linux-sg2042/drivers/crypto/caam/caamhash.c

1937 lines
52 KiB
C

/*
* caam - Freescale FSL CAAM support for ahash functions of crypto API
*
* Copyright 2011 Freescale Semiconductor, Inc.
*
* Based on caamalg.c crypto API driver.
*
* relationship of digest job descriptor or first job descriptor after init to
* shared descriptors:
*
* --------------- ---------------
* | JobDesc #1 |-------------------->| ShareDesc |
* | *(packet 1) | | (hashKey) |
* --------------- | (operation) |
* ---------------
*
* relationship of subsequent job descriptors to shared descriptors:
*
* --------------- ---------------
* | JobDesc #2 |-------------------->| ShareDesc |
* | *(packet 2) | |------------->| (hashKey) |
* --------------- | |-------->| (operation) |
* . | | | (load ctx2) |
* . | | ---------------
* --------------- | |
* | JobDesc #3 |------| |
* | *(packet 3) | |
* --------------- |
* . |
* . |
* --------------- |
* | JobDesc #4 |------------
* | *(packet 4) |
* ---------------
*
* The SharedDesc never changes for a connection unless rekeyed, but
* each packet will likely be in a different place. So all we need
* to know to process the packet is where the input is, where the
* output goes, and what context we want to process with. Context is
* in the SharedDesc, packet references in the JobDesc.
*
* So, a job desc looks like:
*
* ---------------------
* | Header |
* | ShareDesc Pointer |
* | SEQ_OUT_PTR |
* | (output buffer) |
* | (output length) |
* | SEQ_IN_PTR |
* | (input buffer) |
* | (input length) |
* ---------------------
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "jr.h"
#include "error.h"
#include "sg_sw_sec4.h"
#include "key_gen.h"
#define CAAM_CRA_PRIORITY 3000
/* max hash key is max split key size */
#define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
#define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
#define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
/* length of descriptors text */
#define DESC_AHASH_BASE (3 * CAAM_CMD_SZ)
#define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
#define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
#define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
#define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
#define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
#define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
CAAM_MAX_HASH_KEY_SIZE)
#define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
/* caam context sizes for hashes: running digest + 8 */
#define HASH_MSG_LEN 8
#define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
#ifdef DEBUG
/* for print_hex_dumps with line references */
#define debug(format, arg...) printk(format, arg)
#else
#define debug(format, arg...)
#endif
static struct list_head hash_list;
/* ahash per-session context */
struct caam_hash_ctx {
u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
dma_addr_t sh_desc_update_dma ____cacheline_aligned;
dma_addr_t sh_desc_update_first_dma;
dma_addr_t sh_desc_fin_dma;
dma_addr_t sh_desc_digest_dma;
struct device *jrdev;
u8 key[CAAM_MAX_HASH_KEY_SIZE];
int ctx_len;
struct alginfo adata;
};
/* ahash state */
struct caam_hash_state {
dma_addr_t buf_dma;
dma_addr_t ctx_dma;
u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
int buflen_0;
u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
int buflen_1;
u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
int (*update)(struct ahash_request *req);
int (*final)(struct ahash_request *req);
int (*finup)(struct ahash_request *req);
int current_buf;
};
struct caam_export_state {
u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
u8 caam_ctx[MAX_CTX_LEN];
int buflen;
int (*update)(struct ahash_request *req);
int (*final)(struct ahash_request *req);
int (*finup)(struct ahash_request *req);
};
static inline void switch_buf(struct caam_hash_state *state)
{
state->current_buf ^= 1;
}
static inline u8 *current_buf(struct caam_hash_state *state)
{
return state->current_buf ? state->buf_1 : state->buf_0;
}
static inline u8 *alt_buf(struct caam_hash_state *state)
{
return state->current_buf ? state->buf_0 : state->buf_1;
}
static inline int *current_buflen(struct caam_hash_state *state)
{
return state->current_buf ? &state->buflen_1 : &state->buflen_0;
}
static inline int *alt_buflen(struct caam_hash_state *state)
{
return state->current_buf ? &state->buflen_0 : &state->buflen_1;
}
/* Common job descriptor seq in/out ptr routines */
/* Map state->caam_ctx, and append seq_out_ptr command that points to it */
static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
struct caam_hash_state *state,
int ctx_len)
{
state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
ctx_len, DMA_FROM_DEVICE);
if (dma_mapping_error(jrdev, state->ctx_dma)) {
dev_err(jrdev, "unable to map ctx\n");
state->ctx_dma = 0;
return -ENOMEM;
}
append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
return 0;
}
/* Map req->result, and append seq_out_ptr command that points to it */
static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
u8 *result, int digestsize)
{
dma_addr_t dst_dma;
dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
append_seq_out_ptr(desc, dst_dma, digestsize, 0);
return dst_dma;
}
/* Map current buffer in state (if length > 0) and put it in link table */
static inline int buf_map_to_sec4_sg(struct device *jrdev,
struct sec4_sg_entry *sec4_sg,
struct caam_hash_state *state)
{
int buflen = *current_buflen(state);
if (!buflen)
return 0;
state->buf_dma = dma_map_single(jrdev, current_buf(state), buflen,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, state->buf_dma)) {
dev_err(jrdev, "unable to map buf\n");
state->buf_dma = 0;
return -ENOMEM;
}
dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0);
return 0;
}
/* Map state->caam_ctx, and add it to link table */
static inline int ctx_map_to_sec4_sg(struct device *jrdev,
struct caam_hash_state *state, int ctx_len,
struct sec4_sg_entry *sec4_sg, u32 flag)
{
state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
if (dma_mapping_error(jrdev, state->ctx_dma)) {
dev_err(jrdev, "unable to map ctx\n");
state->ctx_dma = 0;
return -ENOMEM;
}
dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
return 0;
}
/*
* For ahash update, final and finup (import_ctx = true)
* import context, read and write to seqout
* For ahash firsts and digest (import_ctx = false)
* read and write to seqout
*/
static inline void ahash_gen_sh_desc(u32 *desc, u32 state, int digestsize,
struct caam_hash_ctx *ctx, bool import_ctx)
{
u32 op = ctx->adata.algtype;
u32 *skip_key_load;
init_sh_desc(desc, HDR_SHARE_SERIAL);
/* Append key if it has been set; ahash update excluded */
if ((state != OP_ALG_AS_UPDATE) && (ctx->adata.keylen)) {
/* Skip key loading if already shared */
skip_key_load = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
append_key_as_imm(desc, ctx->key, ctx->adata.keylen_pad,
ctx->adata.keylen, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
set_jump_tgt_here(desc, skip_key_load);
op |= OP_ALG_AAI_HMAC_PRECOMP;
}
/* If needed, import context from software */
if (import_ctx)
append_seq_load(desc, ctx->ctx_len, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
/* Class 2 operation */
append_operation(desc, op | state | OP_ALG_ENCRYPT);
/*
* Load from buf and/or src and write to req->result or state->context
* Calculate remaining bytes to read
*/
append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
/* Read remaining bytes */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
FIFOLD_TYPE_MSG | KEY_VLF);
/* Store class2 context bytes */
append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
}
static int ahash_set_sh_desc(struct crypto_ahash *ahash)
{
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
int digestsize = crypto_ahash_digestsize(ahash);
struct device *jrdev = ctx->jrdev;
u32 *desc;
/* ahash_update shared descriptor */
desc = ctx->sh_desc_update;
ahash_gen_sh_desc(desc, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx, true);
dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma,
desc_bytes(desc), DMA_TO_DEVICE);
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ahash update shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
/* ahash_update_first shared descriptor */
desc = ctx->sh_desc_update_first;
ahash_gen_sh_desc(desc, OP_ALG_AS_INIT, ctx->ctx_len, ctx, false);
dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma,
desc_bytes(desc), DMA_TO_DEVICE);
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ahash update first shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
/* ahash_final shared descriptor */
desc = ctx->sh_desc_fin;
ahash_gen_sh_desc(desc, OP_ALG_AS_FINALIZE, digestsize, ctx, true);
dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma,
desc_bytes(desc), DMA_TO_DEVICE);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/* ahash_digest shared descriptor */
desc = ctx->sh_desc_digest;
ahash_gen_sh_desc(desc, OP_ALG_AS_INITFINAL, digestsize, ctx, false);
dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma,
desc_bytes(desc), DMA_TO_DEVICE);
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ahash digest shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
return 0;
}
/* Digest hash size if it is too large */
static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
u32 *keylen, u8 *key_out, u32 digestsize)
{
struct device *jrdev = ctx->jrdev;
u32 *desc;
struct split_key_result result;
dma_addr_t src_dma, dst_dma;
int ret;
desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
if (!desc) {
dev_err(jrdev, "unable to allocate key input memory\n");
return -ENOMEM;
}
init_job_desc(desc, 0);
src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, src_dma)) {
dev_err(jrdev, "unable to map key input memory\n");
kfree(desc);
return -ENOMEM;
}
dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
DMA_FROM_DEVICE);
if (dma_mapping_error(jrdev, dst_dma)) {
dev_err(jrdev, "unable to map key output memory\n");
dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
kfree(desc);
return -ENOMEM;
}
/* Job descriptor to perform unkeyed hash on key_in */
append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
OP_ALG_AS_INITFINAL);
append_seq_in_ptr(desc, src_dma, *keylen, 0);
append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
append_seq_out_ptr(desc, dst_dma, digestsize, 0);
append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
result.err = 0;
init_completion(&result.completion);
ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
if (!ret) {
/* in progress */
wait_for_completion(&result.completion);
ret = result.err;
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"digested key@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key_in,
digestsize, 1);
#endif
}
dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
*keylen = digestsize;
kfree(desc);
return ret;
}
static int ahash_setkey(struct crypto_ahash *ahash,
const u8 *key, unsigned int keylen)
{
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
int digestsize = crypto_ahash_digestsize(ahash);
int ret;
u8 *hashed_key = NULL;
#ifdef DEBUG
printk(KERN_ERR "keylen %d\n", keylen);
#endif
if (keylen > blocksize) {
hashed_key = kmalloc_array(digestsize,
sizeof(*hashed_key),
GFP_KERNEL | GFP_DMA);
if (!hashed_key)
return -ENOMEM;
ret = hash_digest_key(ctx, key, &keylen, hashed_key,
digestsize);
if (ret)
goto bad_free_key;
key = hashed_key;
}
ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, keylen,
CAAM_MAX_HASH_KEY_SIZE);
if (ret)
goto bad_free_key;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->adata.keylen_pad, 1);
#endif
kfree(hashed_key);
return ahash_set_sh_desc(ahash);
bad_free_key:
kfree(hashed_key);
crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
/*
* ahash_edesc - s/w-extended ahash descriptor
* @dst_dma: physical mapped address of req->result
* @sec4_sg_dma: physical mapped address of h/w link table
* @src_nents: number of segments in input scatterlist
* @sec4_sg_bytes: length of dma mapped sec4_sg space
* @hw_desc: the h/w job descriptor followed by any referenced link tables
* @sec4_sg: h/w link table
*/
struct ahash_edesc {
dma_addr_t dst_dma;
dma_addr_t sec4_sg_dma;
int src_nents;
int sec4_sg_bytes;
u32 hw_desc[DESC_JOB_IO_LEN / sizeof(u32)] ____cacheline_aligned;
struct sec4_sg_entry sec4_sg[0];
};
static inline void ahash_unmap(struct device *dev,
struct ahash_edesc *edesc,
struct ahash_request *req, int dst_len)
{
struct caam_hash_state *state = ahash_request_ctx(req);
if (edesc->src_nents)
dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
if (edesc->dst_dma)
dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
if (edesc->sec4_sg_bytes)
dma_unmap_single(dev, edesc->sec4_sg_dma,
edesc->sec4_sg_bytes, DMA_TO_DEVICE);
if (state->buf_dma) {
dma_unmap_single(dev, state->buf_dma, *current_buflen(state),
DMA_TO_DEVICE);
state->buf_dma = 0;
}
}
static inline void ahash_unmap_ctx(struct device *dev,
struct ahash_edesc *edesc,
struct ahash_request *req, int dst_len, u32 flag)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
if (state->ctx_dma) {
dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
state->ctx_dma = 0;
}
ahash_unmap(dev, edesc, req, dst_len);
}
static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ahash_request *req = context;
struct ahash_edesc *edesc;
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
int digestsize = crypto_ahash_digestsize(ahash);
#ifdef DEBUG
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
ahash_unmap(jrdev, edesc, req, digestsize);
kfree(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
digestsize, 1);
#endif
req->base.complete(&req->base, err);
}
static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ahash_request *req = context;
struct ahash_edesc *edesc;
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
#ifdef DEBUG
int digestsize = crypto_ahash_digestsize(ahash);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
switch_buf(state);
kfree(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
digestsize, 1);
#endif
req->base.complete(&req->base, err);
}
static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ahash_request *req = context;
struct ahash_edesc *edesc;
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
int digestsize = crypto_ahash_digestsize(ahash);
#ifdef DEBUG
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
kfree(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
digestsize, 1);
#endif
req->base.complete(&req->base, err);
}
static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ahash_request *req = context;
struct ahash_edesc *edesc;
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
#ifdef DEBUG
int digestsize = crypto_ahash_digestsize(ahash);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
switch_buf(state);
kfree(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
digestsize, 1);
#endif
req->base.complete(&req->base, err);
}
/*
* Allocate an enhanced descriptor, which contains the hardware descriptor
* and space for hardware scatter table containing sg_num entries.
*/
static struct ahash_edesc *ahash_edesc_alloc(struct caam_hash_ctx *ctx,
int sg_num, u32 *sh_desc,
dma_addr_t sh_desc_dma,
gfp_t flags)
{
struct ahash_edesc *edesc;
unsigned int sg_size = sg_num * sizeof(struct sec4_sg_entry);
edesc = kzalloc(sizeof(*edesc) + sg_size, GFP_DMA | flags);
if (!edesc) {
dev_err(ctx->jrdev, "could not allocate extended descriptor\n");
return NULL;
}
init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc),
HDR_SHARE_DEFER | HDR_REVERSE);
return edesc;
}
static int ahash_edesc_add_src(struct caam_hash_ctx *ctx,
struct ahash_edesc *edesc,
struct ahash_request *req, int nents,
unsigned int first_sg,
unsigned int first_bytes, size_t to_hash)
{
dma_addr_t src_dma;
u32 options;
if (nents > 1 || first_sg) {
struct sec4_sg_entry *sg = edesc->sec4_sg;
unsigned int sgsize = sizeof(*sg) * (first_sg + nents);
sg_to_sec4_sg_last(req->src, nents, sg + first_sg, 0);
src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE);
if (dma_mapping_error(ctx->jrdev, src_dma)) {
dev_err(ctx->jrdev, "unable to map S/G table\n");
return -ENOMEM;
}
edesc->sec4_sg_bytes = sgsize;
edesc->sec4_sg_dma = src_dma;
options = LDST_SGF;
} else {
src_dma = sg_dma_address(req->src);
options = 0;
}
append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash,
options);
return 0;
}
/* submit update job descriptor */
static int ahash_update_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
u8 *buf = current_buf(state);
int *buflen = current_buflen(state);
u8 *next_buf = alt_buf(state);
int *next_buflen = alt_buflen(state), last_buflen;
int in_len = *buflen + req->nbytes, to_hash;
u32 *desc;
int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index;
struct ahash_edesc *edesc;
int ret = 0;
last_buflen = *next_buflen;
*next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
to_hash = in_len - *next_buflen;
if (to_hash) {
src_nents = sg_nents_for_len(req->src,
req->nbytes - (*next_buflen));
if (src_nents < 0) {
dev_err(jrdev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(jrdev, "unable to DMA map source\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
sizeof(struct sec4_sg_entry);
/*
* allocate space for base edesc and hw desc commands,
* link tables
*/
edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
ctx->sh_desc_update,
ctx->sh_desc_update_dma, flags);
if (!edesc) {
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
return -ENOMEM;
}
edesc->src_nents = src_nents;
edesc->sec4_sg_bytes = sec4_sg_bytes;
ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len,
edesc->sec4_sg, DMA_BIDIRECTIONAL);
if (ret)
goto unmap_ctx;
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
if (ret)
goto unmap_ctx;
if (mapped_nents) {
sg_to_sec4_sg_last(req->src, mapped_nents,
edesc->sec4_sg + sec4_sg_src_index,
0);
if (*next_buflen)
scatterwalk_map_and_copy(next_buf, req->src,
to_hash - *buflen,
*next_buflen, 0);
} else {
sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index -
1);
}
desc = edesc->hw_desc;
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
dev_err(jrdev, "unable to map S/G table\n");
ret = -ENOMEM;
goto unmap_ctx;
}
append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
to_hash, LDST_SGF);
append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
if (ret)
goto unmap_ctx;
ret = -EINPROGRESS;
} else if (*next_buflen) {
scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
req->nbytes, 0);
*buflen = *next_buflen;
*next_buflen = last_buflen;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
*next_buflen, 1);
#endif
return ret;
unmap_ctx:
ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
kfree(edesc);
return ret;
}
static int ahash_final_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int buflen = *current_buflen(state);
u32 *desc;
int sec4_sg_bytes, sec4_sg_src_index;
int digestsize = crypto_ahash_digestsize(ahash);
struct ahash_edesc *edesc;
int ret;
sec4_sg_src_index = 1 + (buflen ? 1 : 0);
sec4_sg_bytes = sec4_sg_src_index * sizeof(struct sec4_sg_entry);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index,
ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
flags);
if (!edesc)
return -ENOMEM;
desc = edesc->hw_desc;
edesc->sec4_sg_bytes = sec4_sg_bytes;
ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len,
edesc->sec4_sg, DMA_TO_DEVICE);
if (ret)
goto unmap_ctx;
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
if (ret)
goto unmap_ctx;
sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 1);
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
dev_err(jrdev, "unable to map S/G table\n");
ret = -ENOMEM;
goto unmap_ctx;
}
append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
LDST_SGF);
edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
digestsize);
if (dma_mapping_error(jrdev, edesc->dst_dma)) {
dev_err(jrdev, "unable to map dst\n");
ret = -ENOMEM;
goto unmap_ctx;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
if (ret)
goto unmap_ctx;
return -EINPROGRESS;
unmap_ctx:
ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
kfree(edesc);
return ret;
}
static int ahash_finup_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int buflen = *current_buflen(state);
u32 *desc;
int sec4_sg_src_index;
int src_nents, mapped_nents;
int digestsize = crypto_ahash_digestsize(ahash);
struct ahash_edesc *edesc;
int ret;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (src_nents < 0) {
dev_err(jrdev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(jrdev, "unable to DMA map source\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
sec4_sg_src_index = 1 + (buflen ? 1 : 0);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
flags);
if (!edesc) {
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
return -ENOMEM;
}
desc = edesc->hw_desc;
edesc->src_nents = src_nents;
ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len,
edesc->sec4_sg, DMA_TO_DEVICE);
if (ret)
goto unmap_ctx;
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
if (ret)
goto unmap_ctx;
ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents,
sec4_sg_src_index, ctx->ctx_len + buflen,
req->nbytes);
if (ret)
goto unmap_ctx;
edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
digestsize);
if (dma_mapping_error(jrdev, edesc->dst_dma)) {
dev_err(jrdev, "unable to map dst\n");
ret = -ENOMEM;
goto unmap_ctx;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
if (ret)
goto unmap_ctx;
return -EINPROGRESS;
unmap_ctx:
ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
kfree(edesc);
return ret;
}
static int ahash_digest(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
u32 *desc;
int digestsize = crypto_ahash_digestsize(ahash);
int src_nents, mapped_nents;
struct ahash_edesc *edesc;
int ret;
state->buf_dma = 0;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (src_nents < 0) {
dev_err(jrdev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(jrdev, "unable to map source for DMA\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
/* allocate space for base edesc and hw desc commands, link tables */
edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ? mapped_nents : 0,
ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
flags);
if (!edesc) {
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
return -ENOMEM;
}
edesc->src_nents = src_nents;
ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
req->nbytes);
if (ret) {
ahash_unmap(jrdev, edesc, req, digestsize);
kfree(edesc);
return ret;
}
desc = edesc->hw_desc;
edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
digestsize);
if (dma_mapping_error(jrdev, edesc->dst_dma)) {
dev_err(jrdev, "unable to map dst\n");
ahash_unmap(jrdev, edesc, req, digestsize);
kfree(edesc);
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ahash_unmap(jrdev, edesc, req, digestsize);
kfree(edesc);
}
return ret;
}
/* submit ahash final if it the first job descriptor */
static int ahash_final_no_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
u8 *buf = current_buf(state);
int buflen = *current_buflen(state);
u32 *desc;
int digestsize = crypto_ahash_digestsize(ahash);
struct ahash_edesc *edesc;
int ret;
/* allocate space for base edesc and hw desc commands, link tables */
edesc = ahash_edesc_alloc(ctx, 0, ctx->sh_desc_digest,
ctx->sh_desc_digest_dma, flags);
if (!edesc)
return -ENOMEM;
desc = edesc->hw_desc;
state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, state->buf_dma)) {
dev_err(jrdev, "unable to map src\n");
goto unmap;
}
append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
digestsize);
if (dma_mapping_error(jrdev, edesc->dst_dma)) {
dev_err(jrdev, "unable to map dst\n");
goto unmap;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ahash_unmap(jrdev, edesc, req, digestsize);
kfree(edesc);
}
return ret;
unmap:
ahash_unmap(jrdev, edesc, req, digestsize);
kfree(edesc);
return -ENOMEM;
}
/* submit ahash update if it the first job descriptor after update */
static int ahash_update_no_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
u8 *buf = current_buf(state);
int *buflen = current_buflen(state);
u8 *next_buf = alt_buf(state);
int *next_buflen = alt_buflen(state);
int in_len = *buflen + req->nbytes, to_hash;
int sec4_sg_bytes, src_nents, mapped_nents;
struct ahash_edesc *edesc;
u32 *desc;
int ret = 0;
*next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
to_hash = in_len - *next_buflen;
if (to_hash) {
src_nents = sg_nents_for_len(req->src,
req->nbytes - *next_buflen);
if (src_nents < 0) {
dev_err(jrdev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(jrdev, "unable to DMA map source\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
sec4_sg_bytes = (1 + mapped_nents) *
sizeof(struct sec4_sg_entry);
/*
* allocate space for base edesc and hw desc commands,
* link tables
*/
edesc = ahash_edesc_alloc(ctx, 1 + mapped_nents,
ctx->sh_desc_update_first,
ctx->sh_desc_update_first_dma,
flags);
if (!edesc) {
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
return -ENOMEM;
}
edesc->src_nents = src_nents;
edesc->sec4_sg_bytes = sec4_sg_bytes;
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
if (ret)
goto unmap_ctx;
sg_to_sec4_sg_last(req->src, mapped_nents,
edesc->sec4_sg + 1, 0);
if (*next_buflen) {
scatterwalk_map_and_copy(next_buf, req->src,
to_hash - *buflen,
*next_buflen, 0);
}
desc = edesc->hw_desc;
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
dev_err(jrdev, "unable to map S/G table\n");
ret = -ENOMEM;
goto unmap_ctx;
}
append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
if (ret)
goto unmap_ctx;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
if (ret)
goto unmap_ctx;
ret = -EINPROGRESS;
state->update = ahash_update_ctx;
state->finup = ahash_finup_ctx;
state->final = ahash_final_ctx;
} else if (*next_buflen) {
scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
req->nbytes, 0);
*buflen = *next_buflen;
*next_buflen = 0;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
*next_buflen, 1);
#endif
return ret;
unmap_ctx:
ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
kfree(edesc);
return ret;
}
/* submit ahash finup if it the first job descriptor after update */
static int ahash_finup_no_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int buflen = *current_buflen(state);
u32 *desc;
int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents;
int digestsize = crypto_ahash_digestsize(ahash);
struct ahash_edesc *edesc;
int ret;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (src_nents < 0) {
dev_err(jrdev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(jrdev, "unable to DMA map source\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
sec4_sg_src_index = 2;
sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
sizeof(struct sec4_sg_entry);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
flags);
if (!edesc) {
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
return -ENOMEM;
}
desc = edesc->hw_desc;
edesc->src_nents = src_nents;
edesc->sec4_sg_bytes = sec4_sg_bytes;
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
if (ret)
goto unmap;
ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen,
req->nbytes);
if (ret) {
dev_err(jrdev, "unable to map S/G table\n");
goto unmap;
}
edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
digestsize);
if (dma_mapping_error(jrdev, edesc->dst_dma)) {
dev_err(jrdev, "unable to map dst\n");
goto unmap;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ahash_unmap(jrdev, edesc, req, digestsize);
kfree(edesc);
}
return ret;
unmap:
ahash_unmap(jrdev, edesc, req, digestsize);
kfree(edesc);
return -ENOMEM;
}
/* submit first update job descriptor after init */
static int ahash_update_first(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
u8 *next_buf = alt_buf(state);
int *next_buflen = alt_buflen(state);
int to_hash;
u32 *desc;
int src_nents, mapped_nents;
struct ahash_edesc *edesc;
int ret = 0;
*next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
1);
to_hash = req->nbytes - *next_buflen;
if (to_hash) {
src_nents = sg_nents_for_len(req->src,
req->nbytes - *next_buflen);
if (src_nents < 0) {
dev_err(jrdev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(jrdev, "unable to map source for DMA\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
/*
* allocate space for base edesc and hw desc commands,
* link tables
*/
edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ?
mapped_nents : 0,
ctx->sh_desc_update_first,
ctx->sh_desc_update_first_dma,
flags);
if (!edesc) {
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
return -ENOMEM;
}
edesc->src_nents = src_nents;
ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
to_hash);
if (ret)
goto unmap_ctx;
if (*next_buflen)
scatterwalk_map_and_copy(next_buf, req->src, to_hash,
*next_buflen, 0);
desc = edesc->hw_desc;
ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
if (ret)
goto unmap_ctx;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
if (ret)
goto unmap_ctx;
ret = -EINPROGRESS;
state->update = ahash_update_ctx;
state->finup = ahash_finup_ctx;
state->final = ahash_final_ctx;
} else if (*next_buflen) {
state->update = ahash_update_no_ctx;
state->finup = ahash_finup_no_ctx;
state->final = ahash_final_no_ctx;
scatterwalk_map_and_copy(next_buf, req->src, 0,
req->nbytes, 0);
switch_buf(state);
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
*next_buflen, 1);
#endif
return ret;
unmap_ctx:
ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
kfree(edesc);
return ret;
}
static int ahash_finup_first(struct ahash_request *req)
{
return ahash_digest(req);
}
static int ahash_init(struct ahash_request *req)
{
struct caam_hash_state *state = ahash_request_ctx(req);
state->update = ahash_update_first;
state->finup = ahash_finup_first;
state->final = ahash_final_no_ctx;
state->ctx_dma = 0;
state->current_buf = 0;
state->buf_dma = 0;
state->buflen_0 = 0;
state->buflen_1 = 0;
return 0;
}
static int ahash_update(struct ahash_request *req)
{
struct caam_hash_state *state = ahash_request_ctx(req);
return state->update(req);
}
static int ahash_finup(struct ahash_request *req)
{
struct caam_hash_state *state = ahash_request_ctx(req);
return state->finup(req);
}
static int ahash_final(struct ahash_request *req)
{
struct caam_hash_state *state = ahash_request_ctx(req);
return state->final(req);
}
static int ahash_export(struct ahash_request *req, void *out)
{
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_export_state *export = out;
int len;
u8 *buf;
if (state->current_buf) {
buf = state->buf_1;
len = state->buflen_1;
} else {
buf = state->buf_0;
len = state->buflen_0;
}
memcpy(export->buf, buf, len);
memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
export->buflen = len;
export->update = state->update;
export->final = state->final;
export->finup = state->finup;
return 0;
}
static int ahash_import(struct ahash_request *req, const void *in)
{
struct caam_hash_state *state = ahash_request_ctx(req);
const struct caam_export_state *export = in;
memset(state, 0, sizeof(*state));
memcpy(state->buf_0, export->buf, export->buflen);
memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
state->buflen_0 = export->buflen;
state->update = export->update;
state->final = export->final;
state->finup = export->finup;
return 0;
}
struct caam_hash_template {
char name[CRYPTO_MAX_ALG_NAME];
char driver_name[CRYPTO_MAX_ALG_NAME];
char hmac_name[CRYPTO_MAX_ALG_NAME];
char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
unsigned int blocksize;
struct ahash_alg template_ahash;
u32 alg_type;
};
/* ahash descriptors */
static struct caam_hash_template driver_hash[] = {
{
.name = "sha1",
.driver_name = "sha1-caam",
.hmac_name = "hmac(sha1)",
.hmac_driver_name = "hmac-sha1-caam",
.blocksize = SHA1_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA1,
}, {
.name = "sha224",
.driver_name = "sha224-caam",
.hmac_name = "hmac(sha224)",
.hmac_driver_name = "hmac-sha224-caam",
.blocksize = SHA224_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA224,
}, {
.name = "sha256",
.driver_name = "sha256-caam",
.hmac_name = "hmac(sha256)",
.hmac_driver_name = "hmac-sha256-caam",
.blocksize = SHA256_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA256,
}, {
.name = "sha384",
.driver_name = "sha384-caam",
.hmac_name = "hmac(sha384)",
.hmac_driver_name = "hmac-sha384-caam",
.blocksize = SHA384_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA384,
}, {
.name = "sha512",
.driver_name = "sha512-caam",
.hmac_name = "hmac(sha512)",
.hmac_driver_name = "hmac-sha512-caam",
.blocksize = SHA512_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA512,
}, {
.name = "md5",
.driver_name = "md5-caam",
.hmac_name = "hmac(md5)",
.hmac_driver_name = "hmac-md5-caam",
.blocksize = MD5_BLOCK_WORDS * 4,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_MD5,
},
};
struct caam_hash_alg {
struct list_head entry;
int alg_type;
struct ahash_alg ahash_alg;
};
static int caam_hash_cra_init(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct crypto_alg *base = tfm->__crt_alg;
struct hash_alg_common *halg =
container_of(base, struct hash_alg_common, base);
struct ahash_alg *alg =
container_of(halg, struct ahash_alg, halg);
struct caam_hash_alg *caam_hash =
container_of(alg, struct caam_hash_alg, ahash_alg);
struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
/* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
HASH_MSG_LEN + SHA1_DIGEST_SIZE,
HASH_MSG_LEN + 32,
HASH_MSG_LEN + SHA256_DIGEST_SIZE,
HASH_MSG_LEN + 64,
HASH_MSG_LEN + SHA512_DIGEST_SIZE };
dma_addr_t dma_addr;
/*
* Get a Job ring from Job Ring driver to ensure in-order
* crypto request processing per tfm
*/
ctx->jrdev = caam_jr_alloc();
if (IS_ERR(ctx->jrdev)) {
pr_err("Job Ring Device allocation for transform failed\n");
return PTR_ERR(ctx->jrdev);
}
dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update,
offsetof(struct caam_hash_ctx,
sh_desc_update_dma),
DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
if (dma_mapping_error(ctx->jrdev, dma_addr)) {
dev_err(ctx->jrdev, "unable to map shared descriptors\n");
caam_jr_free(ctx->jrdev);
return -ENOMEM;
}
ctx->sh_desc_update_dma = dma_addr;
ctx->sh_desc_update_first_dma = dma_addr +
offsetof(struct caam_hash_ctx,
sh_desc_update_first);
ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx,
sh_desc_fin);
ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx,
sh_desc_digest);
/* copy descriptor header template value */
ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
ctx->ctx_len = runninglen[(ctx->adata.algtype &
OP_ALG_ALGSEL_SUBMASK) >>
OP_ALG_ALGSEL_SHIFT];
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct caam_hash_state));
return ahash_set_sh_desc(ahash);
}
static void caam_hash_cra_exit(struct crypto_tfm *tfm)
{
struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma,
offsetof(struct caam_hash_ctx,
sh_desc_update_dma),
DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
caam_jr_free(ctx->jrdev);
}
static void __exit caam_algapi_hash_exit(void)
{
struct caam_hash_alg *t_alg, *n;
if (!hash_list.next)
return;
list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
crypto_unregister_ahash(&t_alg->ahash_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
}
static struct caam_hash_alg *
caam_hash_alloc(struct caam_hash_template *template,
bool keyed)
{
struct caam_hash_alg *t_alg;
struct ahash_alg *halg;
struct crypto_alg *alg;
t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
if (!t_alg) {
pr_err("failed to allocate t_alg\n");
return ERR_PTR(-ENOMEM);
}
t_alg->ahash_alg = template->template_ahash;
halg = &t_alg->ahash_alg;
alg = &halg->halg.base;
if (keyed) {
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
template->hmac_name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->hmac_driver_name);
} else {
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
template->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->driver_name);
t_alg->ahash_alg.setkey = NULL;
}
alg->cra_module = THIS_MODULE;
alg->cra_init = caam_hash_cra_init;
alg->cra_exit = caam_hash_cra_exit;
alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
alg->cra_priority = CAAM_CRA_PRIORITY;
alg->cra_blocksize = template->blocksize;
alg->cra_alignmask = 0;
alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
alg->cra_type = &crypto_ahash_type;
t_alg->alg_type = template->alg_type;
return t_alg;
}
static int __init caam_algapi_hash_init(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
struct device *ctrldev;
int i = 0, err = 0;
struct caam_drv_private *priv;
unsigned int md_limit = SHA512_DIGEST_SIZE;
u32 cha_inst, cha_vid;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node) {
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
if (!dev_node)
return -ENODEV;
}
pdev = of_find_device_by_node(dev_node);
if (!pdev) {
of_node_put(dev_node);
return -ENODEV;
}
ctrldev = &pdev->dev;
priv = dev_get_drvdata(ctrldev);
of_node_put(dev_node);
/*
* If priv is NULL, it's probably because the caam driver wasn't
* properly initialized (e.g. RNG4 init failed). Thus, bail out here.
*/
if (!priv)
return -ENODEV;
/*
* Register crypto algorithms the device supports. First, identify
* presence and attributes of MD block.
*/
cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
/*
* Skip registration of any hashing algorithms if MD block
* is not present.
*/
if (!((cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT))
return -ENODEV;
/* Limit digest size based on LP256 */
if ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)
md_limit = SHA256_DIGEST_SIZE;
INIT_LIST_HEAD(&hash_list);
/* register crypto algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
struct caam_hash_alg *t_alg;
struct caam_hash_template *alg = driver_hash + i;
/* If MD size is not supported by device, skip registration */
if (alg->template_ahash.halg.digestsize > md_limit)
continue;
/* register hmac version */
t_alg = caam_hash_alloc(alg, true);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
pr_warn("%s alg allocation failed\n", alg->driver_name);
continue;
}
err = crypto_register_ahash(&t_alg->ahash_alg);
if (err) {
pr_warn("%s alg registration failed: %d\n",
t_alg->ahash_alg.halg.base.cra_driver_name,
err);
kfree(t_alg);
} else
list_add_tail(&t_alg->entry, &hash_list);
/* register unkeyed version */
t_alg = caam_hash_alloc(alg, false);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
pr_warn("%s alg allocation failed\n", alg->driver_name);
continue;
}
err = crypto_register_ahash(&t_alg->ahash_alg);
if (err) {
pr_warn("%s alg registration failed: %d\n",
t_alg->ahash_alg.halg.base.cra_driver_name,
err);
kfree(t_alg);
} else
list_add_tail(&t_alg->entry, &hash_list);
}
return err;
}
module_init(caam_algapi_hash_init);
module_exit(caam_algapi_hash_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
MODULE_AUTHOR("Freescale Semiconductor - NMG");