linux-sg2042/drivers/net/wireless/mac80211_hwsim.c

2427 lines
65 KiB
C

/*
* mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
* Copyright (c) 2008, Jouni Malinen <j@w1.fi>
* Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* TODO:
* - Add TSF sync and fix IBSS beacon transmission by adding
* competition for "air time" at TBTT
* - RX filtering based on filter configuration (data->rx_filter)
*/
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <net/dst.h>
#include <net/xfrm.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include <linux/if_arp.h>
#include <linux/rtnetlink.h>
#include <linux/etherdevice.h>
#include <linux/debugfs.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <net/genetlink.h>
#include "mac80211_hwsim.h"
#define WARN_QUEUE 100
#define MAX_QUEUE 200
MODULE_AUTHOR("Jouni Malinen");
MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
MODULE_LICENSE("GPL");
static u32 wmediumd_portid;
static int radios = 2;
module_param(radios, int, 0444);
MODULE_PARM_DESC(radios, "Number of simulated radios");
static int channels = 1;
module_param(channels, int, 0444);
MODULE_PARM_DESC(channels, "Number of concurrent channels");
/**
* enum hwsim_regtest - the type of regulatory tests we offer
*
* These are the different values you can use for the regtest
* module parameter. This is useful to help test world roaming
* and the driver regulatory_hint() call and combinations of these.
* If you want to do specific alpha2 regulatory domain tests simply
* use the userspace regulatory request as that will be respected as
* well without the need of this module parameter. This is designed
* only for testing the driver regulatory request, world roaming
* and all possible combinations.
*
* @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
* this is the default value.
* @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
* hint, only one driver regulatory hint will be sent as such the
* secondary radios are expected to follow.
* @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
* request with all radios reporting the same regulatory domain.
* @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
* different regulatory domains requests. Expected behaviour is for
* an intersection to occur but each device will still use their
* respective regulatory requested domains. Subsequent radios will
* use the resulting intersection.
* @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
* this by using a custom beacon-capable regulatory domain for the first
* radio. All other device world roam.
* @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
* domain requests. All radios will adhere to this custom world regulatory
* domain.
* @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
* domain requests. The first radio will adhere to the first custom world
* regulatory domain, the second one to the second custom world regulatory
* domain. All other devices will world roam.
* @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain
* settings, only the first radio will send a regulatory domain request
* and use strict settings. The rest of the radios are expected to follow.
* @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
* settings. All radios will adhere to this.
* @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
* domain settings, combined with secondary driver regulatory domain
* settings. The first radio will get a strict regulatory domain setting
* using the first driver regulatory request and the second radio will use
* non-strict settings using the second driver regulatory request. All
* other devices should follow the intersection created between the
* first two.
* @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
* at least 6 radios for a complete test. We will test in this order:
* 1 - driver custom world regulatory domain
* 2 - second custom world regulatory domain
* 3 - first driver regulatory domain request
* 4 - second driver regulatory domain request
* 5 - strict regulatory domain settings using the third driver regulatory
* domain request
* 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
* regulatory requests.
*/
enum hwsim_regtest {
HWSIM_REGTEST_DISABLED = 0,
HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1,
HWSIM_REGTEST_DRIVER_REG_ALL = 2,
HWSIM_REGTEST_DIFF_COUNTRY = 3,
HWSIM_REGTEST_WORLD_ROAM = 4,
HWSIM_REGTEST_CUSTOM_WORLD = 5,
HWSIM_REGTEST_CUSTOM_WORLD_2 = 6,
HWSIM_REGTEST_STRICT_FOLLOW = 7,
HWSIM_REGTEST_STRICT_ALL = 8,
HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9,
HWSIM_REGTEST_ALL = 10,
};
/* Set to one of the HWSIM_REGTEST_* values above */
static int regtest = HWSIM_REGTEST_DISABLED;
module_param(regtest, int, 0444);
MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run");
static const char *hwsim_alpha2s[] = {
"FI",
"AL",
"US",
"DE",
"JP",
"AL",
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = {
.n_reg_rules = 4,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
}
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = {
.n_reg_rules = 2,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
REG_RULE(5725-10, 5850+10, 40, 0, 30,
NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS),
}
};
struct hwsim_vif_priv {
u32 magic;
u8 bssid[ETH_ALEN];
bool assoc;
u16 aid;
};
#define HWSIM_VIF_MAGIC 0x69537748
static inline void hwsim_check_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
WARN(vp->magic != HWSIM_VIF_MAGIC,
"Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
vif, vp->magic, vif->addr, vif->type, vif->p2p);
}
static inline void hwsim_set_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
vp->magic = HWSIM_VIF_MAGIC;
}
static inline void hwsim_clear_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
vp->magic = 0;
}
struct hwsim_sta_priv {
u32 magic;
};
#define HWSIM_STA_MAGIC 0x6d537749
static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
WARN_ON(sp->magic != HWSIM_STA_MAGIC);
}
static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
sp->magic = HWSIM_STA_MAGIC;
}
static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
sp->magic = 0;
}
struct hwsim_chanctx_priv {
u32 magic;
};
#define HWSIM_CHANCTX_MAGIC 0x6d53774a
static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC);
}
static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
cp->magic = HWSIM_CHANCTX_MAGIC;
}
static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
cp->magic = 0;
}
static struct class *hwsim_class;
static struct net_device *hwsim_mon; /* global monitor netdev */
#define CHAN2G(_freq) { \
.band = IEEE80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_freq), \
.max_power = 20, \
}
#define CHAN5G(_freq) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_freq), \
.max_power = 20, \
}
static const struct ieee80211_channel hwsim_channels_2ghz[] = {
CHAN2G(2412), /* Channel 1 */
CHAN2G(2417), /* Channel 2 */
CHAN2G(2422), /* Channel 3 */
CHAN2G(2427), /* Channel 4 */
CHAN2G(2432), /* Channel 5 */
CHAN2G(2437), /* Channel 6 */
CHAN2G(2442), /* Channel 7 */
CHAN2G(2447), /* Channel 8 */
CHAN2G(2452), /* Channel 9 */
CHAN2G(2457), /* Channel 10 */
CHAN2G(2462), /* Channel 11 */
CHAN2G(2467), /* Channel 12 */
CHAN2G(2472), /* Channel 13 */
CHAN2G(2484), /* Channel 14 */
};
static const struct ieee80211_channel hwsim_channels_5ghz[] = {
CHAN5G(5180), /* Channel 36 */
CHAN5G(5200), /* Channel 40 */
CHAN5G(5220), /* Channel 44 */
CHAN5G(5240), /* Channel 48 */
CHAN5G(5260), /* Channel 52 */
CHAN5G(5280), /* Channel 56 */
CHAN5G(5300), /* Channel 60 */
CHAN5G(5320), /* Channel 64 */
CHAN5G(5500), /* Channel 100 */
CHAN5G(5520), /* Channel 104 */
CHAN5G(5540), /* Channel 108 */
CHAN5G(5560), /* Channel 112 */
CHAN5G(5580), /* Channel 116 */
CHAN5G(5600), /* Channel 120 */
CHAN5G(5620), /* Channel 124 */
CHAN5G(5640), /* Channel 128 */
CHAN5G(5660), /* Channel 132 */
CHAN5G(5680), /* Channel 136 */
CHAN5G(5700), /* Channel 140 */
CHAN5G(5745), /* Channel 149 */
CHAN5G(5765), /* Channel 153 */
CHAN5G(5785), /* Channel 157 */
CHAN5G(5805), /* Channel 161 */
CHAN5G(5825), /* Channel 165 */
};
static const struct ieee80211_rate hwsim_rates[] = {
{ .bitrate = 10 },
{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60 },
{ .bitrate = 90 },
{ .bitrate = 120 },
{ .bitrate = 180 },
{ .bitrate = 240 },
{ .bitrate = 360 },
{ .bitrate = 480 },
{ .bitrate = 540 }
};
static spinlock_t hwsim_radio_lock;
static struct list_head hwsim_radios;
struct mac80211_hwsim_data {
struct list_head list;
struct ieee80211_hw *hw;
struct device *dev;
struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)];
struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)];
struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)];
struct mac_address addresses[2];
struct ieee80211_channel *tmp_chan;
struct delayed_work roc_done;
struct delayed_work hw_scan;
struct cfg80211_scan_request *hw_scan_request;
struct ieee80211_vif *hw_scan_vif;
int scan_chan_idx;
struct ieee80211_channel *channel;
unsigned long beacon_int; /* in jiffies unit */
unsigned int rx_filter;
bool started, idle, scanning;
struct mutex mutex;
struct timer_list beacon_timer;
enum ps_mode {
PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL
} ps;
bool ps_poll_pending;
struct dentry *debugfs;
struct dentry *debugfs_ps;
struct sk_buff_head pending; /* packets pending */
/*
* Only radios in the same group can communicate together (the
* channel has to match too). Each bit represents a group. A
* radio can be in more then one group.
*/
u64 group;
struct dentry *debugfs_group;
int power_level;
/* difference between this hw's clock and the real clock, in usecs */
u64 tsf_offset;
};
struct hwsim_radiotap_hdr {
struct ieee80211_radiotap_header hdr;
__le64 rt_tsft;
u8 rt_flags;
u8 rt_rate;
__le16 rt_channel;
__le16 rt_chbitmask;
} __packed;
/* MAC80211_HWSIM netlinf family */
static struct genl_family hwsim_genl_family = {
.id = GENL_ID_GENERATE,
.hdrsize = 0,
.name = "MAC80211_HWSIM",
.version = 1,
.maxattr = HWSIM_ATTR_MAX,
};
/* MAC80211_HWSIM netlink policy */
static struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = {
[HWSIM_ATTR_ADDR_RECEIVER] = { .type = NLA_UNSPEC,
.len = 6*sizeof(u8) },
[HWSIM_ATTR_ADDR_TRANSMITTER] = { .type = NLA_UNSPEC,
.len = 6*sizeof(u8) },
[HWSIM_ATTR_FRAME] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_DATA_LEN },
[HWSIM_ATTR_FLAGS] = { .type = NLA_U32 },
[HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 },
[HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 },
[HWSIM_ATTR_TX_INFO] = { .type = NLA_UNSPEC,
.len = IEEE80211_TX_MAX_RATES*sizeof(
struct hwsim_tx_rate)},
[HWSIM_ATTR_COOKIE] = { .type = NLA_U64 },
};
static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb,
struct net_device *dev)
{
/* TODO: allow packet injection */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data)
{
struct timeval tv = ktime_to_timeval(ktime_get_real());
u64 now = tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
return cpu_to_le64(now + data->tsf_offset);
}
static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = hw->priv;
return le64_to_cpu(__mac80211_hwsim_get_tsf(data));
}
static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u64 tsf)
{
struct mac80211_hwsim_data *data = hw->priv;
struct timeval tv = ktime_to_timeval(ktime_get_real());
u64 now = tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
data->tsf_offset = tsf - now;
}
static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw,
struct sk_buff *tx_skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv;
struct sk_buff *skb;
struct hwsim_radiotap_hdr *hdr;
u16 flags;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb);
struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
if (!netif_running(hwsim_mon))
return;
skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC);
if (skb == NULL)
return;
hdr = (struct hwsim_radiotap_hdr *) skb_push(skb, sizeof(*hdr));
hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
hdr->hdr.it_pad = 0;
hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_RATE) |
(1 << IEEE80211_RADIOTAP_TSFT) |
(1 << IEEE80211_RADIOTAP_CHANNEL));
hdr->rt_tsft = __mac80211_hwsim_get_tsf(data);
hdr->rt_flags = 0;
hdr->rt_rate = txrate->bitrate / 5;
hdr->rt_channel = cpu_to_le16(chan->center_freq);
flags = IEEE80211_CHAN_2GHZ;
if (txrate->flags & IEEE80211_RATE_ERP_G)
flags |= IEEE80211_CHAN_OFDM;
else
flags |= IEEE80211_CHAN_CCK;
hdr->rt_chbitmask = cpu_to_le16(flags);
skb->dev = hwsim_mon;
skb_set_mac_header(skb, 0);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan,
const u8 *addr)
{
struct sk_buff *skb;
struct hwsim_radiotap_hdr *hdr;
u16 flags;
struct ieee80211_hdr *hdr11;
if (!netif_running(hwsim_mon))
return;
skb = dev_alloc_skb(100);
if (skb == NULL)
return;
hdr = (struct hwsim_radiotap_hdr *) skb_put(skb, sizeof(*hdr));
hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
hdr->hdr.it_pad = 0;
hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_CHANNEL));
hdr->rt_flags = 0;
hdr->rt_rate = 0;
hdr->rt_channel = cpu_to_le16(chan->center_freq);
flags = IEEE80211_CHAN_2GHZ;
hdr->rt_chbitmask = cpu_to_le16(flags);
hdr11 = (struct ieee80211_hdr *) skb_put(skb, 10);
hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_ACK);
hdr11->duration_id = cpu_to_le16(0);
memcpy(hdr11->addr1, addr, ETH_ALEN);
skb->dev = hwsim_mon;
skb_set_mac_header(skb, 0);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data,
struct sk_buff *skb)
{
switch (data->ps) {
case PS_DISABLED:
return true;
case PS_ENABLED:
return false;
case PS_AUTO_POLL:
/* TODO: accept (some) Beacons by default and other frames only
* if pending PS-Poll has been sent */
return true;
case PS_MANUAL_POLL:
/* Allow unicast frames to own address if there is a pending
* PS-Poll */
if (data->ps_poll_pending &&
memcmp(data->hw->wiphy->perm_addr, skb->data + 4,
ETH_ALEN) == 0) {
data->ps_poll_pending = false;
return true;
}
return false;
}
return true;
}
struct mac80211_hwsim_addr_match_data {
bool ret;
const u8 *addr;
};
static void mac80211_hwsim_addr_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_addr_match_data *md = data;
if (memcmp(mac, md->addr, ETH_ALEN) == 0)
md->ret = true;
}
static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data,
const u8 *addr)
{
struct mac80211_hwsim_addr_match_data md;
if (memcmp(addr, data->hw->wiphy->perm_addr, ETH_ALEN) == 0)
return true;
md.ret = false;
md.addr = addr;
ieee80211_iterate_active_interfaces_atomic(data->hw,
IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_addr_iter,
&md);
return md.ret;
}
static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw,
struct sk_buff *my_skb,
int dst_portid)
{
struct sk_buff *skb;
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb);
void *msg_head;
unsigned int hwsim_flags = 0;
int i;
struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES];
if (data->ps != PS_DISABLED)
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
/* If the queue contains MAX_QUEUE skb's drop some */
if (skb_queue_len(&data->pending) >= MAX_QUEUE) {
/* Droping until WARN_QUEUE level */
while (skb_queue_len(&data->pending) >= WARN_QUEUE)
skb_dequeue(&data->pending);
}
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (skb == NULL)
goto nla_put_failure;
msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
HWSIM_CMD_FRAME);
if (msg_head == NULL) {
printk(KERN_DEBUG "mac80211_hwsim: problem with msg_head\n");
goto nla_put_failure;
}
if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
sizeof(struct mac_address), data->addresses[1].addr))
goto nla_put_failure;
/* We get the skb->data */
if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data))
goto nla_put_failure;
/* We get the flags for this transmission, and we translate them to
wmediumd flags */
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS;
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
hwsim_flags |= HWSIM_TX_CTL_NO_ACK;
if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags))
goto nla_put_failure;
/* We get the tx control (rate and retries) info*/
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
tx_attempts[i].idx = info->status.rates[i].idx;
tx_attempts[i].count = info->status.rates[i].count;
}
if (nla_put(skb, HWSIM_ATTR_TX_INFO,
sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES,
tx_attempts))
goto nla_put_failure;
/* We create a cookie to identify this skb */
if (nla_put_u64(skb, HWSIM_ATTR_COOKIE, (unsigned long) my_skb))
goto nla_put_failure;
genlmsg_end(skb, msg_head);
genlmsg_unicast(&init_net, skb, dst_portid);
/* Enqueue the packet */
skb_queue_tail(&data->pending, my_skb);
return;
nla_put_failure:
printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
}
static bool hwsim_chans_compat(struct ieee80211_channel *c1,
struct ieee80211_channel *c2)
{
if (!c1 || !c2)
return false;
return c1->center_freq == c2->center_freq;
}
struct tx_iter_data {
struct ieee80211_channel *channel;
bool receive;
};
static void mac80211_hwsim_tx_iter(void *_data, u8 *addr,
struct ieee80211_vif *vif)
{
struct tx_iter_data *data = _data;
if (!vif->chanctx_conf)
return;
if (!hwsim_chans_compat(data->channel,
rcu_dereference(vif->chanctx_conf)->def.chan))
return;
data->receive = true;
}
static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv, *data2;
bool ack = false;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_rx_status rx_status;
struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
memset(&rx_status, 0, sizeof(rx_status));
rx_status.flag |= RX_FLAG_MACTIME_START;
rx_status.freq = chan->center_freq;
rx_status.band = chan->band;
rx_status.rate_idx = info->control.rates[0].idx;
if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
rx_status.flag |= RX_FLAG_HT;
if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
rx_status.flag |= RX_FLAG_40MHZ;
if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
rx_status.flag |= RX_FLAG_SHORT_GI;
/* TODO: simulate real signal strength (and optional packet loss) */
rx_status.signal = data->power_level - 50;
if (data->ps != PS_DISABLED)
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
/* release the skb's source info */
skb_orphan(skb);
skb_dst_drop(skb);
skb->mark = 0;
secpath_reset(skb);
nf_reset(skb);
/* Copy skb to all enabled radios that are on the current frequency */
spin_lock(&hwsim_radio_lock);
list_for_each_entry(data2, &hwsim_radios, list) {
struct sk_buff *nskb;
struct ieee80211_mgmt *mgmt;
struct tx_iter_data tx_iter_data = {
.receive = false,
.channel = chan,
};
if (data == data2)
continue;
if (!data2->started || (data2->idle && !data2->tmp_chan) ||
!hwsim_ps_rx_ok(data2, skb))
continue;
if (!(data->group & data2->group))
continue;
if (!hwsim_chans_compat(chan, data2->tmp_chan) &&
!hwsim_chans_compat(chan, data2->channel)) {
ieee80211_iterate_active_interfaces_atomic(
data2->hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_tx_iter, &tx_iter_data);
if (!tx_iter_data.receive)
continue;
}
/*
* reserve some space for our vendor and the normal
* radiotap header, since we're copying anyway
*/
nskb = skb_copy_expand(skb, 64, 0, GFP_ATOMIC);
if (nskb == NULL)
continue;
if (mac80211_hwsim_addr_match(data2, hdr->addr1))
ack = true;
/* set bcn timestamp relative to receiver mactime */
rx_status.mactime =
le64_to_cpu(__mac80211_hwsim_get_tsf(data2));
mgmt = (struct ieee80211_mgmt *) nskb->data;
if (ieee80211_is_beacon(mgmt->frame_control) ||
ieee80211_is_probe_resp(mgmt->frame_control))
mgmt->u.beacon.timestamp = cpu_to_le64(
rx_status.mactime +
(data->tsf_offset - data2->tsf_offset) +
24 * 8 * 10 / txrate->bitrate);
#if 0
/*
* Don't enable this code by default as the OUI 00:00:00
* is registered to Xerox so we shouldn't use it here, it
* might find its way into pcap files.
* Note that this code requires the headroom in the SKB
* that was allocated earlier.
*/
rx_status.vendor_radiotap_oui[0] = 0x00;
rx_status.vendor_radiotap_oui[1] = 0x00;
rx_status.vendor_radiotap_oui[2] = 0x00;
rx_status.vendor_radiotap_subns = 127;
/*
* Radiotap vendor namespaces can (and should) also be
* split into fields by using the standard radiotap
* presence bitmap mechanism. Use just BIT(0) here for
* the presence bitmap.
*/
rx_status.vendor_radiotap_bitmap = BIT(0);
/* We have 8 bytes of (dummy) data */
rx_status.vendor_radiotap_len = 8;
/* For testing, also require it to be aligned */
rx_status.vendor_radiotap_align = 8;
/* push the data */
memcpy(skb_push(nskb, 8), "ABCDEFGH", 8);
#endif
memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status));
ieee80211_rx_irqsafe(data2->hw, nskb);
}
spin_unlock(&hwsim_radio_lock);
return ack;
}
static void mac80211_hwsim_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_channel *channel;
bool ack;
u32 _portid;
if (WARN_ON(skb->len < 10)) {
/* Should not happen; just a sanity check for addr1 use */
dev_kfree_skb(skb);
return;
}
if (channels == 1) {
channel = data->channel;
} else if (txi->hw_queue == 4) {
channel = data->tmp_chan;
} else {
chanctx_conf = rcu_dereference(txi->control.vif->chanctx_conf);
if (chanctx_conf)
channel = chanctx_conf->def.chan;
else
channel = NULL;
}
if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) {
dev_kfree_skb(skb);
return;
}
if (data->idle && !data->tmp_chan) {
wiphy_debug(hw->wiphy, "Trying to TX when idle - reject\n");
dev_kfree_skb(skb);
return;
}
if (txi->control.vif)
hwsim_check_magic(txi->control.vif);
if (control->sta)
hwsim_check_sta_magic(control->sta);
txi->rate_driver_data[0] = channel;
mac80211_hwsim_monitor_rx(hw, skb, channel);
/* wmediumd mode check */
_portid = ACCESS_ONCE(wmediumd_portid);
if (_portid)
return mac80211_hwsim_tx_frame_nl(hw, skb, _portid);
/* NO wmediumd detected, perfect medium simulation */
ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel);
if (ack && skb->len >= 16) {
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
mac80211_hwsim_monitor_ack(channel, hdr->addr2);
}
ieee80211_tx_info_clear_status(txi);
/* frame was transmitted at most favorable rate at first attempt */
txi->control.rates[0].count = 1;
txi->control.rates[1].idx = -1;
if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack)
txi->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
}
static int mac80211_hwsim_start(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *data = hw->priv;
wiphy_debug(hw->wiphy, "%s\n", __func__);
data->started = true;
return 0;
}
static void mac80211_hwsim_stop(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *data = hw->priv;
data->started = false;
del_timer(&data->beacon_timer);
wiphy_debug(hw->wiphy, "%s\n", __func__);
}
static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
vif->addr);
hwsim_set_magic(vif);
vif->cab_queue = 0;
vif->hw_queue[IEEE80211_AC_VO] = 0;
vif->hw_queue[IEEE80211_AC_VI] = 1;
vif->hw_queue[IEEE80211_AC_BE] = 2;
vif->hw_queue[IEEE80211_AC_BK] = 3;
return 0;
}
static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum nl80211_iftype newtype,
bool newp2p)
{
newtype = ieee80211_iftype_p2p(newtype, newp2p);
wiphy_debug(hw->wiphy,
"%s (old type=%d, new type=%d, mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
newtype, vif->addr);
hwsim_check_magic(vif);
return 0;
}
static void mac80211_hwsim_remove_interface(
struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
vif->addr);
hwsim_check_magic(vif);
hwsim_clear_magic(vif);
}
static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan)
{
u32 _pid = ACCESS_ONCE(wmediumd_portid);
mac80211_hwsim_monitor_rx(hw, skb, chan);
if (_pid)
return mac80211_hwsim_tx_frame_nl(hw, skb, _pid);
mac80211_hwsim_tx_frame_no_nl(hw, skb, chan);
dev_kfree_skb(skb);
}
static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac,
struct ieee80211_vif *vif)
{
struct ieee80211_hw *hw = arg;
struct sk_buff *skb;
hwsim_check_magic(vif);
if (vif->type != NL80211_IFTYPE_AP &&
vif->type != NL80211_IFTYPE_MESH_POINT &&
vif->type != NL80211_IFTYPE_ADHOC)
return;
skb = ieee80211_beacon_get(hw, vif);
if (skb == NULL)
return;
mac80211_hwsim_tx_frame(hw, skb,
rcu_dereference(vif->chanctx_conf)->def.chan);
}
static void mac80211_hwsim_beacon(unsigned long arg)
{
struct ieee80211_hw *hw = (struct ieee80211_hw *) arg;
struct mac80211_hwsim_data *data = hw->priv;
if (!data->started)
return;
ieee80211_iterate_active_interfaces_atomic(
hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_beacon_tx, hw);
data->beacon_timer.expires = jiffies + data->beacon_int;
add_timer(&data->beacon_timer);
}
static const char *hwsim_chantypes[] = {
[NL80211_CHAN_NO_HT] = "noht",
[NL80211_CHAN_HT20] = "ht20",
[NL80211_CHAN_HT40MINUS] = "ht40-",
[NL80211_CHAN_HT40PLUS] = "ht40+",
};
static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed)
{
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = {
[IEEE80211_SMPS_AUTOMATIC] = "auto",
[IEEE80211_SMPS_OFF] = "off",
[IEEE80211_SMPS_STATIC] = "static",
[IEEE80211_SMPS_DYNAMIC] = "dynamic",
};
wiphy_debug(hw->wiphy,
"%s (freq=%d/%s idle=%d ps=%d smps=%s)\n",
__func__,
conf->channel ? conf->channel->center_freq : 0,
hwsim_chantypes[conf->channel_type],
!!(conf->flags & IEEE80211_CONF_IDLE),
!!(conf->flags & IEEE80211_CONF_PS),
smps_modes[conf->smps_mode]);
data->idle = !!(conf->flags & IEEE80211_CONF_IDLE);
data->channel = conf->channel;
WARN_ON(data->channel && channels > 1);
data->power_level = conf->power_level;
if (!data->started || !data->beacon_int)
del_timer(&data->beacon_timer);
else
mod_timer(&data->beacon_timer, jiffies + data->beacon_int);
return 0;
}
static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,u64 multicast)
{
struct mac80211_hwsim_data *data = hw->priv;
wiphy_debug(hw->wiphy, "%s\n", __func__);
data->rx_filter = 0;
if (*total_flags & FIF_PROMISC_IN_BSS)
data->rx_filter |= FIF_PROMISC_IN_BSS;
if (*total_flags & FIF_ALLMULTI)
data->rx_filter |= FIF_ALLMULTI;
*total_flags = data->rx_filter;
}
static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct mac80211_hwsim_data *data = hw->priv;
hwsim_check_magic(vif);
wiphy_debug(hw->wiphy, "%s(changed=0x%x)\n", __func__, changed);
if (changed & BSS_CHANGED_BSSID) {
wiphy_debug(hw->wiphy, "%s: BSSID changed: %pM\n",
__func__, info->bssid);
memcpy(vp->bssid, info->bssid, ETH_ALEN);
}
if (changed & BSS_CHANGED_ASSOC) {
wiphy_debug(hw->wiphy, " ASSOC: assoc=%d aid=%d\n",
info->assoc, info->aid);
vp->assoc = info->assoc;
vp->aid = info->aid;
}
if (changed & BSS_CHANGED_BEACON_INT) {
wiphy_debug(hw->wiphy, " BCNINT: %d\n", info->beacon_int);
data->beacon_int = 1024 * info->beacon_int / 1000 * HZ / 1000;
if (WARN_ON(!data->beacon_int))
data->beacon_int = 1;
if (data->started)
mod_timer(&data->beacon_timer,
jiffies + data->beacon_int);
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
wiphy_debug(hw->wiphy, " ERP_CTS_PROT: %d\n",
info->use_cts_prot);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
wiphy_debug(hw->wiphy, " ERP_PREAMBLE: %d\n",
info->use_short_preamble);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
wiphy_debug(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot);
}
if (changed & BSS_CHANGED_HT) {
wiphy_debug(hw->wiphy, " HT: op_mode=0x%x\n",
info->ht_operation_mode);
}
if (changed & BSS_CHANGED_BASIC_RATES) {
wiphy_debug(hw->wiphy, " BASIC_RATES: 0x%llx\n",
(unsigned long long) info->basic_rates);
}
if (changed & BSS_CHANGED_TXPOWER)
wiphy_debug(hw->wiphy, " TX Power: %d dBm\n", info->txpower);
}
static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
hwsim_set_sta_magic(sta);
return 0;
}
static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
hwsim_clear_sta_magic(sta);
return 0;
}
static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
switch (cmd) {
case STA_NOTIFY_SLEEP:
case STA_NOTIFY_AWAKE:
/* TODO: make good use of these flags */
break;
default:
WARN(1, "Invalid sta notify: %d\n", cmd);
break;
}
}
static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
bool set)
{
hwsim_check_sta_magic(sta);
return 0;
}
static int mac80211_hwsim_conf_tx(
struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
wiphy_debug(hw->wiphy,
"%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
__func__, queue,
params->txop, params->cw_min,
params->cw_max, params->aifs);
return 0;
}
static int mac80211_hwsim_get_survey(
struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct ieee80211_conf *conf = &hw->conf;
wiphy_debug(hw->wiphy, "%s (idx=%d)\n", __func__, idx);
if (idx != 0)
return -ENOENT;
/* Current channel */
survey->channel = conf->channel;
/*
* Magically conjured noise level --- this is only ok for simulated hardware.
*
* A real driver which cannot determine the real channel noise MUST NOT
* report any noise, especially not a magically conjured one :-)
*/
survey->filled = SURVEY_INFO_NOISE_DBM;
survey->noise = -92;
return 0;
}
#ifdef CONFIG_NL80211_TESTMODE
/*
* This section contains example code for using netlink
* attributes with the testmode command in nl80211.
*/
/* These enums need to be kept in sync with userspace */
enum hwsim_testmode_attr {
__HWSIM_TM_ATTR_INVALID = 0,
HWSIM_TM_ATTR_CMD = 1,
HWSIM_TM_ATTR_PS = 2,
/* keep last */
__HWSIM_TM_ATTR_AFTER_LAST,
HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1
};
enum hwsim_testmode_cmd {
HWSIM_TM_CMD_SET_PS = 0,
HWSIM_TM_CMD_GET_PS = 1,
HWSIM_TM_CMD_STOP_QUEUES = 2,
HWSIM_TM_CMD_WAKE_QUEUES = 3,
};
static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = {
[HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 },
[HWSIM_TM_ATTR_PS] = { .type = NLA_U32 },
};
static int hwsim_fops_ps_write(void *dat, u64 val);
static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw,
void *data, int len)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1];
struct sk_buff *skb;
int err, ps;
err = nla_parse(tb, HWSIM_TM_ATTR_MAX, data, len,
hwsim_testmode_policy);
if (err)
return err;
if (!tb[HWSIM_TM_ATTR_CMD])
return -EINVAL;
switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) {
case HWSIM_TM_CMD_SET_PS:
if (!tb[HWSIM_TM_ATTR_PS])
return -EINVAL;
ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]);
return hwsim_fops_ps_write(hwsim, ps);
case HWSIM_TM_CMD_GET_PS:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy,
nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case HWSIM_TM_CMD_STOP_QUEUES:
ieee80211_stop_queues(hw);
return 0;
case HWSIM_TM_CMD_WAKE_QUEUES:
ieee80211_wake_queues(hw);
return 0;
default:
return -EOPNOTSUPP;
}
nla_put_failure:
kfree_skb(skb);
return -ENOBUFS;
}
#endif
static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta, u16 tid, u16 *ssn,
u8 buf_size)
{
switch (action) {
case IEEE80211_AMPDU_TX_START:
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP:
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
break;
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static void mac80211_hwsim_flush(struct ieee80211_hw *hw, bool drop)
{
/* Not implemented, queues only on kernel side */
}
static void hw_scan_work(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, hw_scan.work);
struct cfg80211_scan_request *req = hwsim->hw_scan_request;
int dwell, i;
mutex_lock(&hwsim->mutex);
if (hwsim->scan_chan_idx >= req->n_channels) {
wiphy_debug(hwsim->hw->wiphy, "hw scan complete\n");
ieee80211_scan_completed(hwsim->hw, false);
hwsim->hw_scan_request = NULL;
hwsim->hw_scan_vif = NULL;
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
return;
}
wiphy_debug(hwsim->hw->wiphy, "hw scan %d MHz\n",
req->channels[hwsim->scan_chan_idx]->center_freq);
hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx];
if (hwsim->tmp_chan->flags & IEEE80211_CHAN_PASSIVE_SCAN ||
!req->n_ssids) {
dwell = 120;
} else {
dwell = 30;
/* send probes */
for (i = 0; i < req->n_ssids; i++) {
struct sk_buff *probe;
probe = ieee80211_probereq_get(hwsim->hw,
hwsim->hw_scan_vif,
req->ssids[i].ssid,
req->ssids[i].ssid_len,
req->ie, req->ie_len);
if (!probe)
continue;
local_bh_disable();
mac80211_hwsim_tx_frame(hwsim->hw, probe,
hwsim->tmp_chan);
local_bh_enable();
}
}
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan,
msecs_to_jiffies(dwell));
hwsim->scan_chan_idx++;
mutex_unlock(&hwsim->mutex);
}
static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_scan_request *req)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
mutex_unlock(&hwsim->mutex);
return -EBUSY;
}
hwsim->hw_scan_request = req;
hwsim->hw_scan_vif = vif;
hwsim->scan_chan_idx = 0;
mutex_unlock(&hwsim->mutex);
wiphy_debug(hw->wiphy, "hwsim hw_scan request\n");
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0);
return 0;
}
static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
wiphy_debug(hw->wiphy, "hwsim cancel_hw_scan\n");
cancel_delayed_work_sync(&hwsim->hw_scan);
mutex_lock(&hwsim->mutex);
ieee80211_scan_completed(hwsim->hw, true);
hwsim->tmp_chan = NULL;
hwsim->hw_scan_request = NULL;
hwsim->hw_scan_vif = NULL;
mutex_unlock(&hwsim->mutex);
}
static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
if (hwsim->scanning) {
printk(KERN_DEBUG "two hwsim sw_scans detected!\n");
goto out;
}
printk(KERN_DEBUG "hwsim sw_scan request, prepping stuff\n");
hwsim->scanning = true;
out:
mutex_unlock(&hwsim->mutex);
}
static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
printk(KERN_DEBUG "hwsim sw_scan_complete\n");
hwsim->scanning = false;
mutex_unlock(&hwsim->mutex);
}
static void hw_roc_done(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, roc_done.work);
mutex_lock(&hwsim->mutex);
ieee80211_remain_on_channel_expired(hwsim->hw);
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
wiphy_debug(hwsim->hw->wiphy, "hwsim ROC expired\n");
}
static int mac80211_hwsim_roc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
mutex_unlock(&hwsim->mutex);
return -EBUSY;
}
hwsim->tmp_chan = chan;
mutex_unlock(&hwsim->mutex);
wiphy_debug(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n",
chan->center_freq, duration);
ieee80211_ready_on_channel(hw);
ieee80211_queue_delayed_work(hw, &hwsim->roc_done,
msecs_to_jiffies(duration));
return 0;
}
static int mac80211_hwsim_croc(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
cancel_delayed_work_sync(&hwsim->roc_done);
mutex_lock(&hwsim->mutex);
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
wiphy_debug(hw->wiphy, "hwsim ROC canceled\n");
return 0;
}
static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_set_chanctx_magic(ctx);
wiphy_debug(hw->wiphy,
"add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
return 0;
}
static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
wiphy_debug(hw->wiphy,
"remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
hwsim_check_chanctx_magic(ctx);
hwsim_clear_chanctx_magic(ctx);
}
static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx,
u32 changed)
{
hwsim_check_chanctx_magic(ctx);
wiphy_debug(hw->wiphy,
"change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
}
static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_check_magic(vif);
hwsim_check_chanctx_magic(ctx);
return 0;
}
static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_check_magic(vif);
hwsim_check_chanctx_magic(ctx);
}
static struct ieee80211_ops mac80211_hwsim_ops =
{
.tx = mac80211_hwsim_tx,
.start = mac80211_hwsim_start,
.stop = mac80211_hwsim_stop,
.add_interface = mac80211_hwsim_add_interface,
.change_interface = mac80211_hwsim_change_interface,
.remove_interface = mac80211_hwsim_remove_interface,
.config = mac80211_hwsim_config,
.configure_filter = mac80211_hwsim_configure_filter,
.bss_info_changed = mac80211_hwsim_bss_info_changed,
.sta_add = mac80211_hwsim_sta_add,
.sta_remove = mac80211_hwsim_sta_remove,
.sta_notify = mac80211_hwsim_sta_notify,
.set_tim = mac80211_hwsim_set_tim,
.conf_tx = mac80211_hwsim_conf_tx,
.get_survey = mac80211_hwsim_get_survey,
CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd)
.ampdu_action = mac80211_hwsim_ampdu_action,
.sw_scan_start = mac80211_hwsim_sw_scan,
.sw_scan_complete = mac80211_hwsim_sw_scan_complete,
.flush = mac80211_hwsim_flush,
.get_tsf = mac80211_hwsim_get_tsf,
.set_tsf = mac80211_hwsim_set_tsf,
};
static void mac80211_hwsim_free(void)
{
struct list_head tmplist, *i, *tmp;
struct mac80211_hwsim_data *data, *tmpdata;
INIT_LIST_HEAD(&tmplist);
spin_lock_bh(&hwsim_radio_lock);
list_for_each_safe(i, tmp, &hwsim_radios)
list_move(i, &tmplist);
spin_unlock_bh(&hwsim_radio_lock);
list_for_each_entry_safe(data, tmpdata, &tmplist, list) {
debugfs_remove(data->debugfs_group);
debugfs_remove(data->debugfs_ps);
debugfs_remove(data->debugfs);
ieee80211_unregister_hw(data->hw);
device_unregister(data->dev);
ieee80211_free_hw(data->hw);
}
class_destroy(hwsim_class);
}
static struct device_driver mac80211_hwsim_driver = {
.name = "mac80211_hwsim"
};
static const struct net_device_ops hwsim_netdev_ops = {
.ndo_start_xmit = hwsim_mon_xmit,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static void hwsim_mon_setup(struct net_device *dev)
{
dev->netdev_ops = &hwsim_netdev_ops;
dev->destructor = free_netdev;
ether_setup(dev);
dev->tx_queue_len = 0;
dev->type = ARPHRD_IEEE80211_RADIOTAP;
memset(dev->dev_addr, 0, ETH_ALEN);
dev->dev_addr[0] = 0x12;
}
static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct sk_buff *skb;
struct ieee80211_pspoll *pspoll;
if (!vp->assoc)
return;
wiphy_debug(data->hw->wiphy,
"%s: send PS-Poll to %pM for aid %d\n",
__func__, vp->bssid, vp->aid);
skb = dev_alloc_skb(sizeof(*pspoll));
if (!skb)
return;
pspoll = (void *) skb_put(skb, sizeof(*pspoll));
pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_PSPOLL |
IEEE80211_FCTL_PM);
pspoll->aid = cpu_to_le16(0xc000 | vp->aid);
memcpy(pspoll->bssid, vp->bssid, ETH_ALEN);
memcpy(pspoll->ta, mac, ETH_ALEN);
rcu_read_lock();
mac80211_hwsim_tx_frame(data->hw, skb,
rcu_dereference(vif->chanctx_conf)->def.chan);
rcu_read_unlock();
}
static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac,
struct ieee80211_vif *vif, int ps)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
if (!vp->assoc)
return;
wiphy_debug(data->hw->wiphy,
"%s: send data::nullfunc to %pM ps=%d\n",
__func__, vp->bssid, ps);
skb = dev_alloc_skb(sizeof(*hdr));
if (!skb)
return;
hdr = (void *) skb_put(skb, sizeof(*hdr) - ETH_ALEN);
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_NULLFUNC |
(ps ? IEEE80211_FCTL_PM : 0));
hdr->duration_id = cpu_to_le16(0);
memcpy(hdr->addr1, vp->bssid, ETH_ALEN);
memcpy(hdr->addr2, mac, ETH_ALEN);
memcpy(hdr->addr3, vp->bssid, ETH_ALEN);
rcu_read_lock();
mac80211_hwsim_tx_frame(data->hw, skb,
rcu_dereference(vif->chanctx_conf)->def.chan);
rcu_read_unlock();
}
static void hwsim_send_nullfunc_ps(void *dat, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
hwsim_send_nullfunc(data, mac, vif, 1);
}
static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
hwsim_send_nullfunc(data, mac, vif, 0);
}
static int hwsim_fops_ps_read(void *dat, u64 *val)
{
struct mac80211_hwsim_data *data = dat;
*val = data->ps;
return 0;
}
static int hwsim_fops_ps_write(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
enum ps_mode old_ps;
if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL &&
val != PS_MANUAL_POLL)
return -EINVAL;
old_ps = data->ps;
data->ps = val;
if (val == PS_MANUAL_POLL) {
ieee80211_iterate_active_interfaces(data->hw,
IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_ps_poll, data);
data->ps_poll_pending = true;
} else if (old_ps == PS_DISABLED && val != PS_DISABLED) {
ieee80211_iterate_active_interfaces(data->hw,
IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_nullfunc_ps,
data);
} else if (old_ps != PS_DISABLED && val == PS_DISABLED) {
ieee80211_iterate_active_interfaces(data->hw,
IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_nullfunc_no_ps,
data);
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write,
"%llu\n");
static int hwsim_fops_group_read(void *dat, u64 *val)
{
struct mac80211_hwsim_data *data = dat;
*val = data->group;
return 0;
}
static int hwsim_fops_group_write(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
data->group = val;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_group,
hwsim_fops_group_read, hwsim_fops_group_write,
"%llx\n");
static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr(
struct mac_address *addr)
{
struct mac80211_hwsim_data *data;
bool _found = false;
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry(data, &hwsim_radios, list) {
if (memcmp(data->addresses[1].addr, addr,
sizeof(struct mac_address)) == 0) {
_found = true;
break;
}
}
spin_unlock_bh(&hwsim_radio_lock);
if (!_found)
return NULL;
return data;
}
static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2,
struct genl_info *info)
{
struct ieee80211_hdr *hdr;
struct mac80211_hwsim_data *data2;
struct ieee80211_tx_info *txi;
struct hwsim_tx_rate *tx_attempts;
unsigned long ret_skb_ptr;
struct sk_buff *skb, *tmp;
struct mac_address *src;
unsigned int hwsim_flags;
int i;
bool found = false;
if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] ||
!info->attrs[HWSIM_ATTR_FLAGS] ||
!info->attrs[HWSIM_ATTR_COOKIE] ||
!info->attrs[HWSIM_ATTR_TX_INFO])
goto out;
src = (struct mac_address *)nla_data(
info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);
hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]);
ret_skb_ptr = nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]);
data2 = get_hwsim_data_ref_from_addr(src);
if (data2 == NULL)
goto out;
/* look for the skb matching the cookie passed back from user */
skb_queue_walk_safe(&data2->pending, skb, tmp) {
if ((unsigned long)skb == ret_skb_ptr) {
skb_unlink(skb, &data2->pending);
found = true;
break;
}
}
/* not found */
if (!found)
goto out;
/* Tx info received because the frame was broadcasted on user space,
so we get all the necessary info: tx attempts and skb control buff */
tx_attempts = (struct hwsim_tx_rate *)nla_data(
info->attrs[HWSIM_ATTR_TX_INFO]);
/* now send back TX status */
txi = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(txi);
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
txi->status.rates[i].idx = tx_attempts[i].idx;
txi->status.rates[i].count = tx_attempts[i].count;
/*txi->status.rates[i].flags = 0;*/
}
txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) &&
(hwsim_flags & HWSIM_TX_STAT_ACK)) {
if (skb->len >= 16) {
hdr = (struct ieee80211_hdr *) skb->data;
mac80211_hwsim_monitor_ack(txi->rate_driver_data[0],
hdr->addr2);
}
txi->flags |= IEEE80211_TX_STAT_ACK;
}
ieee80211_tx_status_irqsafe(data2->hw, skb);
return 0;
out:
return -EINVAL;
}
static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2,
struct genl_info *info)
{
struct mac80211_hwsim_data *data2;
struct ieee80211_rx_status rx_status;
struct mac_address *dst;
int frame_data_len;
char *frame_data;
struct sk_buff *skb = NULL;
if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] ||
!info->attrs[HWSIM_ATTR_FRAME] ||
!info->attrs[HWSIM_ATTR_RX_RATE] ||
!info->attrs[HWSIM_ATTR_SIGNAL])
goto out;
dst = (struct mac_address *)nla_data(
info->attrs[HWSIM_ATTR_ADDR_RECEIVER]);
frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]);
frame_data = (char *)nla_data(info->attrs[HWSIM_ATTR_FRAME]);
/* Allocate new skb here */
skb = alloc_skb(frame_data_len, GFP_KERNEL);
if (skb == NULL)
goto err;
if (frame_data_len <= IEEE80211_MAX_DATA_LEN) {
/* Copy the data */
memcpy(skb_put(skb, frame_data_len), frame_data,
frame_data_len);
} else
goto err;
data2 = get_hwsim_data_ref_from_addr(dst);
if (data2 == NULL)
goto out;
/* check if radio is configured properly */
if (data2->idle || !data2->started)
goto out;
/*A frame is received from user space*/
memset(&rx_status, 0, sizeof(rx_status));
rx_status.freq = data2->channel->center_freq;
rx_status.band = data2->channel->band;
rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]);
rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
ieee80211_rx_irqsafe(data2->hw, skb);
return 0;
err:
printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
goto out;
out:
dev_kfree_skb(skb);
return -EINVAL;
}
static int hwsim_register_received_nl(struct sk_buff *skb_2,
struct genl_info *info)
{
if (info == NULL)
goto out;
wmediumd_portid = info->snd_portid;
printk(KERN_DEBUG "mac80211_hwsim: received a REGISTER, "
"switching to wmediumd mode with pid %d\n", info->snd_portid);
return 0;
out:
printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
return -EINVAL;
}
/* Generic Netlink operations array */
static struct genl_ops hwsim_ops[] = {
{
.cmd = HWSIM_CMD_REGISTER,
.policy = hwsim_genl_policy,
.doit = hwsim_register_received_nl,
.flags = GENL_ADMIN_PERM,
},
{
.cmd = HWSIM_CMD_FRAME,
.policy = hwsim_genl_policy,
.doit = hwsim_cloned_frame_received_nl,
},
{
.cmd = HWSIM_CMD_TX_INFO_FRAME,
.policy = hwsim_genl_policy,
.doit = hwsim_tx_info_frame_received_nl,
},
};
static int mac80211_hwsim_netlink_notify(struct notifier_block *nb,
unsigned long state,
void *_notify)
{
struct netlink_notify *notify = _notify;
if (state != NETLINK_URELEASE)
return NOTIFY_DONE;
if (notify->portid == wmediumd_portid) {
printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink"
" socket, switching to perfect channel medium\n");
wmediumd_portid = 0;
}
return NOTIFY_DONE;
}
static struct notifier_block hwsim_netlink_notifier = {
.notifier_call = mac80211_hwsim_netlink_notify,
};
static int hwsim_init_netlink(void)
{
int rc;
/* userspace test API hasn't been adjusted for multi-channel */
if (channels > 1)
return 0;
printk(KERN_INFO "mac80211_hwsim: initializing netlink\n");
rc = genl_register_family_with_ops(&hwsim_genl_family,
hwsim_ops, ARRAY_SIZE(hwsim_ops));
if (rc)
goto failure;
rc = netlink_register_notifier(&hwsim_netlink_notifier);
if (rc)
goto failure;
return 0;
failure:
printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
return -EINVAL;
}
static void hwsim_exit_netlink(void)
{
int ret;
/* userspace test API hasn't been adjusted for multi-channel */
if (channels > 1)
return;
printk(KERN_INFO "mac80211_hwsim: closing netlink\n");
/* unregister the notifier */
netlink_unregister_notifier(&hwsim_netlink_notifier);
/* unregister the family */
ret = genl_unregister_family(&hwsim_genl_family);
if (ret)
printk(KERN_DEBUG "mac80211_hwsim: "
"unregister family %i\n", ret);
}
static const struct ieee80211_iface_limit hwsim_if_limits[] = {
{ .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) },
{ .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_P2P_GO) },
{ .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE) },
};
static struct ieee80211_iface_combination hwsim_if_comb = {
.limits = hwsim_if_limits,
.n_limits = ARRAY_SIZE(hwsim_if_limits),
.max_interfaces = 2048,
.num_different_channels = 1,
};
static int __init init_mac80211_hwsim(void)
{
int i, err = 0;
u8 addr[ETH_ALEN];
struct mac80211_hwsim_data *data;
struct ieee80211_hw *hw;
enum ieee80211_band band;
if (radios < 1 || radios > 100)
return -EINVAL;
if (channels < 1)
return -EINVAL;
if (channels > 1) {
hwsim_if_comb.num_different_channels = channels;
mac80211_hwsim_ops.hw_scan = mac80211_hwsim_hw_scan;
mac80211_hwsim_ops.cancel_hw_scan =
mac80211_hwsim_cancel_hw_scan;
mac80211_hwsim_ops.sw_scan_start = NULL;
mac80211_hwsim_ops.sw_scan_complete = NULL;
mac80211_hwsim_ops.remain_on_channel =
mac80211_hwsim_roc;
mac80211_hwsim_ops.cancel_remain_on_channel =
mac80211_hwsim_croc;
mac80211_hwsim_ops.add_chanctx =
mac80211_hwsim_add_chanctx;
mac80211_hwsim_ops.remove_chanctx =
mac80211_hwsim_remove_chanctx;
mac80211_hwsim_ops.change_chanctx =
mac80211_hwsim_change_chanctx;
mac80211_hwsim_ops.assign_vif_chanctx =
mac80211_hwsim_assign_vif_chanctx;
mac80211_hwsim_ops.unassign_vif_chanctx =
mac80211_hwsim_unassign_vif_chanctx;
}
spin_lock_init(&hwsim_radio_lock);
INIT_LIST_HEAD(&hwsim_radios);
hwsim_class = class_create(THIS_MODULE, "mac80211_hwsim");
if (IS_ERR(hwsim_class))
return PTR_ERR(hwsim_class);
memset(addr, 0, ETH_ALEN);
addr[0] = 0x02;
for (i = 0; i < radios; i++) {
printk(KERN_DEBUG "mac80211_hwsim: Initializing radio %d\n",
i);
hw = ieee80211_alloc_hw(sizeof(*data), &mac80211_hwsim_ops);
if (!hw) {
printk(KERN_DEBUG "mac80211_hwsim: ieee80211_alloc_hw "
"failed\n");
err = -ENOMEM;
goto failed;
}
data = hw->priv;
data->hw = hw;
data->dev = device_create(hwsim_class, NULL, 0, hw,
"hwsim%d", i);
if (IS_ERR(data->dev)) {
printk(KERN_DEBUG
"mac80211_hwsim: device_create "
"failed (%ld)\n", PTR_ERR(data->dev));
err = -ENOMEM;
goto failed_drvdata;
}
data->dev->driver = &mac80211_hwsim_driver;
skb_queue_head_init(&data->pending);
SET_IEEE80211_DEV(hw, data->dev);
addr[3] = i >> 8;
addr[4] = i;
memcpy(data->addresses[0].addr, addr, ETH_ALEN);
memcpy(data->addresses[1].addr, addr, ETH_ALEN);
data->addresses[1].addr[0] |= 0x40;
hw->wiphy->n_addresses = 2;
hw->wiphy->addresses = data->addresses;
hw->wiphy->iface_combinations = &hwsim_if_comb;
hw->wiphy->n_iface_combinations = 1;
if (channels > 1) {
hw->wiphy->max_scan_ssids = 255;
hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
hw->wiphy->max_remain_on_channel_duration = 1000;
}
INIT_DELAYED_WORK(&data->roc_done, hw_roc_done);
INIT_DELAYED_WORK(&data->hw_scan, hw_scan_work);
hw->channel_change_time = 1;
hw->queues = 5;
hw->offchannel_tx_hw_queue = 4;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT) |
BIT(NL80211_IFTYPE_P2P_DEVICE);
hw->flags = IEEE80211_HW_MFP_CAPABLE |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_STATIC_SMPS |
IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS |
IEEE80211_HW_AMPDU_AGGREGATION |
IEEE80211_HW_WANT_MONITOR_VIF |
IEEE80211_HW_QUEUE_CONTROL;
hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
/* ask mac80211 to reserve space for magic */
hw->vif_data_size = sizeof(struct hwsim_vif_priv);
hw->sta_data_size = sizeof(struct hwsim_sta_priv);
memcpy(data->channels_2ghz, hwsim_channels_2ghz,
sizeof(hwsim_channels_2ghz));
memcpy(data->channels_5ghz, hwsim_channels_5ghz,
sizeof(hwsim_channels_5ghz));
memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates));
for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
struct ieee80211_supported_band *sband = &data->bands[band];
switch (band) {
case IEEE80211_BAND_2GHZ:
sband->channels = data->channels_2ghz;
sband->n_channels =
ARRAY_SIZE(hwsim_channels_2ghz);
sband->bitrates = data->rates;
sband->n_bitrates = ARRAY_SIZE(hwsim_rates);
break;
case IEEE80211_BAND_5GHZ:
sband->channels = data->channels_5ghz;
sband->n_channels =
ARRAY_SIZE(hwsim_channels_5ghz);
sband->bitrates = data->rates + 4;
sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4;
break;
default:
continue;
}
sband->ht_cap.ht_supported = true;
sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_GRN_FLD |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_DSSSCCK40;
sband->ht_cap.ampdu_factor = 0x3;
sband->ht_cap.ampdu_density = 0x6;
memset(&sband->ht_cap.mcs, 0,
sizeof(sband->ht_cap.mcs));
sband->ht_cap.mcs.rx_mask[0] = 0xff;
sband->ht_cap.mcs.rx_mask[1] = 0xff;
sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
hw->wiphy->bands[band] = sband;
if (channels == 1)
continue;
sband->vht_cap.vht_supported = true;
sband->vht_cap.cap =
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ |
IEEE80211_VHT_CAP_RXLDPC |
IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_SHORT_GI_160 |
IEEE80211_VHT_CAP_TXSTBC |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_RXSTBC_2 |
IEEE80211_VHT_CAP_RXSTBC_3 |
IEEE80211_VHT_CAP_RXSTBC_4 |
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT;
sband->vht_cap.vht_mcs.rx_mcs_map =
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_8 << 0 |
IEEE80211_VHT_MCS_SUPPORT_0_8 << 2 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 |
IEEE80211_VHT_MCS_SUPPORT_0_8 << 6 |
IEEE80211_VHT_MCS_SUPPORT_0_8 << 8 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 |
IEEE80211_VHT_MCS_SUPPORT_0_8 << 14);
sband->vht_cap.vht_mcs.tx_mcs_map =
sband->vht_cap.vht_mcs.rx_mcs_map;
}
/* By default all radios are belonging to the first group */
data->group = 1;
mutex_init(&data->mutex);
/* Enable frame retransmissions for lossy channels */
hw->max_rates = 4;
hw->max_rate_tries = 11;
/* Work to be done prior to ieee80211_register_hw() */
switch (regtest) {
case HWSIM_REGTEST_DISABLED:
case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
case HWSIM_REGTEST_DRIVER_REG_ALL:
case HWSIM_REGTEST_DIFF_COUNTRY:
/*
* Nothing to be done for driver regulatory domain
* hints prior to ieee80211_register_hw()
*/
break;
case HWSIM_REGTEST_WORLD_ROAM:
if (i == 0) {
hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
wiphy_apply_custom_regulatory(hw->wiphy,
&hwsim_world_regdom_custom_01);
}
break;
case HWSIM_REGTEST_CUSTOM_WORLD:
hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
wiphy_apply_custom_regulatory(hw->wiphy,
&hwsim_world_regdom_custom_01);
break;
case HWSIM_REGTEST_CUSTOM_WORLD_2:
if (i == 0) {
hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
wiphy_apply_custom_regulatory(hw->wiphy,
&hwsim_world_regdom_custom_01);
} else if (i == 1) {
hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
wiphy_apply_custom_regulatory(hw->wiphy,
&hwsim_world_regdom_custom_02);
}
break;
case HWSIM_REGTEST_STRICT_ALL:
hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY;
break;
case HWSIM_REGTEST_STRICT_FOLLOW:
case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
if (i == 0)
hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY;
break;
case HWSIM_REGTEST_ALL:
if (i == 0) {
hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
wiphy_apply_custom_regulatory(hw->wiphy,
&hwsim_world_regdom_custom_01);
} else if (i == 1) {
hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
wiphy_apply_custom_regulatory(hw->wiphy,
&hwsim_world_regdom_custom_02);
} else if (i == 4)
hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY;
break;
default:
break;
}
/* give the regulatory workqueue a chance to run */
if (regtest)
schedule_timeout_interruptible(1);
err = ieee80211_register_hw(hw);
if (err < 0) {
printk(KERN_DEBUG "mac80211_hwsim: "
"ieee80211_register_hw failed (%d)\n", err);
goto failed_hw;
}
/* Work to be done after to ieee80211_register_hw() */
switch (regtest) {
case HWSIM_REGTEST_WORLD_ROAM:
case HWSIM_REGTEST_DISABLED:
break;
case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
if (!i)
regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
break;
case HWSIM_REGTEST_DRIVER_REG_ALL:
case HWSIM_REGTEST_STRICT_ALL:
regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
break;
case HWSIM_REGTEST_DIFF_COUNTRY:
if (i < ARRAY_SIZE(hwsim_alpha2s))
regulatory_hint(hw->wiphy, hwsim_alpha2s[i]);
break;
case HWSIM_REGTEST_CUSTOM_WORLD:
case HWSIM_REGTEST_CUSTOM_WORLD_2:
/*
* Nothing to be done for custom world regulatory
* domains after to ieee80211_register_hw
*/
break;
case HWSIM_REGTEST_STRICT_FOLLOW:
if (i == 0)
regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
break;
case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
if (i == 0)
regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
else if (i == 1)
regulatory_hint(hw->wiphy, hwsim_alpha2s[1]);
break;
case HWSIM_REGTEST_ALL:
if (i == 2)
regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
else if (i == 3)
regulatory_hint(hw->wiphy, hwsim_alpha2s[1]);
else if (i == 4)
regulatory_hint(hw->wiphy, hwsim_alpha2s[2]);
break;
default:
break;
}
wiphy_debug(hw->wiphy, "hwaddr %pm registered\n",
hw->wiphy->perm_addr);
data->debugfs = debugfs_create_dir("hwsim",
hw->wiphy->debugfsdir);
data->debugfs_ps = debugfs_create_file("ps", 0666,
data->debugfs, data,
&hwsim_fops_ps);
data->debugfs_group = debugfs_create_file("group", 0666,
data->debugfs, data,
&hwsim_fops_group);
setup_timer(&data->beacon_timer, mac80211_hwsim_beacon,
(unsigned long) hw);
list_add_tail(&data->list, &hwsim_radios);
}
hwsim_mon = alloc_netdev(0, "hwsim%d", hwsim_mon_setup);
if (hwsim_mon == NULL)
goto failed;
rtnl_lock();
err = dev_alloc_name(hwsim_mon, hwsim_mon->name);
if (err < 0)
goto failed_mon;
err = register_netdevice(hwsim_mon);
if (err < 0)
goto failed_mon;
rtnl_unlock();
err = hwsim_init_netlink();
if (err < 0)
goto failed_nl;
return 0;
failed_nl:
printk(KERN_DEBUG "mac_80211_hwsim: failed initializing netlink\n");
return err;
failed_mon:
rtnl_unlock();
free_netdev(hwsim_mon);
mac80211_hwsim_free();
return err;
failed_hw:
device_unregister(data->dev);
failed_drvdata:
ieee80211_free_hw(hw);
failed:
mac80211_hwsim_free();
return err;
}
module_init(init_mac80211_hwsim);
static void __exit exit_mac80211_hwsim(void)
{
printk(KERN_DEBUG "mac80211_hwsim: unregister radios\n");
hwsim_exit_netlink();
mac80211_hwsim_free();
unregister_netdev(hwsim_mon);
}
module_exit(exit_mac80211_hwsim);