linux-sg2042/drivers/spi/spi-ti-qspi.c

855 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* TI QSPI driver
*
* Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
* Author: Sourav Poddar <sourav.poddar@ti.com>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/omap-dma.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/sizes.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
struct ti_qspi_regs {
u32 clkctrl;
};
struct ti_qspi {
struct completion transfer_complete;
/* list synchronization */
struct mutex list_lock;
struct spi_master *master;
void __iomem *base;
void __iomem *mmap_base;
size_t mmap_size;
struct regmap *ctrl_base;
unsigned int ctrl_reg;
struct clk *fclk;
struct device *dev;
struct ti_qspi_regs ctx_reg;
dma_addr_t mmap_phys_base;
dma_addr_t rx_bb_dma_addr;
void *rx_bb_addr;
struct dma_chan *rx_chan;
u32 spi_max_frequency;
u32 cmd;
u32 dc;
bool mmap_enabled;
};
#define QSPI_PID (0x0)
#define QSPI_SYSCONFIG (0x10)
#define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
#define QSPI_SPI_DC_REG (0x44)
#define QSPI_SPI_CMD_REG (0x48)
#define QSPI_SPI_STATUS_REG (0x4c)
#define QSPI_SPI_DATA_REG (0x50)
#define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
#define QSPI_SPI_SWITCH_REG (0x64)
#define QSPI_SPI_DATA_REG_1 (0x68)
#define QSPI_SPI_DATA_REG_2 (0x6c)
#define QSPI_SPI_DATA_REG_3 (0x70)
#define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
#define QSPI_FCLK 192000000
/* Clock Control */
#define QSPI_CLK_EN (1 << 31)
#define QSPI_CLK_DIV_MAX 0xffff
/* Command */
#define QSPI_EN_CS(n) (n << 28)
#define QSPI_WLEN(n) ((n - 1) << 19)
#define QSPI_3_PIN (1 << 18)
#define QSPI_RD_SNGL (1 << 16)
#define QSPI_WR_SNGL (2 << 16)
#define QSPI_RD_DUAL (3 << 16)
#define QSPI_RD_QUAD (7 << 16)
#define QSPI_INVAL (4 << 16)
#define QSPI_FLEN(n) ((n - 1) << 0)
#define QSPI_WLEN_MAX_BITS 128
#define QSPI_WLEN_MAX_BYTES 16
#define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
/* STATUS REGISTER */
#define BUSY 0x01
#define WC 0x02
/* Device Control */
#define QSPI_DD(m, n) (m << (3 + n * 8))
#define QSPI_CKPHA(n) (1 << (2 + n * 8))
#define QSPI_CSPOL(n) (1 << (1 + n * 8))
#define QSPI_CKPOL(n) (1 << (n * 8))
#define QSPI_FRAME 4096
#define QSPI_AUTOSUSPEND_TIMEOUT 2000
#define MEM_CS_EN(n) ((n + 1) << 8)
#define MEM_CS_MASK (7 << 8)
#define MM_SWITCH 0x1
#define QSPI_SETUP_RD_NORMAL (0x0 << 12)
#define QSPI_SETUP_RD_DUAL (0x1 << 12)
#define QSPI_SETUP_RD_QUAD (0x3 << 12)
#define QSPI_SETUP_ADDR_SHIFT 8
#define QSPI_SETUP_DUMMY_SHIFT 10
#define QSPI_DMA_BUFFER_SIZE SZ_64K
static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
unsigned long reg)
{
return readl(qspi->base + reg);
}
static inline void ti_qspi_write(struct ti_qspi *qspi,
unsigned long val, unsigned long reg)
{
writel(val, qspi->base + reg);
}
static int ti_qspi_setup(struct spi_device *spi)
{
struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
int clk_div = 0, ret;
u32 clk_ctrl_reg, clk_rate, clk_mask;
if (spi->master->busy) {
dev_dbg(qspi->dev, "master busy doing other transfers\n");
return -EBUSY;
}
if (!qspi->spi_max_frequency) {
dev_err(qspi->dev, "spi max frequency not defined\n");
return -EINVAL;
}
clk_rate = clk_get_rate(qspi->fclk);
clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
if (clk_div < 0) {
dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
return -EINVAL;
}
if (clk_div > QSPI_CLK_DIV_MAX) {
dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
return -EINVAL;
}
dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
qspi->spi_max_frequency, clk_div);
ret = pm_runtime_get_sync(qspi->dev);
if (ret < 0) {
dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
return ret;
}
clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
clk_ctrl_reg &= ~QSPI_CLK_EN;
/* disable SCLK */
ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
/* enable SCLK */
clk_mask = QSPI_CLK_EN | clk_div;
ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
ctx_reg->clkctrl = clk_mask;
pm_runtime_mark_last_busy(qspi->dev);
ret = pm_runtime_put_autosuspend(qspi->dev);
if (ret < 0) {
dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
return ret;
}
return 0;
}
static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
{
struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
}
static inline u32 qspi_is_busy(struct ti_qspi *qspi)
{
u32 stat;
unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
while ((stat & BUSY) && time_after(timeout, jiffies)) {
cpu_relax();
stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
}
WARN(stat & BUSY, "qspi busy\n");
return stat & BUSY;
}
static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
{
u32 stat;
unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
do {
stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
if (stat & WC)
return 0;
cpu_relax();
} while (time_after(timeout, jiffies));
stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
if (stat & WC)
return 0;
return -ETIMEDOUT;
}
static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t,
int count)
{
int wlen, xfer_len;
unsigned int cmd;
const u8 *txbuf;
u32 data;
txbuf = t->tx_buf;
cmd = qspi->cmd | QSPI_WR_SNGL;
wlen = t->bits_per_word >> 3; /* in bytes */
xfer_len = wlen;
while (count) {
if (qspi_is_busy(qspi))
return -EBUSY;
switch (wlen) {
case 1:
dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
cmd, qspi->dc, *txbuf);
if (count >= QSPI_WLEN_MAX_BYTES) {
u32 *txp = (u32 *)txbuf;
data = cpu_to_be32(*txp++);
writel(data, qspi->base +
QSPI_SPI_DATA_REG_3);
data = cpu_to_be32(*txp++);
writel(data, qspi->base +
QSPI_SPI_DATA_REG_2);
data = cpu_to_be32(*txp++);
writel(data, qspi->base +
QSPI_SPI_DATA_REG_1);
data = cpu_to_be32(*txp++);
writel(data, qspi->base +
QSPI_SPI_DATA_REG);
xfer_len = QSPI_WLEN_MAX_BYTES;
cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
} else {
writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
cmd = qspi->cmd | QSPI_WR_SNGL;
xfer_len = wlen;
cmd |= QSPI_WLEN(wlen);
}
break;
case 2:
dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
cmd, qspi->dc, *txbuf);
writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
break;
case 4:
dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
cmd, qspi->dc, *txbuf);
writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
break;
}
ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
if (ti_qspi_poll_wc(qspi)) {
dev_err(qspi->dev, "write timed out\n");
return -ETIMEDOUT;
}
txbuf += xfer_len;
count -= xfer_len;
}
return 0;
}
static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t,
int count)
{
int wlen;
unsigned int cmd;
u8 *rxbuf;
rxbuf = t->rx_buf;
cmd = qspi->cmd;
switch (t->rx_nbits) {
case SPI_NBITS_DUAL:
cmd |= QSPI_RD_DUAL;
break;
case SPI_NBITS_QUAD:
cmd |= QSPI_RD_QUAD;
break;
default:
cmd |= QSPI_RD_SNGL;
break;
}
wlen = t->bits_per_word >> 3; /* in bytes */
while (count) {
dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
if (qspi_is_busy(qspi))
return -EBUSY;
ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
if (ti_qspi_poll_wc(qspi)) {
dev_err(qspi->dev, "read timed out\n");
return -ETIMEDOUT;
}
switch (wlen) {
case 1:
*rxbuf = readb(qspi->base + QSPI_SPI_DATA_REG);
break;
case 2:
*((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
break;
case 4:
*((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
break;
}
rxbuf += wlen;
count -= wlen;
}
return 0;
}
static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t,
int count)
{
int ret;
if (t->tx_buf) {
ret = qspi_write_msg(qspi, t, count);
if (ret) {
dev_dbg(qspi->dev, "Error while writing\n");
return ret;
}
}
if (t->rx_buf) {
ret = qspi_read_msg(qspi, t, count);
if (ret) {
dev_dbg(qspi->dev, "Error while reading\n");
return ret;
}
}
return 0;
}
static void ti_qspi_dma_callback(void *param)
{
struct ti_qspi *qspi = param;
complete(&qspi->transfer_complete);
}
static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
dma_addr_t dma_src, size_t len)
{
struct dma_chan *chan = qspi->rx_chan;
dma_cookie_t cookie;
enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
struct dma_async_tx_descriptor *tx;
int ret;
tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags);
if (!tx) {
dev_err(qspi->dev, "device_prep_dma_memcpy error\n");
return -EIO;
}
tx->callback = ti_qspi_dma_callback;
tx->callback_param = qspi;
cookie = tx->tx_submit(tx);
reinit_completion(&qspi->transfer_complete);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(qspi->dev, "dma_submit_error %d\n", cookie);
return -EIO;
}
dma_async_issue_pending(chan);
ret = wait_for_completion_timeout(&qspi->transfer_complete,
msecs_to_jiffies(len));
if (ret <= 0) {
dmaengine_terminate_sync(chan);
dev_err(qspi->dev, "DMA wait_for_completion_timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi, loff_t offs,
void *to, size_t readsize)
{
dma_addr_t dma_src = qspi->mmap_phys_base + offs;
int ret = 0;
/*
* Use bounce buffer as FS like jffs2, ubifs may pass
* buffers that does not belong to kernel lowmem region.
*/
while (readsize != 0) {
size_t xfer_len = min_t(size_t, QSPI_DMA_BUFFER_SIZE,
readsize);
ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr,
dma_src, xfer_len);
if (ret != 0)
return ret;
memcpy(to, qspi->rx_bb_addr, xfer_len);
readsize -= xfer_len;
dma_src += xfer_len;
to += xfer_len;
}
return ret;
}
static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg,
loff_t from)
{
struct scatterlist *sg;
dma_addr_t dma_src = qspi->mmap_phys_base + from;
dma_addr_t dma_dst;
int i, len, ret;
for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) {
dma_dst = sg_dma_address(sg);
len = sg_dma_len(sg);
ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len);
if (ret)
return ret;
dma_src += len;
}
return 0;
}
static void ti_qspi_enable_memory_map(struct spi_device *spi)
{
struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
if (qspi->ctrl_base) {
regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
MEM_CS_MASK,
MEM_CS_EN(spi->chip_select));
}
qspi->mmap_enabled = true;
}
static void ti_qspi_disable_memory_map(struct spi_device *spi)
{
struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
if (qspi->ctrl_base)
regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
MEM_CS_MASK, 0);
qspi->mmap_enabled = false;
}
static void ti_qspi_setup_mmap_read(struct spi_device *spi, u8 opcode,
u8 data_nbits, u8 addr_width,
u8 dummy_bytes)
{
struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
u32 memval = opcode;
switch (data_nbits) {
case SPI_NBITS_QUAD:
memval |= QSPI_SETUP_RD_QUAD;
break;
case SPI_NBITS_DUAL:
memval |= QSPI_SETUP_RD_DUAL;
break;
default:
memval |= QSPI_SETUP_RD_NORMAL;
break;
}
memval |= ((addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
ti_qspi_write(qspi, memval,
QSPI_SPI_SETUP_REG(spi->chip_select));
}
static int ti_qspi_exec_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct ti_qspi *qspi = spi_master_get_devdata(mem->spi->master);
u32 from = 0;
int ret = 0;
/* Only optimize read path. */
if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN ||
!op->addr.nbytes || op->addr.nbytes > 4)
return -ENOTSUPP;
/* Address exceeds MMIO window size, fall back to regular mode. */
from = op->addr.val;
if (from + op->data.nbytes > qspi->mmap_size)
return -ENOTSUPP;
mutex_lock(&qspi->list_lock);
if (!qspi->mmap_enabled)
ti_qspi_enable_memory_map(mem->spi);
ti_qspi_setup_mmap_read(mem->spi, op->cmd.opcode, op->data.buswidth,
op->addr.nbytes, op->dummy.nbytes);
if (qspi->rx_chan) {
struct sg_table sgt;
if (virt_addr_valid(op->data.buf.in) &&
!spi_controller_dma_map_mem_op_data(mem->spi->master, op,
&sgt)) {
ret = ti_qspi_dma_xfer_sg(qspi, sgt, from);
spi_controller_dma_unmap_mem_op_data(mem->spi->master,
op, &sgt);
} else {
ret = ti_qspi_dma_bounce_buffer(qspi, from,
op->data.buf.in,
op->data.nbytes);
}
} else {
memcpy_fromio(op->data.buf.in, qspi->mmap_base + from,
op->data.nbytes);
}
mutex_unlock(&qspi->list_lock);
return ret;
}
static const struct spi_controller_mem_ops ti_qspi_mem_ops = {
.exec_op = ti_qspi_exec_mem_op,
};
static int ti_qspi_start_transfer_one(struct spi_master *master,
struct spi_message *m)
{
struct ti_qspi *qspi = spi_master_get_devdata(master);
struct spi_device *spi = m->spi;
struct spi_transfer *t;
int status = 0, ret;
unsigned int frame_len_words, transfer_len_words;
int wlen;
/* setup device control reg */
qspi->dc = 0;
if (spi->mode & SPI_CPHA)
qspi->dc |= QSPI_CKPHA(spi->chip_select);
if (spi->mode & SPI_CPOL)
qspi->dc |= QSPI_CKPOL(spi->chip_select);
if (spi->mode & SPI_CS_HIGH)
qspi->dc |= QSPI_CSPOL(spi->chip_select);
frame_len_words = 0;
list_for_each_entry(t, &m->transfers, transfer_list)
frame_len_words += t->len / (t->bits_per_word >> 3);
frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME);
/* setup command reg */
qspi->cmd = 0;
qspi->cmd |= QSPI_EN_CS(spi->chip_select);
qspi->cmd |= QSPI_FLEN(frame_len_words);
ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
mutex_lock(&qspi->list_lock);
if (qspi->mmap_enabled)
ti_qspi_disable_memory_map(spi);
list_for_each_entry(t, &m->transfers, transfer_list) {
qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) |
QSPI_WLEN(t->bits_per_word));
wlen = t->bits_per_word >> 3;
transfer_len_words = min(t->len / wlen, frame_len_words);
ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen);
if (ret) {
dev_dbg(qspi->dev, "transfer message failed\n");
mutex_unlock(&qspi->list_lock);
return -EINVAL;
}
m->actual_length += transfer_len_words * wlen;
frame_len_words -= transfer_len_words;
if (frame_len_words == 0)
break;
}
mutex_unlock(&qspi->list_lock);
ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
m->status = status;
spi_finalize_current_message(master);
return status;
}
static int ti_qspi_runtime_resume(struct device *dev)
{
struct ti_qspi *qspi;
qspi = dev_get_drvdata(dev);
ti_qspi_restore_ctx(qspi);
return 0;
}
static const struct of_device_id ti_qspi_match[] = {
{.compatible = "ti,dra7xxx-qspi" },
{.compatible = "ti,am4372-qspi" },
{},
};
MODULE_DEVICE_TABLE(of, ti_qspi_match);
static int ti_qspi_probe(struct platform_device *pdev)
{
struct ti_qspi *qspi;
struct spi_master *master;
struct resource *r, *res_mmap;
struct device_node *np = pdev->dev.of_node;
u32 max_freq;
int ret = 0, num_cs, irq;
dma_cap_mask_t mask;
master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
if (!master)
return -ENOMEM;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
master->flags = SPI_MASTER_HALF_DUPLEX;
master->setup = ti_qspi_setup;
master->auto_runtime_pm = true;
master->transfer_one_message = ti_qspi_start_transfer_one;
master->dev.of_node = pdev->dev.of_node;
master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
SPI_BPW_MASK(8);
master->mem_ops = &ti_qspi_mem_ops;
if (!of_property_read_u32(np, "num-cs", &num_cs))
master->num_chipselect = num_cs;
qspi = spi_master_get_devdata(master);
qspi->master = master;
qspi->dev = &pdev->dev;
platform_set_drvdata(pdev, qspi);
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
if (r == NULL) {
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
dev_err(&pdev->dev, "missing platform data\n");
ret = -ENODEV;
goto free_master;
}
}
res_mmap = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "qspi_mmap");
if (res_mmap == NULL) {
res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res_mmap == NULL) {
dev_err(&pdev->dev,
"memory mapped resource not required\n");
}
}
if (res_mmap)
qspi->mmap_size = resource_size(res_mmap);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto free_master;
}
mutex_init(&qspi->list_lock);
qspi->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(qspi->base)) {
ret = PTR_ERR(qspi->base);
goto free_master;
}
if (of_property_read_bool(np, "syscon-chipselects")) {
qspi->ctrl_base =
syscon_regmap_lookup_by_phandle(np,
"syscon-chipselects");
if (IS_ERR(qspi->ctrl_base)) {
ret = PTR_ERR(qspi->ctrl_base);
goto free_master;
}
ret = of_property_read_u32_index(np,
"syscon-chipselects",
1, &qspi->ctrl_reg);
if (ret) {
dev_err(&pdev->dev,
"couldn't get ctrl_mod reg index\n");
goto free_master;
}
}
qspi->fclk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(qspi->fclk)) {
ret = PTR_ERR(qspi->fclk);
dev_err(&pdev->dev, "could not get clk: %d\n", ret);
}
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
pm_runtime_enable(&pdev->dev);
if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
qspi->spi_max_frequency = max_freq;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
qspi->rx_chan = dma_request_chan_by_mask(&mask);
if (IS_ERR(qspi->rx_chan)) {
dev_err(qspi->dev,
"No Rx DMA available, trying mmap mode\n");
qspi->rx_chan = NULL;
ret = 0;
goto no_dma;
}
qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev,
QSPI_DMA_BUFFER_SIZE,
&qspi->rx_bb_dma_addr,
GFP_KERNEL | GFP_DMA);
if (!qspi->rx_bb_addr) {
dev_err(qspi->dev,
"dma_alloc_coherent failed, using PIO mode\n");
dma_release_channel(qspi->rx_chan);
goto no_dma;
}
master->dma_rx = qspi->rx_chan;
init_completion(&qspi->transfer_complete);
if (res_mmap)
qspi->mmap_phys_base = (dma_addr_t)res_mmap->start;
no_dma:
if (!qspi->rx_chan && res_mmap) {
qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap);
if (IS_ERR(qspi->mmap_base)) {
dev_info(&pdev->dev,
"mmap failed with error %ld using PIO mode\n",
PTR_ERR(qspi->mmap_base));
qspi->mmap_base = NULL;
master->mem_ops = NULL;
}
}
qspi->mmap_enabled = false;
ret = devm_spi_register_master(&pdev->dev, master);
if (!ret)
return 0;
pm_runtime_disable(&pdev->dev);
free_master:
spi_master_put(master);
return ret;
}
static int ti_qspi_remove(struct platform_device *pdev)
{
struct ti_qspi *qspi = platform_get_drvdata(pdev);
int rc;
rc = spi_master_suspend(qspi->master);
if (rc)
return rc;
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
if (qspi->rx_bb_addr)
dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE,
qspi->rx_bb_addr,
qspi->rx_bb_dma_addr);
if (qspi->rx_chan)
dma_release_channel(qspi->rx_chan);
return 0;
}
static const struct dev_pm_ops ti_qspi_pm_ops = {
.runtime_resume = ti_qspi_runtime_resume,
};
static struct platform_driver ti_qspi_driver = {
.probe = ti_qspi_probe,
.remove = ti_qspi_remove,
.driver = {
.name = "ti-qspi",
.pm = &ti_qspi_pm_ops,
.of_match_table = ti_qspi_match,
}
};
module_platform_driver(ti_qspi_driver);
MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI QSPI controller driver");
MODULE_ALIAS("platform:ti-qspi");