579 lines
18 KiB
C
579 lines
18 KiB
C
#ifndef __i386_UACCESS_H
|
|
#define __i386_UACCESS_H
|
|
|
|
/*
|
|
* User space memory access functions
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/string.h>
|
|
#include <asm/page.h>
|
|
|
|
#define VERIFY_READ 0
|
|
#define VERIFY_WRITE 1
|
|
|
|
/*
|
|
* The fs value determines whether argument validity checking should be
|
|
* performed or not. If get_fs() == USER_DS, checking is performed, with
|
|
* get_fs() == KERNEL_DS, checking is bypassed.
|
|
*
|
|
* For historical reasons, these macros are grossly misnamed.
|
|
*/
|
|
|
|
#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
|
|
|
|
|
|
#define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFFUL)
|
|
#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)
|
|
|
|
#define get_ds() (KERNEL_DS)
|
|
#define get_fs() (current_thread_info()->addr_limit)
|
|
#define set_fs(x) (current_thread_info()->addr_limit = (x))
|
|
|
|
#define segment_eq(a,b) ((a).seg == (b).seg)
|
|
|
|
/*
|
|
* movsl can be slow when source and dest are not both 8-byte aligned
|
|
*/
|
|
#ifdef CONFIG_X86_INTEL_USERCOPY
|
|
extern struct movsl_mask {
|
|
int mask;
|
|
} ____cacheline_aligned_in_smp movsl_mask;
|
|
#endif
|
|
|
|
#define __addr_ok(addr) ((unsigned long __force)(addr) < (current_thread_info()->addr_limit.seg))
|
|
|
|
/*
|
|
* Test whether a block of memory is a valid user space address.
|
|
* Returns 0 if the range is valid, nonzero otherwise.
|
|
*
|
|
* This is equivalent to the following test:
|
|
* (u33)addr + (u33)size >= (u33)current->addr_limit.seg
|
|
*
|
|
* This needs 33-bit arithmetic. We have a carry...
|
|
*/
|
|
#define __range_ok(addr,size) ({ \
|
|
unsigned long flag,sum; \
|
|
__chk_user_ptr(addr); \
|
|
asm("addl %3,%1 ; sbbl %0,%0; cmpl %1,%4; sbbl $0,%0" \
|
|
:"=&r" (flag), "=r" (sum) \
|
|
:"1" (addr),"g" ((int)(size)),"rm" (current_thread_info()->addr_limit.seg)); \
|
|
flag; })
|
|
|
|
/**
|
|
* access_ok: - Checks if a user space pointer is valid
|
|
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
|
|
* %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
|
|
* to write to a block, it is always safe to read from it.
|
|
* @addr: User space pointer to start of block to check
|
|
* @size: Size of block to check
|
|
*
|
|
* Context: User context only. This function may sleep.
|
|
*
|
|
* Checks if a pointer to a block of memory in user space is valid.
|
|
*
|
|
* Returns true (nonzero) if the memory block may be valid, false (zero)
|
|
* if it is definitely invalid.
|
|
*
|
|
* Note that, depending on architecture, this function probably just
|
|
* checks that the pointer is in the user space range - after calling
|
|
* this function, memory access functions may still return -EFAULT.
|
|
*/
|
|
#define access_ok(type,addr,size) (likely(__range_ok(addr,size) == 0))
|
|
|
|
/*
|
|
* The exception table consists of pairs of addresses: the first is the
|
|
* address of an instruction that is allowed to fault, and the second is
|
|
* the address at which the program should continue. No registers are
|
|
* modified, so it is entirely up to the continuation code to figure out
|
|
* what to do.
|
|
*
|
|
* All the routines below use bits of fixup code that are out of line
|
|
* with the main instruction path. This means when everything is well,
|
|
* we don't even have to jump over them. Further, they do not intrude
|
|
* on our cache or tlb entries.
|
|
*/
|
|
|
|
struct exception_table_entry
|
|
{
|
|
unsigned long insn, fixup;
|
|
};
|
|
|
|
extern int fixup_exception(struct pt_regs *regs);
|
|
|
|
/*
|
|
* These are the main single-value transfer routines. They automatically
|
|
* use the right size if we just have the right pointer type.
|
|
*
|
|
* This gets kind of ugly. We want to return _two_ values in "get_user()"
|
|
* and yet we don't want to do any pointers, because that is too much
|
|
* of a performance impact. Thus we have a few rather ugly macros here,
|
|
* and hide all the ugliness from the user.
|
|
*
|
|
* The "__xxx" versions of the user access functions are versions that
|
|
* do not verify the address space, that must have been done previously
|
|
* with a separate "access_ok()" call (this is used when we do multiple
|
|
* accesses to the same area of user memory).
|
|
*/
|
|
|
|
extern void __get_user_1(void);
|
|
extern void __get_user_2(void);
|
|
extern void __get_user_4(void);
|
|
|
|
#define __get_user_x(size,ret,x,ptr) \
|
|
__asm__ __volatile__("call __get_user_" #size \
|
|
:"=a" (ret),"=d" (x) \
|
|
:"0" (ptr))
|
|
|
|
|
|
/* Careful: we have to cast the result to the type of the pointer for sign reasons */
|
|
/**
|
|
* get_user: - Get a simple variable from user space.
|
|
* @x: Variable to store result.
|
|
* @ptr: Source address, in user space.
|
|
*
|
|
* Context: User context only. This function may sleep.
|
|
*
|
|
* This macro copies a single simple variable from user space to kernel
|
|
* space. It supports simple types like char and int, but not larger
|
|
* data types like structures or arrays.
|
|
*
|
|
* @ptr must have pointer-to-simple-variable type, and the result of
|
|
* dereferencing @ptr must be assignable to @x without a cast.
|
|
*
|
|
* Returns zero on success, or -EFAULT on error.
|
|
* On error, the variable @x is set to zero.
|
|
*/
|
|
#define get_user(x,ptr) \
|
|
({ int __ret_gu; \
|
|
unsigned long __val_gu; \
|
|
__chk_user_ptr(ptr); \
|
|
switch(sizeof (*(ptr))) { \
|
|
case 1: __get_user_x(1,__ret_gu,__val_gu,ptr); break; \
|
|
case 2: __get_user_x(2,__ret_gu,__val_gu,ptr); break; \
|
|
case 4: __get_user_x(4,__ret_gu,__val_gu,ptr); break; \
|
|
default: __get_user_x(X,__ret_gu,__val_gu,ptr); break; \
|
|
} \
|
|
(x) = (__typeof__(*(ptr)))__val_gu; \
|
|
__ret_gu; \
|
|
})
|
|
|
|
extern void __put_user_bad(void);
|
|
|
|
/*
|
|
* Strange magic calling convention: pointer in %ecx,
|
|
* value in %eax(:%edx), return value in %eax, no clobbers.
|
|
*/
|
|
extern void __put_user_1(void);
|
|
extern void __put_user_2(void);
|
|
extern void __put_user_4(void);
|
|
extern void __put_user_8(void);
|
|
|
|
#define __put_user_1(x, ptr) __asm__ __volatile__("call __put_user_1":"=a" (__ret_pu):"0" ((typeof(*(ptr)))(x)), "c" (ptr))
|
|
#define __put_user_2(x, ptr) __asm__ __volatile__("call __put_user_2":"=a" (__ret_pu):"0" ((typeof(*(ptr)))(x)), "c" (ptr))
|
|
#define __put_user_4(x, ptr) __asm__ __volatile__("call __put_user_4":"=a" (__ret_pu):"0" ((typeof(*(ptr)))(x)), "c" (ptr))
|
|
#define __put_user_8(x, ptr) __asm__ __volatile__("call __put_user_8":"=a" (__ret_pu):"A" ((typeof(*(ptr)))(x)), "c" (ptr))
|
|
#define __put_user_X(x, ptr) __asm__ __volatile__("call __put_user_X":"=a" (__ret_pu):"c" (ptr))
|
|
|
|
/**
|
|
* put_user: - Write a simple value into user space.
|
|
* @x: Value to copy to user space.
|
|
* @ptr: Destination address, in user space.
|
|
*
|
|
* Context: User context only. This function may sleep.
|
|
*
|
|
* This macro copies a single simple value from kernel space to user
|
|
* space. It supports simple types like char and int, but not larger
|
|
* data types like structures or arrays.
|
|
*
|
|
* @ptr must have pointer-to-simple-variable type, and @x must be assignable
|
|
* to the result of dereferencing @ptr.
|
|
*
|
|
* Returns zero on success, or -EFAULT on error.
|
|
*/
|
|
#ifdef CONFIG_X86_WP_WORKS_OK
|
|
|
|
#define put_user(x,ptr) \
|
|
({ int __ret_pu; \
|
|
__typeof__(*(ptr)) __pu_val; \
|
|
__chk_user_ptr(ptr); \
|
|
__pu_val = x; \
|
|
switch(sizeof(*(ptr))) { \
|
|
case 1: __put_user_1(__pu_val, ptr); break; \
|
|
case 2: __put_user_2(__pu_val, ptr); break; \
|
|
case 4: __put_user_4(__pu_val, ptr); break; \
|
|
case 8: __put_user_8(__pu_val, ptr); break; \
|
|
default:__put_user_X(__pu_val, ptr); break; \
|
|
} \
|
|
__ret_pu; \
|
|
})
|
|
|
|
#else
|
|
#define put_user(x,ptr) \
|
|
({ \
|
|
int __ret_pu; \
|
|
__typeof__(*(ptr)) __pus_tmp = x; \
|
|
__ret_pu=0; \
|
|
if(unlikely(__copy_to_user_ll(ptr, &__pus_tmp, \
|
|
sizeof(*(ptr))) != 0)) \
|
|
__ret_pu=-EFAULT; \
|
|
__ret_pu; \
|
|
})
|
|
|
|
|
|
#endif
|
|
|
|
/**
|
|
* __get_user: - Get a simple variable from user space, with less checking.
|
|
* @x: Variable to store result.
|
|
* @ptr: Source address, in user space.
|
|
*
|
|
* Context: User context only. This function may sleep.
|
|
*
|
|
* This macro copies a single simple variable from user space to kernel
|
|
* space. It supports simple types like char and int, but not larger
|
|
* data types like structures or arrays.
|
|
*
|
|
* @ptr must have pointer-to-simple-variable type, and the result of
|
|
* dereferencing @ptr must be assignable to @x without a cast.
|
|
*
|
|
* Caller must check the pointer with access_ok() before calling this
|
|
* function.
|
|
*
|
|
* Returns zero on success, or -EFAULT on error.
|
|
* On error, the variable @x is set to zero.
|
|
*/
|
|
#define __get_user(x,ptr) \
|
|
__get_user_nocheck((x),(ptr),sizeof(*(ptr)))
|
|
|
|
|
|
/**
|
|
* __put_user: - Write a simple value into user space, with less checking.
|
|
* @x: Value to copy to user space.
|
|
* @ptr: Destination address, in user space.
|
|
*
|
|
* Context: User context only. This function may sleep.
|
|
*
|
|
* This macro copies a single simple value from kernel space to user
|
|
* space. It supports simple types like char and int, but not larger
|
|
* data types like structures or arrays.
|
|
*
|
|
* @ptr must have pointer-to-simple-variable type, and @x must be assignable
|
|
* to the result of dereferencing @ptr.
|
|
*
|
|
* Caller must check the pointer with access_ok() before calling this
|
|
* function.
|
|
*
|
|
* Returns zero on success, or -EFAULT on error.
|
|
*/
|
|
#define __put_user(x,ptr) \
|
|
__put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
|
|
|
|
#define __put_user_nocheck(x,ptr,size) \
|
|
({ \
|
|
long __pu_err; \
|
|
__put_user_size((x),(ptr),(size),__pu_err,-EFAULT); \
|
|
__pu_err; \
|
|
})
|
|
|
|
|
|
#define __put_user_u64(x, addr, err) \
|
|
__asm__ __volatile__( \
|
|
"1: movl %%eax,0(%2)\n" \
|
|
"2: movl %%edx,4(%2)\n" \
|
|
"3:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"4: movl %3,%0\n" \
|
|
" jmp 3b\n" \
|
|
".previous\n" \
|
|
".section __ex_table,\"a\"\n" \
|
|
" .align 4\n" \
|
|
" .long 1b,4b\n" \
|
|
" .long 2b,4b\n" \
|
|
".previous" \
|
|
: "=r"(err) \
|
|
: "A" (x), "r" (addr), "i"(-EFAULT), "0"(err))
|
|
|
|
#ifdef CONFIG_X86_WP_WORKS_OK
|
|
|
|
#define __put_user_size(x,ptr,size,retval,errret) \
|
|
do { \
|
|
retval = 0; \
|
|
__chk_user_ptr(ptr); \
|
|
switch (size) { \
|
|
case 1: __put_user_asm(x,ptr,retval,"b","b","iq",errret);break; \
|
|
case 2: __put_user_asm(x,ptr,retval,"w","w","ir",errret);break; \
|
|
case 4: __put_user_asm(x,ptr,retval,"l","","ir",errret); break; \
|
|
case 8: __put_user_u64((__typeof__(*ptr))(x),ptr,retval); break;\
|
|
default: __put_user_bad(); \
|
|
} \
|
|
} while (0)
|
|
|
|
#else
|
|
|
|
#define __put_user_size(x,ptr,size,retval,errret) \
|
|
do { \
|
|
__typeof__(*(ptr)) __pus_tmp = x; \
|
|
retval = 0; \
|
|
\
|
|
if(unlikely(__copy_to_user_ll(ptr, &__pus_tmp, size) != 0)) \
|
|
retval = errret; \
|
|
} while (0)
|
|
|
|
#endif
|
|
struct __large_struct { unsigned long buf[100]; };
|
|
#define __m(x) (*(struct __large_struct __user *)(x))
|
|
|
|
/*
|
|
* Tell gcc we read from memory instead of writing: this is because
|
|
* we do not write to any memory gcc knows about, so there are no
|
|
* aliasing issues.
|
|
*/
|
|
#define __put_user_asm(x, addr, err, itype, rtype, ltype, errret) \
|
|
__asm__ __volatile__( \
|
|
"1: mov"itype" %"rtype"1,%2\n" \
|
|
"2:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl %3,%0\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
".section __ex_table,\"a\"\n" \
|
|
" .align 4\n" \
|
|
" .long 1b,3b\n" \
|
|
".previous" \
|
|
: "=r"(err) \
|
|
: ltype (x), "m"(__m(addr)), "i"(errret), "0"(err))
|
|
|
|
|
|
#define __get_user_nocheck(x,ptr,size) \
|
|
({ \
|
|
long __gu_err; \
|
|
unsigned long __gu_val; \
|
|
__get_user_size(__gu_val,(ptr),(size),__gu_err,-EFAULT);\
|
|
(x) = (__typeof__(*(ptr)))__gu_val; \
|
|
__gu_err; \
|
|
})
|
|
|
|
extern long __get_user_bad(void);
|
|
|
|
#define __get_user_size(x,ptr,size,retval,errret) \
|
|
do { \
|
|
retval = 0; \
|
|
__chk_user_ptr(ptr); \
|
|
switch (size) { \
|
|
case 1: __get_user_asm(x,ptr,retval,"b","b","=q",errret);break; \
|
|
case 2: __get_user_asm(x,ptr,retval,"w","w","=r",errret);break; \
|
|
case 4: __get_user_asm(x,ptr,retval,"l","","=r",errret);break; \
|
|
default: (x) = __get_user_bad(); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define __get_user_asm(x, addr, err, itype, rtype, ltype, errret) \
|
|
__asm__ __volatile__( \
|
|
"1: mov"itype" %2,%"rtype"1\n" \
|
|
"2:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl %3,%0\n" \
|
|
" xor"itype" %"rtype"1,%"rtype"1\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
".section __ex_table,\"a\"\n" \
|
|
" .align 4\n" \
|
|
" .long 1b,3b\n" \
|
|
".previous" \
|
|
: "=r"(err), ltype (x) \
|
|
: "m"(__m(addr)), "i"(errret), "0"(err))
|
|
|
|
|
|
unsigned long __must_check __copy_to_user_ll(void __user *to,
|
|
const void *from, unsigned long n);
|
|
unsigned long __must_check __copy_from_user_ll(void *to,
|
|
const void __user *from, unsigned long n);
|
|
unsigned long __must_check __copy_from_user_ll_nozero(void *to,
|
|
const void __user *from, unsigned long n);
|
|
unsigned long __must_check __copy_from_user_ll_nocache(void *to,
|
|
const void __user *from, unsigned long n);
|
|
unsigned long __must_check __copy_from_user_ll_nocache_nozero(void *to,
|
|
const void __user *from, unsigned long n);
|
|
|
|
/*
|
|
* Here we special-case 1, 2 and 4-byte copy_*_user invocations. On a fault
|
|
* we return the initial request size (1, 2 or 4), as copy_*_user should do.
|
|
* If a store crosses a page boundary and gets a fault, the x86 will not write
|
|
* anything, so this is accurate.
|
|
*/
|
|
|
|
static __always_inline unsigned long __must_check
|
|
__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
|
|
{
|
|
if (__builtin_constant_p(n)) {
|
|
unsigned long ret;
|
|
|
|
switch (n) {
|
|
case 1:
|
|
__put_user_size(*(u8 *)from, (u8 __user *)to, 1, ret, 1);
|
|
return ret;
|
|
case 2:
|
|
__put_user_size(*(u16 *)from, (u16 __user *)to, 2, ret, 2);
|
|
return ret;
|
|
case 4:
|
|
__put_user_size(*(u32 *)from, (u32 __user *)to, 4, ret, 4);
|
|
return ret;
|
|
}
|
|
}
|
|
return __copy_to_user_ll(to, from, n);
|
|
}
|
|
|
|
/**
|
|
* __copy_to_user: - Copy a block of data into user space, with less checking.
|
|
* @to: Destination address, in user space.
|
|
* @from: Source address, in kernel space.
|
|
* @n: Number of bytes to copy.
|
|
*
|
|
* Context: User context only. This function may sleep.
|
|
*
|
|
* Copy data from kernel space to user space. Caller must check
|
|
* the specified block with access_ok() before calling this function.
|
|
*
|
|
* Returns number of bytes that could not be copied.
|
|
* On success, this will be zero.
|
|
*/
|
|
static __always_inline unsigned long __must_check
|
|
__copy_to_user(void __user *to, const void *from, unsigned long n)
|
|
{
|
|
might_sleep();
|
|
return __copy_to_user_inatomic(to, from, n);
|
|
}
|
|
|
|
static __always_inline unsigned long
|
|
__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
|
|
{
|
|
/* Avoid zeroing the tail if the copy fails..
|
|
* If 'n' is constant and 1, 2, or 4, we do still zero on a failure,
|
|
* but as the zeroing behaviour is only significant when n is not
|
|
* constant, that shouldn't be a problem.
|
|
*/
|
|
if (__builtin_constant_p(n)) {
|
|
unsigned long ret;
|
|
|
|
switch (n) {
|
|
case 1:
|
|
__get_user_size(*(u8 *)to, from, 1, ret, 1);
|
|
return ret;
|
|
case 2:
|
|
__get_user_size(*(u16 *)to, from, 2, ret, 2);
|
|
return ret;
|
|
case 4:
|
|
__get_user_size(*(u32 *)to, from, 4, ret, 4);
|
|
return ret;
|
|
}
|
|
}
|
|
return __copy_from_user_ll_nozero(to, from, n);
|
|
}
|
|
|
|
/**
|
|
* __copy_from_user: - Copy a block of data from user space, with less checking.
|
|
* @to: Destination address, in kernel space.
|
|
* @from: Source address, in user space.
|
|
* @n: Number of bytes to copy.
|
|
*
|
|
* Context: User context only. This function may sleep.
|
|
*
|
|
* Copy data from user space to kernel space. Caller must check
|
|
* the specified block with access_ok() before calling this function.
|
|
*
|
|
* Returns number of bytes that could not be copied.
|
|
* On success, this will be zero.
|
|
*
|
|
* If some data could not be copied, this function will pad the copied
|
|
* data to the requested size using zero bytes.
|
|
*
|
|
* An alternate version - __copy_from_user_inatomic() - may be called from
|
|
* atomic context and will fail rather than sleep. In this case the
|
|
* uncopied bytes will *NOT* be padded with zeros. See fs/filemap.h
|
|
* for explanation of why this is needed.
|
|
*/
|
|
static __always_inline unsigned long
|
|
__copy_from_user(void *to, const void __user *from, unsigned long n)
|
|
{
|
|
might_sleep();
|
|
if (__builtin_constant_p(n)) {
|
|
unsigned long ret;
|
|
|
|
switch (n) {
|
|
case 1:
|
|
__get_user_size(*(u8 *)to, from, 1, ret, 1);
|
|
return ret;
|
|
case 2:
|
|
__get_user_size(*(u16 *)to, from, 2, ret, 2);
|
|
return ret;
|
|
case 4:
|
|
__get_user_size(*(u32 *)to, from, 4, ret, 4);
|
|
return ret;
|
|
}
|
|
}
|
|
return __copy_from_user_ll(to, from, n);
|
|
}
|
|
|
|
#define ARCH_HAS_NOCACHE_UACCESS
|
|
|
|
static __always_inline unsigned long __copy_from_user_nocache(void *to,
|
|
const void __user *from, unsigned long n)
|
|
{
|
|
might_sleep();
|
|
if (__builtin_constant_p(n)) {
|
|
unsigned long ret;
|
|
|
|
switch (n) {
|
|
case 1:
|
|
__get_user_size(*(u8 *)to, from, 1, ret, 1);
|
|
return ret;
|
|
case 2:
|
|
__get_user_size(*(u16 *)to, from, 2, ret, 2);
|
|
return ret;
|
|
case 4:
|
|
__get_user_size(*(u32 *)to, from, 4, ret, 4);
|
|
return ret;
|
|
}
|
|
}
|
|
return __copy_from_user_ll_nocache(to, from, n);
|
|
}
|
|
|
|
static __always_inline unsigned long
|
|
__copy_from_user_inatomic_nocache(void *to, const void __user *from, unsigned long n)
|
|
{
|
|
return __copy_from_user_ll_nocache_nozero(to, from, n);
|
|
}
|
|
|
|
unsigned long __must_check copy_to_user(void __user *to,
|
|
const void *from, unsigned long n);
|
|
unsigned long __must_check copy_from_user(void *to,
|
|
const void __user *from, unsigned long n);
|
|
long __must_check strncpy_from_user(char *dst, const char __user *src,
|
|
long count);
|
|
long __must_check __strncpy_from_user(char *dst,
|
|
const char __user *src, long count);
|
|
|
|
/**
|
|
* strlen_user: - Get the size of a string in user space.
|
|
* @str: The string to measure.
|
|
*
|
|
* Context: User context only. This function may sleep.
|
|
*
|
|
* Get the size of a NUL-terminated string in user space.
|
|
*
|
|
* Returns the size of the string INCLUDING the terminating NUL.
|
|
* On exception, returns 0.
|
|
*
|
|
* If there is a limit on the length of a valid string, you may wish to
|
|
* consider using strnlen_user() instead.
|
|
*/
|
|
#define strlen_user(str) strnlen_user(str, ~0UL >> 1)
|
|
|
|
long strnlen_user(const char __user *str, long n);
|
|
unsigned long __must_check clear_user(void __user *mem, unsigned long len);
|
|
unsigned long __must_check __clear_user(void __user *mem, unsigned long len);
|
|
|
|
#endif /* __i386_UACCESS_H */
|