->decaying_flow_count++;
|
|
}
|
|
flow->set = CAKE_SET_DECAYING;
|
|
} else {
|
|
/* remove empty queue from the flowchain */
|
|
list_del_init(&flow->flowchain);
|
|
if (flow->set == CAKE_SET_SPARSE ||
|
|
flow->set == CAKE_SET_SPARSE_WAIT)
|
|
b->sparse_flow_count--;
|
|
else if (flow->set == CAKE_SET_BULK) {
|
|
b->bulk_flow_count--;
|
|
|
|
if (cake_dsrc(q->flow_mode))
|
|
srchost->srchost_bulk_flow_count--;
|
|
|
|
if (cake_ddst(q->flow_mode))
|
|
dsthost->dsthost_bulk_flow_count--;
|
|
|
|
} else
|
|
b->decaying_flow_count--;
|
|
|
|
flow->set = CAKE_SET_NONE;
|
|
}
|
|
goto begin;
|
|
}
|
|
|
|
/* Last packet in queue may be marked, shouldn't be dropped */
|
|
if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
|
|
(b->bulk_flow_count *
|
|
!!(q->rate_flags &
|
|
CAKE_FLAG_INGRESS))) ||
|
|
!flow->head)
|
|
break;
|
|
|
|
/* drop this packet, get another one */
|
|
if (q->rate_flags & CAKE_FLAG_INGRESS) {
|
|
len = cake_advance_shaper(q, b, skb,
|
|
now, true);
|
|
flow->deficit -= len;
|
|
b->tin_deficit -= len;
|
|
}
|
|
flow->dropped++;
|
|
b->tin_dropped++;
|
|
qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
|
|
qdisc_qstats_drop(sch);
|
|
kfree_skb(skb);
|
|
if (q->rate_flags & CAKE_FLAG_INGRESS)
|
|
goto retry;
|
|
}
|
|
|
|
b->tin_ecn_mark += !!flow->cvars.ecn_marked;
|
|
qdisc_bstats_update(sch, skb);
|
|
|
|
/* collect delay stats */
|
|
delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
|
|
b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
|
|
b->peak_delay = cake_ewma(b->peak_delay, delay,
|
|
delay > b->peak_delay ? 2 : 8);
|
|
b->base_delay = cake_ewma(b->base_delay, delay,
|
|
delay < b->base_delay ? 2 : 8);
|
|
|
|
len = cake_advance_shaper(q, b, skb, now, false);
|
|
flow->deficit -= len;
|
|
b->tin_deficit -= len;
|
|
|
|
if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
|
|
u64 next = min(ktime_to_ns(q->time_next_packet),
|
|
ktime_to_ns(q->failsafe_next_packet));
|
|
|
|
qdisc_watchdog_schedule_ns(&q->watchdog, next);
|
|
} else if (!sch->q.qlen) {
|
|
int i;
|
|
|
|
for (i = 0; i < q->tin_cnt; i++) {
|
|
if (q->tins[i].decaying_flow_count) {
|
|
ktime_t next = \
|
|
ktime_add_ns(now,
|
|
q->tins[i].cparams.target);
|
|
|
|
qdisc_watchdog_schedule_ns(&q->watchdog,
|
|
ktime_to_ns(next));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (q->overflow_timeout)
|
|
q->overflow_timeout--;
|
|
|
|
return skb;
|
|
}
|
|
|
|
static void cake_reset(struct Qdisc *sch)
|
|
{
|
|
u32 c;
|
|
|
|
for (c = 0; c < CAKE_MAX_TINS; c++)
|
|
cake_clear_tin(sch, c);
|
|
}
|
|
|
|
static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
|
|
[TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
|
|
[TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
|
|
[TCA_CAKE_ATM] = { .type = NLA_U32 },
|
|
[TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
|
|
[TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
|
|
[TCA_CAKE_RTT] = { .type = NLA_U32 },
|
|
[TCA_CAKE_TARGET] = { .type = NLA_U32 },
|
|
[TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
|
|
[TCA_CAKE_MEMORY] = { .type = NLA_U32 },
|
|
[TCA_CAKE_NAT] = { .type = NLA_U32 },
|
|
[TCA_CAKE_RAW] = { .type = NLA_U32 },
|
|
[TCA_CAKE_WASH] = { .type = NLA_U32 },
|
|
[TCA_CAKE_MPU] = { .type = NLA_U32 },
|
|
[TCA_CAKE_INGRESS] = { .type = NLA_U32 },
|
|
[TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
|
|
[TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
|
|
[TCA_CAKE_FWMARK] = { .type = NLA_U32 },
|
|
};
|
|
|
|
static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
|
|
u64 target_ns, u64 rtt_est_ns)
|
|
{
|
|
/* convert byte-rate into time-per-byte
|
|
* so it will always unwedge in reasonable time.
|
|
*/
|
|
static const u64 MIN_RATE = 64;
|
|
u32 byte_target = mtu;
|
|
u64 byte_target_ns;
|
|
u8 rate_shft = 0;
|
|
u64 rate_ns = 0;
|
|
|
|
b->flow_quantum = 1514;
|
|
if (rate) {
|
|
b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
|
|
rate_shft = 34;
|
|
rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
|
|
rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
|
|
while (!!(rate_ns >> 34)) {
|
|
rate_ns >>= 1;
|
|
rate_shft--;
|
|
}
|
|
} /* else unlimited, ie. zero delay */
|
|
|
|
b->tin_rate_bps = rate;
|
|
b->tin_rate_ns = rate_ns;
|
|
b->tin_rate_shft = rate_shft;
|
|
|
|
byte_target_ns = (byte_target * rate_ns) >> rate_shft;
|
|
|
|
b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
|
|
b->cparams.interval = max(rtt_est_ns +
|
|
b->cparams.target - target_ns,
|
|
b->cparams.target * 2);
|
|
b->cparams.mtu_time = byte_target_ns;
|
|
b->cparams.p_inc = 1 << 24; /* 1/256 */
|
|
b->cparams.p_dec = 1 << 20; /* 1/4096 */
|
|
}
|
|
|
|
static int cake_config_besteffort(struct Qdisc *sch)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
struct cake_tin_data *b = &q->tins[0];
|
|
u32 mtu = psched_mtu(qdisc_dev(sch));
|
|
u64 rate = q->rate_bps;
|
|
|
|
q->tin_cnt = 1;
|
|
|
|
q->tin_index = besteffort;
|
|
q->tin_order = normal_order;
|
|
|
|
cake_set_rate(b, rate, mtu,
|
|
us_to_ns(q->target), us_to_ns(q->interval));
|
|
b->tin_quantum = 65535;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cake_config_precedence(struct Qdisc *sch)
|
|
{
|
|
/* convert high-level (user visible) parameters into internal format */
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
u32 mtu = psched_mtu(qdisc_dev(sch));
|
|
u64 rate = q->rate_bps;
|
|
u32 quantum = 256;
|
|
u32 i;
|
|
|
|
q->tin_cnt = 8;
|
|
q->tin_index = precedence;
|
|
q->tin_order = normal_order;
|
|
|
|
for (i = 0; i < q->tin_cnt; i++) {
|
|
struct cake_tin_data *b = &q->tins[i];
|
|
|
|
cake_set_rate(b, rate, mtu, us_to_ns(q->target),
|
|
us_to_ns(q->interval));
|
|
|
|
b->tin_quantum = max_t(u16, 1U, quantum);
|
|
|
|
/* calculate next class's parameters */
|
|
rate *= 7;
|
|
rate >>= 3;
|
|
|
|
quantum *= 7;
|
|
quantum >>= 3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* List of known Diffserv codepoints:
|
|
*
|
|
* Least Effort (CS1)
|
|
* Best Effort (CS0)
|
|
* Max Reliability & LLT "Lo" (TOS1)
|
|
* Max Throughput (TOS2)
|
|
* Min Delay (TOS4)
|
|
* LLT "La" (TOS5)
|
|
* Assured Forwarding 1 (AF1x) - x3
|
|
* Assured Forwarding 2 (AF2x) - x3
|
|
* Assured Forwarding 3 (AF3x) - x3
|
|
* Assured Forwarding 4 (AF4x) - x3
|
|
* Precedence Class 2 (CS2)
|
|
* Precedence Class 3 (CS3)
|
|
* Precedence Class 4 (CS4)
|
|
* Precedence Class 5 (CS5)
|
|
* Precedence Class 6 (CS6)
|
|
* Precedence Class 7 (CS7)
|
|
* Voice Admit (VA)
|
|
* Expedited Forwarding (EF)
|
|
|
|
* Total 25 codepoints.
|
|
*/
|
|
|
|
/* List of traffic classes in RFC 4594:
|
|
* (roughly descending order of contended priority)
|
|
* (roughly ascending order of uncontended throughput)
|
|
*
|
|
* Network Control (CS6,CS7) - routing traffic
|
|
* Telephony (EF,VA) - aka. VoIP streams
|
|
* Signalling (CS5) - VoIP setup
|
|
* Multimedia Conferencing (AF4x) - aka. video calls
|
|
* Realtime Interactive (CS4) - eg. games
|
|
* Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
|
|
* Broadcast Video (CS3)
|
|
* Low Latency Data (AF2x,TOS4) - eg. database
|
|
* Ops, Admin, Management (CS2,TOS1) - eg. ssh
|
|
* Standard Service (CS0 & unrecognised codepoints)
|
|
* High Throughput Data (AF1x,TOS2) - eg. web traffic
|
|
* Low Priority Data (CS1) - eg. BitTorrent
|
|
|
|
* Total 12 traffic classes.
|
|
*/
|
|
|
|
static int cake_config_diffserv8(struct Qdisc *sch)
|
|
{
|
|
/* Pruned list of traffic classes for typical applications:
|
|
*
|
|
* Network Control (CS6, CS7)
|
|
* Minimum Latency (EF, VA, CS5, CS4)
|
|
* Interactive Shell (CS2, TOS1)
|
|
* Low Latency Transactions (AF2x, TOS4)
|
|
* Video Streaming (AF4x, AF3x, CS3)
|
|
* Bog Standard (CS0 etc.)
|
|
* High Throughput (AF1x, TOS2)
|
|
* Background Traffic (CS1)
|
|
*
|
|
* Total 8 traffic classes.
|
|
*/
|
|
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
u32 mtu = psched_mtu(qdisc_dev(sch));
|
|
u64 rate = q->rate_bps;
|
|
u32 quantum = 256;
|
|
u32 i;
|
|
|
|
q->tin_cnt = 8;
|
|
|
|
/* codepoint to class mapping */
|
|
q->tin_index = diffserv8;
|
|
q->tin_order = normal_order;
|
|
|
|
/* class characteristics */
|
|
for (i = 0; i < q->tin_cnt; i++) {
|
|
struct cake_tin_data *b = &q->tins[i];
|
|
|
|
cake_set_rate(b, rate, mtu, us_to_ns(q->target),
|
|
us_to_ns(q->interval));
|
|
|
|
b->tin_quantum = max_t(u16, 1U, quantum);
|
|
|
|
/* calculate next class's parameters */
|
|
rate *= 7;
|
|
rate >>= 3;
|
|
|
|
quantum *= 7;
|
|
quantum >>= 3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cake_config_diffserv4(struct Qdisc *sch)
|
|
{
|
|
/* Further pruned list of traffic classes for four-class system:
|
|
*
|
|
* Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
|
|
* Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
|
|
* Best Effort (CS0, AF1x, TOS2, and those not specified)
|
|
* Background Traffic (CS1)
|
|
*
|
|
* Total 4 traffic classes.
|
|
*/
|
|
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
u32 mtu = psched_mtu(qdisc_dev(sch));
|
|
u64 rate = q->rate_bps;
|
|
u32 quantum = 1024;
|
|
|
|
q->tin_cnt = 4;
|
|
|
|
/* codepoint to class mapping */
|
|
q->tin_index = diffserv4;
|
|
q->tin_order = bulk_order;
|
|
|
|
/* class characteristics */
|
|
cake_set_rate(&q->tins[0], rate, mtu,
|
|
us_to_ns(q->target), us_to_ns(q->interval));
|
|
cake_set_rate(&q->tins[1], rate >> 4, mtu,
|
|
us_to_ns(q->target), us_to_ns(q->interval));
|
|
cake_set_rate(&q->tins[2], rate >> 1, mtu,
|
|
us_to_ns(q->target), us_to_ns(q->interval));
|
|
cake_set_rate(&q->tins[3], rate >> 2, mtu,
|
|
us_to_ns(q->target), us_to_ns(q->interval));
|
|
|
|
/* bandwidth-sharing weights */
|
|
q->tins[0].tin_quantum = quantum;
|
|
q->tins[1].tin_quantum = quantum >> 4;
|
|
q->tins[2].tin_quantum = quantum >> 1;
|
|
q->tins[3].tin_quantum = quantum >> 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cake_config_diffserv3(struct Qdisc *sch)
|
|
{
|
|
/* Simplified Diffserv structure with 3 tins.
|
|
* Low Priority (CS1)
|
|
* Best Effort
|
|
* Latency Sensitive (TOS4, VA, EF, CS6, CS7)
|
|
*/
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
u32 mtu = psched_mtu(qdisc_dev(sch));
|
|
u64 rate = q->rate_bps;
|
|
u32 quantum = 1024;
|
|
|
|
q->tin_cnt = 3;
|
|
|
|
/* codepoint to class mapping */
|
|
q->tin_index = diffserv3;
|
|
q->tin_order = bulk_order;
|
|
|
|
/* class characteristics */
|
|
cake_set_rate(&q->tins[0], rate, mtu,
|
|
us_to_ns(q->target), us_to_ns(q->interval));
|
|
cake_set_rate(&q->tins[1], rate >> 4, mtu,
|
|
us_to_ns(q->target), us_to_ns(q->interval));
|
|
cake_set_rate(&q->tins[2], rate >> 2, mtu,
|
|
us_to_ns(q->target), us_to_ns(q->interval));
|
|
|
|
/* bandwidth-sharing weights */
|
|
q->tins[0].tin_quantum = quantum;
|
|
q->tins[1].tin_quantum = quantum >> 4;
|
|
q->tins[2].tin_quantum = quantum >> 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cake_reconfigure(struct Qdisc *sch)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
int c, ft;
|
|
|
|
switch (q->tin_mode) {
|
|
case CAKE_DIFFSERV_BESTEFFORT:
|
|
ft = cake_config_besteffort(sch);
|
|
break;
|
|
|
|
case CAKE_DIFFSERV_PRECEDENCE:
|
|
ft = cake_config_precedence(sch);
|
|
break;
|
|
|
|
case CAKE_DIFFSERV_DIFFSERV8:
|
|
ft = cake_config_diffserv8(sch);
|
|
break;
|
|
|
|
case CAKE_DIFFSERV_DIFFSERV4:
|
|
ft = cake_config_diffserv4(sch);
|
|
break;
|
|
|
|
case CAKE_DIFFSERV_DIFFSERV3:
|
|
default:
|
|
ft = cake_config_diffserv3(sch);
|
|
break;
|
|
}
|
|
|
|
for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
|
|
cake_clear_tin(sch, c);
|
|
q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
|
|
}
|
|
|
|
q->rate_ns = q->tins[ft].tin_rate_ns;
|
|
q->rate_shft = q->tins[ft].tin_rate_shft;
|
|
|
|
if (q->buffer_config_limit) {
|
|
q->buffer_limit = q->buffer_config_limit;
|
|
} else if (q->rate_bps) {
|
|
u64 t = q->rate_bps * q->interval;
|
|
|
|
do_div(t, USEC_PER_SEC / 4);
|
|
q->buffer_limit = max_t(u32, t, 4U << 20);
|
|
} else {
|
|
q->buffer_limit = ~0;
|
|
}
|
|
|
|
sch->flags &= ~TCQ_F_CAN_BYPASS;
|
|
|
|
q->buffer_limit = min(q->buffer_limit,
|
|
max(sch->limit * psched_mtu(qdisc_dev(sch)),
|
|
q->buffer_config_limit));
|
|
}
|
|
|
|
static int cake_change(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *tb[TCA_CAKE_MAX + 1];
|
|
int err;
|
|
|
|
if (!opt)
|
|
return -EINVAL;
|
|
|
|
err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
|
|
extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (tb[TCA_CAKE_NAT]) {
|
|
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
|
|
q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
|
|
q->flow_mode |= CAKE_FLOW_NAT_FLAG *
|
|
!!nla_get_u32(tb[TCA_CAKE_NAT]);
|
|
#else
|
|
NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
|
|
"No conntrack support in kernel");
|
|
return -EOPNOTSUPP;
|
|
#endif
|
|
}
|
|
|
|
if (tb[TCA_CAKE_BASE_RATE64])
|
|
q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
|
|
|
|
if (tb[TCA_CAKE_DIFFSERV_MODE])
|
|
q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
|
|
|
|
if (tb[TCA_CAKE_WASH]) {
|
|
if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
|
|
q->rate_flags |= CAKE_FLAG_WASH;
|
|
else
|
|
q->rate_flags &= ~CAKE_FLAG_WASH;
|
|
}
|
|
|
|
if (tb[TCA_CAKE_FLOW_MODE])
|
|
q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
|
|
(nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
|
|
CAKE_FLOW_MASK));
|
|
|
|
if (tb[TCA_CAKE_ATM])
|
|
q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
|
|
|
|
if (tb[TCA_CAKE_OVERHEAD]) {
|
|
q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
|
|
q->rate_flags |= CAKE_FLAG_OVERHEAD;
|
|
|
|
q->max_netlen = 0;
|
|
q->max_adjlen = 0;
|
|
q->min_netlen = ~0;
|
|
q->min_adjlen = ~0;
|
|
}
|
|
|
|
if (tb[TCA_CAKE_RAW]) {
|
|
q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
|
|
|
|
q->max_netlen = 0;
|
|
q->max_adjlen = 0;
|
|
q->min_netlen = ~0;
|
|
q->min_adjlen = ~0;
|
|
}
|
|
|
|
if (tb[TCA_CAKE_MPU])
|
|
q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
|
|
|
|
if (tb[TCA_CAKE_RTT]) {
|
|
q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
|
|
|
|
if (!q->interval)
|
|
q->interval = 1;
|
|
}
|
|
|
|
if (tb[TCA_CAKE_TARGET]) {
|
|
q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
|
|
|
|
if (!q->target)
|
|
q->target = 1;
|
|
}
|
|
|
|
if (tb[TCA_CAKE_AUTORATE]) {
|
|
if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
|
|
q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
|
|
else
|
|
q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
|
|
}
|
|
|
|
if (tb[TCA_CAKE_INGRESS]) {
|
|
if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
|
|
q->rate_flags |= CAKE_FLAG_INGRESS;
|
|
else
|
|
q->rate_flags &= ~CAKE_FLAG_INGRESS;
|
|
}
|
|
|
|
if (tb[TCA_CAKE_ACK_FILTER])
|
|
q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
|
|
|
|
if (tb[TCA_CAKE_MEMORY])
|
|
q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
|
|
|
|
if (tb[TCA_CAKE_SPLIT_GSO]) {
|
|
if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
|
|
q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
|
|
else
|
|
q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
|
|
}
|
|
|
|
if (tb[TCA_CAKE_FWMARK]) {
|
|
q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
|
|
q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
|
|
}
|
|
|
|
if (q->tins) {
|
|
sch_tree_lock(sch);
|
|
cake_reconfigure(sch);
|
|
sch_tree_unlock(sch);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cake_destroy(struct Qdisc *sch)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
|
|
qdisc_watchdog_cancel(&q->watchdog);
|
|
tcf_block_put(q->block);
|
|
kvfree(q->tins);
|
|
}
|
|
|
|
static int cake_init(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
int i, j, err;
|
|
|
|
sch->limit = 10240;
|
|
q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
|
|
q->flow_mode = CAKE_FLOW_TRIPLE;
|
|
|
|
q->rate_bps = 0; /* unlimited by default */
|
|
|
|
q->interval = 100000; /* 100ms default */
|
|
q->target = 5000; /* 5ms: codel RFC argues
|
|
* for 5 to 10% of interval
|
|
*/
|
|
q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
|
|
q->cur_tin = 0;
|
|
q->cur_flow = 0;
|
|
|
|
qdisc_watchdog_init(&q->watchdog, sch);
|
|
|
|
if (opt) {
|
|
err = cake_change(sch, opt, extack);
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
|
|
if (err)
|
|
return err;
|
|
|
|
quantum_div[0] = ~0;
|
|
for (i = 1; i <= CAKE_QUEUES; i++)
|
|
quantum_div[i] = 65535 / i;
|
|
|
|
q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
|
|
GFP_KERNEL);
|
|
if (!q->tins)
|
|
goto nomem;
|
|
|
|
for (i = 0; i < CAKE_MAX_TINS; i++) {
|
|
struct cake_tin_data *b = q->tins + i;
|
|
|
|
INIT_LIST_HEAD(&b->new_flows);
|
|
INIT_LIST_HEAD(&b->old_flows);
|
|
INIT_LIST_HEAD(&b->decaying_flows);
|
|
b->sparse_flow_count = 0;
|
|
b->bulk_flow_count = 0;
|
|
b->decaying_flow_count = 0;
|
|
|
|
for (j = 0; j < CAKE_QUEUES; j++) {
|
|
struct cake_flow *flow = b->flows + j;
|
|
u32 k = j * CAKE_MAX_TINS + i;
|
|
|
|
INIT_LIST_HEAD(&flow->flowchain);
|
|
cobalt_vars_init(&flow->cvars);
|
|
|
|
q->overflow_heap[k].t = i;
|
|
q->overflow_heap[k].b = j;
|
|
b->overflow_idx[j] = k;
|
|
}
|
|
}
|
|
|
|
cake_reconfigure(sch);
|
|
q->avg_peak_bandwidth = q->rate_bps;
|
|
q->min_netlen = ~0;
|
|
q->min_adjlen = ~0;
|
|
return 0;
|
|
|
|
nomem:
|
|
cake_destroy(sch);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *opts;
|
|
|
|
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
|
|
if (!opts)
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
|
|
TCA_CAKE_PAD))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
|
|
q->flow_mode & CAKE_FLOW_MASK))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
|
|
!!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_INGRESS,
|
|
!!(q->rate_flags & CAKE_FLAG_INGRESS)))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_NAT,
|
|
!!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_WASH,
|
|
!!(q->rate_flags & CAKE_FLAG_WASH)))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
|
|
goto nla_put_failure;
|
|
|
|
if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
|
|
if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
|
|
!!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
|
|
goto nla_put_failure;
|
|
|
|
return nla_nest_end(skb, opts);
|
|
|
|
nla_put_failure:
|
|
return -1;
|
|
}
|
|
|
|
static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
|
|
{
|
|
struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *tstats, *ts;
|
|
int i;
|
|
|
|
if (!stats)
|
|
return -1;
|
|
|
|
#define PUT_STAT_U32(attr, data) do { \
|
|
if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
|
|
goto nla_put_failure; \
|
|
} while (0)
|
|
#define PUT_STAT_U64(attr, data) do { \
|
|
if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
|
|
data, TCA_CAKE_STATS_PAD)) \
|
|
goto nla_put_failure; \
|
|
} while (0)
|
|
|
|
PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
|
|
PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
|
|
PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
|
|
PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
|
|
PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
|
|
PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
|
|
PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
|
|
PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
|
|
|
|
#undef PUT_STAT_U32
|
|
#undef PUT_STAT_U64
|
|
|
|
tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
|
|
if (!tstats)
|
|
goto nla_put_failure;
|
|
|
|
#define PUT_TSTAT_U32(attr, data) do { \
|
|
if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
|
|
goto nla_put_failure; \
|
|
} while (0)
|
|
#define PUT_TSTAT_U64(attr, data) do { \
|
|
if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
|
|
data, TCA_CAKE_TIN_STATS_PAD)) \
|
|
goto nla_put_failure; \
|
|
} while (0)
|
|
|
|
for (i = 0; i < q->tin_cnt; i++) {
|
|
struct cake_tin_data *b = &q->tins[q->tin_order[i]];
|
|
|
|
ts = nla_nest_start_noflag(d->skb, i + 1);
|
|
if (!ts)
|
|
goto nla_put_failure;
|
|
|
|
PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
|
|
PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
|
|
PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
|
|
|
|
PUT_TSTAT_U32(TARGET_US,
|
|
ktime_to_us(ns_to_ktime(b->cparams.target)));
|
|
PUT_TSTAT_U32(INTERVAL_US,
|
|
ktime_to_us(ns_to_ktime(b->cparams.interval)));
|
|
|
|
PUT_TSTAT_U32(SENT_PACKETS, b->packets);
|
|
PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
|
|
PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
|
|
PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
|
|
|
|
PUT_TSTAT_U32(PEAK_DELAY_US,
|
|
ktime_to_us(ns_to_ktime(b->peak_delay)));
|
|
PUT_TSTAT_U32(AVG_DELAY_US,
|
|
ktime_to_us(ns_to_ktime(b->avge_delay)));
|
|
PUT_TSTAT_U32(BASE_DELAY_US,
|
|
ktime_to_us(ns_to_ktime(b->base_delay)));
|
|
|
|
PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
|
|
PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
|
|
PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
|
|
|
|
PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
|
|
b->decaying_flow_count);
|
|
PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
|
|
PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
|
|
PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
|
|
|
|
PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
|
|
nla_nest_end(d->skb, ts);
|
|
}
|
|
|
|
#undef PUT_TSTAT_U32
|
|
#undef PUT_TSTAT_U64
|
|
|
|
nla_nest_end(d->skb, tstats);
|
|
return nla_nest_end(d->skb, stats);
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(d->skb, stats);
|
|
return -1;
|
|
}
|
|
|
|
static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long cake_find(struct Qdisc *sch, u32 classid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
|
|
u32 classid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void cake_unbind(struct Qdisc *q, unsigned long cl)
|
|
{
|
|
}
|
|
|
|
static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
|
|
if (cl)
|
|
return NULL;
|
|
return q->block;
|
|
}
|
|
|
|
static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
|
|
struct sk_buff *skb, struct tcmsg *tcm)
|
|
{
|
|
tcm->tcm_handle |= TC_H_MIN(cl);
|
|
return 0;
|
|
}
|
|
|
|
static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
|
|
struct gnet_dump *d)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
const struct cake_flow *flow = NULL;
|
|
struct gnet_stats_queue qs = { 0 };
|
|
struct nlattr *stats;
|
|
u32 idx = cl - 1;
|
|
|
|
if (idx < CAKE_QUEUES * q->tin_cnt) {
|
|
const struct cake_tin_data *b = \
|
|
&q->tins[q->tin_order[idx / CAKE_QUEUES]];
|
|
const struct sk_buff *skb;
|
|
|
|
flow = &b->flows[idx % CAKE_QUEUES];
|
|
|
|
if (flow->head) {
|
|
sch_tree_lock(sch);
|
|
skb = flow->head;
|
|
while (skb) {
|
|
qs.qlen++;
|
|
skb = skb->next;
|
|
}
|
|
sch_tree_unlock(sch);
|
|
}
|
|
qs.backlog = b->backlogs[idx % CAKE_QUEUES];
|
|
qs.drops = flow->dropped;
|
|
}
|
|
if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
|
|
return -1;
|
|
if (flow) {
|
|
ktime_t now = ktime_get();
|
|
|
|
stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
|
|
if (!stats)
|
|
return -1;
|
|
|
|
#define PUT_STAT_U32(attr, data) do { \
|
|
if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
|
|
goto nla_put_failure; \
|
|
} while (0)
|
|
#define PUT_STAT_S32(attr, data) do { \
|
|
if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
|
|
goto nla_put_failure; \
|
|
} while (0)
|
|
|
|
PUT_STAT_S32(DEFICIT, flow->deficit);
|
|
PUT_STAT_U32(DROPPING, flow->cvars.dropping);
|
|
PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
|
|
PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
|
|
if (flow->cvars.p_drop) {
|
|
PUT_STAT_S32(BLUE_TIMER_US,
|
|
ktime_to_us(
|
|
ktime_sub(now,
|
|
flow->cvars.blue_timer)));
|
|
}
|
|
if (flow->cvars.dropping) {
|
|
PUT_STAT_S32(DROP_NEXT_US,
|
|
ktime_to_us(
|
|
ktime_sub(now,
|
|
flow->cvars.drop_next)));
|
|
}
|
|
|
|
if (nla_nest_end(d->skb, stats) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(d->skb, stats);
|
|
return -1;
|
|
}
|
|
|
|
static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
|
|
{
|
|
struct cake_sched_data *q = qdisc_priv(sch);
|
|
unsigned int i, j;
|
|
|
|
if (arg->stop)
|
|
return;
|
|
|
|
for (i = 0; i < q->tin_cnt; i++) {
|
|
struct cake_tin_data *b = &q->tins[q->tin_order[i]];
|
|
|
|
for (j = 0; j < CAKE_QUEUES; j++) {
|
|
if (list_empty(&b->flows[j].flowchain) ||
|
|
arg->count < arg->skip) {
|
|
arg->count++;
|
|
continue;
|
|
}
|
|
if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
|
|
arg->stop = 1;
|
|
break;
|
|
}
|
|
arg->count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const struct Qdisc_class_ops cake_class_ops = {
|
|
.leaf = cake_leaf,
|
|
.find = cake_find,
|
|
.tcf_block = cake_tcf_block,
|
|
.bind_tcf = cake_bind,
|
|
.unbind_tcf = cake_unbind,
|
|
.dump = cake_dump_class,
|
|
.dump_stats = cake_dump_class_stats,
|
|
.walk = cake_walk,
|
|
};
|
|
|
|
static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
|
|
.cl_ops = &cake_class_ops,
|
|
.id = "cake",
|
|
.priv_size = sizeof(struct cake_sched_data),
|
|
.enqueue = cake_enqueue,
|
|
.dequeue = cake_dequeue,
|
|
.peek = qdisc_peek_dequeued,
|
|
.init = cake_init,
|
|
.reset = cake_reset,
|
|
.destroy = cake_destroy,
|
|
.change = cake_change,
|
|
.dump = cake_dump,
|
|
.dump_stats = cake_dump_stats,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cake_module_init(void)
|
|
{
|
|
return register_qdisc(&cake_qdisc_ops);
|
|
}
|
|
|
|
static void __exit cake_module_exit(void)
|
|
{
|
|
unregister_qdisc(&cake_qdisc_ops);
|
|
}
|
|
|
|
module_init(cake_module_init)
|
|
module_exit(cake_module_exit)
|
|
MODULE_AUTHOR("Jonathan Morton");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_DESCRIPTION("The CAKE shaper.");
|