linux-sg2042/include/drm/gpu_scheduler.h

218 lines
6.9 KiB
C

/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef _DRM_GPU_SCHEDULER_H_
#define _DRM_GPU_SCHEDULER_H_
#include <drm/spsc_queue.h>
#include <linux/dma-fence.h>
struct drm_gpu_scheduler;
struct drm_sched_rq;
enum drm_sched_priority {
DRM_SCHED_PRIORITY_MIN,
DRM_SCHED_PRIORITY_LOW = DRM_SCHED_PRIORITY_MIN,
DRM_SCHED_PRIORITY_NORMAL,
DRM_SCHED_PRIORITY_HIGH_SW,
DRM_SCHED_PRIORITY_HIGH_HW,
DRM_SCHED_PRIORITY_KERNEL,
DRM_SCHED_PRIORITY_MAX,
DRM_SCHED_PRIORITY_INVALID = -1,
DRM_SCHED_PRIORITY_UNSET = -2
};
/**
* drm_sched_entity - A wrapper around a job queue (typically attached
* to the DRM file_priv).
*
* Entities will emit jobs in order to their corresponding hardware
* ring, and the scheduler will alternate between entities based on
* scheduling policy.
*/
struct drm_sched_entity {
struct list_head list;
struct drm_sched_rq *rq;
spinlock_t rq_lock;
struct drm_gpu_scheduler *sched;
struct spsc_queue job_queue;
atomic_t fence_seq;
uint64_t fence_context;
struct dma_fence *dependency;
struct dma_fence_cb cb;
atomic_t *guilty; /* points to ctx's guilty */
int fini_status;
struct dma_fence *last_scheduled;
};
/**
* Run queue is a set of entities scheduling command submissions for
* one specific ring. It implements the scheduling policy that selects
* the next entity to emit commands from.
*/
struct drm_sched_rq {
spinlock_t lock;
struct list_head entities;
struct drm_sched_entity *current_entity;
};
struct drm_sched_fence {
struct dma_fence scheduled;
/* This fence is what will be signaled by the scheduler when
* the job is completed.
*
* When setting up an out fence for the job, you should use
* this, since it's available immediately upon
* drm_sched_job_init(), and the fence returned by the driver
* from run_job() won't be created until the dependencies have
* resolved.
*/
struct dma_fence finished;
struct dma_fence_cb cb;
struct dma_fence *parent;
struct drm_gpu_scheduler *sched;
spinlock_t lock;
void *owner;
};
struct drm_sched_fence *to_drm_sched_fence(struct dma_fence *f);
/**
* drm_sched_job - A job to be run by an entity.
*
* A job is created by the driver using drm_sched_job_init(), and
* should call drm_sched_entity_push_job() once it wants the scheduler
* to schedule the job.
*/
struct drm_sched_job {
struct spsc_node queue_node;
struct drm_gpu_scheduler *sched;
struct drm_sched_fence *s_fence;
struct dma_fence_cb finish_cb;
struct work_struct finish_work;
struct list_head node;
struct delayed_work work_tdr;
uint64_t id;
atomic_t karma;
enum drm_sched_priority s_priority;
struct drm_sched_entity *entity;
};
static inline bool drm_sched_invalidate_job(struct drm_sched_job *s_job,
int threshold)
{
return (s_job && atomic_inc_return(&s_job->karma) > threshold);
}
/**
* Define the backend operations called by the scheduler,
* these functions should be implemented in driver side
*/
struct drm_sched_backend_ops {
/* Called when the scheduler is considering scheduling this
* job next, to get another struct dma_fence for this job to
* block on. Once it returns NULL, run_job() may be called.
*/
struct dma_fence *(*dependency)(struct drm_sched_job *sched_job,
struct drm_sched_entity *s_entity);
/* Called to execute the job once all of the dependencies have
* been resolved. This may be called multiple times, if
* timedout_job() has happened and drm_sched_job_recovery()
* decides to try it again.
*/
struct dma_fence *(*run_job)(struct drm_sched_job *sched_job);
/* Called when a job has taken too long to execute, to trigger
* GPU recovery.
*/
void (*timedout_job)(struct drm_sched_job *sched_job);
/* Called once the job's finished fence has been signaled and
* it's time to clean it up.
*/
void (*free_job)(struct drm_sched_job *sched_job);
};
/**
* One scheduler is implemented for each hardware ring
*/
struct drm_gpu_scheduler {
const struct drm_sched_backend_ops *ops;
uint32_t hw_submission_limit;
long timeout;
const char *name;
struct drm_sched_rq sched_rq[DRM_SCHED_PRIORITY_MAX];
wait_queue_head_t wake_up_worker;
wait_queue_head_t job_scheduled;
atomic_t hw_rq_count;
atomic64_t job_id_count;
struct task_struct *thread;
struct list_head ring_mirror_list;
spinlock_t job_list_lock;
int hang_limit;
};
int drm_sched_init(struct drm_gpu_scheduler *sched,
const struct drm_sched_backend_ops *ops,
uint32_t hw_submission, unsigned hang_limit, long timeout,
const char *name);
void drm_sched_fini(struct drm_gpu_scheduler *sched);
int drm_sched_entity_init(struct drm_gpu_scheduler *sched,
struct drm_sched_entity *entity,
struct drm_sched_rq *rq,
atomic_t *guilty);
void drm_sched_entity_do_release(struct drm_gpu_scheduler *sched,
struct drm_sched_entity *entity);
void drm_sched_entity_cleanup(struct drm_gpu_scheduler *sched,
struct drm_sched_entity *entity);
void drm_sched_entity_fini(struct drm_gpu_scheduler *sched,
struct drm_sched_entity *entity);
void drm_sched_entity_push_job(struct drm_sched_job *sched_job,
struct drm_sched_entity *entity);
void drm_sched_entity_set_rq(struct drm_sched_entity *entity,
struct drm_sched_rq *rq);
struct drm_sched_fence *drm_sched_fence_create(
struct drm_sched_entity *s_entity, void *owner);
void drm_sched_fence_scheduled(struct drm_sched_fence *fence);
void drm_sched_fence_finished(struct drm_sched_fence *fence);
int drm_sched_job_init(struct drm_sched_job *job,
struct drm_gpu_scheduler *sched,
struct drm_sched_entity *entity,
void *owner);
void drm_sched_hw_job_reset(struct drm_gpu_scheduler *sched,
struct drm_sched_job *job);
void drm_sched_job_recovery(struct drm_gpu_scheduler *sched);
bool drm_sched_dependency_optimized(struct dma_fence* fence,
struct drm_sched_entity *entity);
void drm_sched_job_kickout(struct drm_sched_job *s_job);
#endif