linux-sg2042/arch/sh/kernel/cpu/init.c

366 lines
8.3 KiB
C

/*
* arch/sh/kernel/cpu/init.c
*
* CPU init code
*
* Copyright (C) 2002 - 2009 Paul Mundt
* Copyright (C) 2003 Richard Curnow
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/log2.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/cache.h>
#include <asm/elf.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/sh_bios.h>
#include <asm/setup.h>
#ifdef CONFIG_SH_FPU
#define cpu_has_fpu 1
#else
#define cpu_has_fpu 0
#endif
#ifdef CONFIG_SH_DSP
#define cpu_has_dsp 1
#else
#define cpu_has_dsp 0
#endif
/*
* Generic wrapper for command line arguments to disable on-chip
* peripherals (nofpu, nodsp, and so forth).
*/
#define onchip_setup(x) \
static int x##_disabled = !cpu_has_##x; \
\
static int x##_setup(char *opts) \
{ \
x##_disabled = 1; \
return 1; \
} \
__setup("no" __stringify(x), x##_setup);
onchip_setup(fpu);
onchip_setup(dsp);
#ifdef CONFIG_SPECULATIVE_EXECUTION
#define CPUOPM 0xff2f0000
#define CPUOPM_RABD (1 << 5)
static void speculative_execution_init(void)
{
/* Clear RABD */
__raw_writel(__raw_readl(CPUOPM) & ~CPUOPM_RABD, CPUOPM);
/* Flush the update */
(void)__raw_readl(CPUOPM);
ctrl_barrier();
}
#else
#define speculative_execution_init() do { } while (0)
#endif
#ifdef CONFIG_CPU_SH4A
#define EXPMASK 0xff2f0004
#define EXPMASK_RTEDS (1 << 0)
#define EXPMASK_BRDSSLP (1 << 1)
#define EXPMASK_MMCAW (1 << 4)
static void expmask_init(void)
{
unsigned long expmask = __raw_readl(EXPMASK);
/*
* Future proofing.
*
* Disable support for slottable sleep instruction, non-nop
* instructions in the rte delay slot, and associative writes to
* the memory-mapped cache array.
*/
expmask &= ~(EXPMASK_RTEDS | EXPMASK_BRDSSLP | EXPMASK_MMCAW);
__raw_writel(expmask, EXPMASK);
ctrl_barrier();
}
#else
#define expmask_init() do { } while (0)
#endif
/* 2nd-level cache init */
void __attribute__ ((weak)) l2_cache_init(void)
{
}
/*
* Generic first-level cache init
*/
#ifdef CONFIG_SUPERH32
static void cache_init(void)
{
unsigned long ccr, flags;
jump_to_uncached();
ccr = __raw_readl(CCR);
/*
* At this point we don't know whether the cache is enabled or not - a
* bootloader may have enabled it. There are at least 2 things that
* could be dirty in the cache at this point:
* 1. kernel command line set up by boot loader
* 2. spilled registers from the prolog of this function
* => before re-initialising the cache, we must do a purge of the whole
* cache out to memory for safety. As long as nothing is spilled
* during the loop to lines that have already been done, this is safe.
* - RPC
*/
if (ccr & CCR_CACHE_ENABLE) {
unsigned long ways, waysize, addrstart;
waysize = current_cpu_data.dcache.sets;
#ifdef CCR_CACHE_ORA
/*
* If the OC is already in RAM mode, we only have
* half of the entries to flush..
*/
if (ccr & CCR_CACHE_ORA)
waysize >>= 1;
#endif
waysize <<= current_cpu_data.dcache.entry_shift;
#ifdef CCR_CACHE_EMODE
/* If EMODE is not set, we only have 1 way to flush. */
if (!(ccr & CCR_CACHE_EMODE))
ways = 1;
else
#endif
ways = current_cpu_data.dcache.ways;
addrstart = CACHE_OC_ADDRESS_ARRAY;
do {
unsigned long addr;
for (addr = addrstart;
addr < addrstart + waysize;
addr += current_cpu_data.dcache.linesz)
__raw_writel(0, addr);
addrstart += current_cpu_data.dcache.way_incr;
} while (--ways);
}
/*
* Default CCR values .. enable the caches
* and invalidate them immediately..
*/
flags = CCR_CACHE_ENABLE | CCR_CACHE_INVALIDATE;
#ifdef CCR_CACHE_EMODE
/* Force EMODE if possible */
if (current_cpu_data.dcache.ways > 1)
flags |= CCR_CACHE_EMODE;
else
flags &= ~CCR_CACHE_EMODE;
#endif
#if defined(CONFIG_CACHE_WRITETHROUGH)
/* Write-through */
flags |= CCR_CACHE_WT;
#elif defined(CONFIG_CACHE_WRITEBACK)
/* Write-back */
flags |= CCR_CACHE_CB;
#else
/* Off */
flags &= ~CCR_CACHE_ENABLE;
#endif
l2_cache_init();
__raw_writel(flags, CCR);
back_to_cached();
}
#else
#define cache_init() do { } while (0)
#endif
#define CSHAPE(totalsize, linesize, assoc) \
((totalsize & ~0xff) | (linesize << 4) | assoc)
#define CACHE_DESC_SHAPE(desc) \
CSHAPE((desc).way_size * (desc).ways, ilog2((desc).linesz), (desc).ways)
static void detect_cache_shape(void)
{
l1d_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.dcache);
if (current_cpu_data.dcache.flags & SH_CACHE_COMBINED)
l1i_cache_shape = l1d_cache_shape;
else
l1i_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.icache);
if (current_cpu_data.flags & CPU_HAS_L2_CACHE)
l2_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.scache);
else
l2_cache_shape = -1; /* No S-cache */
}
static void fpu_init(void)
{
/* Disable the FPU */
if (fpu_disabled && (current_cpu_data.flags & CPU_HAS_FPU)) {
printk("FPU Disabled\n");
current_cpu_data.flags &= ~CPU_HAS_FPU;
}
disable_fpu();
clear_used_math();
}
#ifdef CONFIG_SH_DSP
static void release_dsp(void)
{
unsigned long sr;
/* Clear SR.DSP bit */
__asm__ __volatile__ (
"stc\tsr, %0\n\t"
"and\t%1, %0\n\t"
"ldc\t%0, sr\n\t"
: "=&r" (sr)
: "r" (~SR_DSP)
);
}
static void dsp_init(void)
{
unsigned long sr;
/*
* Set the SR.DSP bit, wait for one instruction, and then read
* back the SR value.
*/
__asm__ __volatile__ (
"stc\tsr, %0\n\t"
"or\t%1, %0\n\t"
"ldc\t%0, sr\n\t"
"nop\n\t"
"stc\tsr, %0\n\t"
: "=&r" (sr)
: "r" (SR_DSP)
);
/* If the DSP bit is still set, this CPU has a DSP */
if (sr & SR_DSP)
current_cpu_data.flags |= CPU_HAS_DSP;
/* Disable the DSP */
if (dsp_disabled && (current_cpu_data.flags & CPU_HAS_DSP)) {
printk("DSP Disabled\n");
current_cpu_data.flags &= ~CPU_HAS_DSP;
}
/* Now that we've determined the DSP status, clear the DSP bit. */
release_dsp();
}
#else
static inline void dsp_init(void) { }
#endif /* CONFIG_SH_DSP */
/**
* cpu_init
*
* This is our initial entry point for each CPU, and is invoked on the
* boot CPU prior to calling start_kernel(). For SMP, a combination of
* this and start_secondary() will bring up each processor to a ready
* state prior to hand forking the idle loop.
*
* We do all of the basic processor init here, including setting up
* the caches, FPU, DSP, etc. By the time start_kernel() is hit (and
* subsequently platform_setup()) things like determining the CPU
* subtype and initial configuration will all be done.
*
* Each processor family is still responsible for doing its own probing
* and cache configuration in cpu_probe().
*/
asmlinkage void cpu_init(void)
{
current_thread_info()->cpu = hard_smp_processor_id();
/* First, probe the CPU */
cpu_probe();
if (current_cpu_data.type == CPU_SH_NONE)
panic("Unknown CPU");
/* First setup the rest of the I-cache info */
current_cpu_data.icache.entry_mask = current_cpu_data.icache.way_incr -
current_cpu_data.icache.linesz;
current_cpu_data.icache.way_size = current_cpu_data.icache.sets *
current_cpu_data.icache.linesz;
/* And the D-cache too */
current_cpu_data.dcache.entry_mask = current_cpu_data.dcache.way_incr -
current_cpu_data.dcache.linesz;
current_cpu_data.dcache.way_size = current_cpu_data.dcache.sets *
current_cpu_data.dcache.linesz;
/* Init the cache */
cache_init();
if (raw_smp_processor_id() == 0) {
shm_align_mask = max_t(unsigned long,
current_cpu_data.dcache.way_size - 1,
PAGE_SIZE - 1);
/* Boot CPU sets the cache shape */
detect_cache_shape();
}
fpu_init();
dsp_init();
/*
* Initialize the per-CPU ASID cache very early, since the
* TLB flushing routines depend on this being setup.
*/
current_cpu_data.asid_cache = NO_CONTEXT;
current_cpu_data.phys_bits = __in_29bit_mode() ? 29 : 32;
speculative_execution_init();
expmask_init();
/* Do the rest of the boot processor setup */
if (raw_smp_processor_id() == 0) {
/* Save off the BIOS VBR, if there is one */
sh_bios_vbr_init();
/*
* Setup VBR for boot CPU. Secondary CPUs do this through
* start_secondary().
*/
per_cpu_trap_init();
/*
* Boot processor to setup the FP and extended state
* context info.
*/
init_thread_xstate();
}
}