linux-sg2042/include/linux/gfp.h

563 lines
21 KiB
C

#ifndef __LINUX_GFP_H
#define __LINUX_GFP_H
#include <linux/mmdebug.h>
#include <linux/mmzone.h>
#include <linux/stddef.h>
#include <linux/linkage.h>
#include <linux/topology.h>
struct vm_area_struct;
/* Plain integer GFP bitmasks. Do not use this directly. */
#define ___GFP_DMA 0x01u
#define ___GFP_HIGHMEM 0x02u
#define ___GFP_DMA32 0x04u
#define ___GFP_MOVABLE 0x08u
#define ___GFP_RECLAIMABLE 0x10u
#define ___GFP_HIGH 0x20u
#define ___GFP_IO 0x40u
#define ___GFP_FS 0x80u
#define ___GFP_COLD 0x100u
#define ___GFP_NOWARN 0x200u
#define ___GFP_REPEAT 0x400u
#define ___GFP_NOFAIL 0x800u
#define ___GFP_NORETRY 0x1000u
#define ___GFP_MEMALLOC 0x2000u
#define ___GFP_COMP 0x4000u
#define ___GFP_ZERO 0x8000u
#define ___GFP_NOMEMALLOC 0x10000u
#define ___GFP_HARDWALL 0x20000u
#define ___GFP_THISNODE 0x40000u
#define ___GFP_ATOMIC 0x80000u
#define ___GFP_ACCOUNT 0x100000u
#define ___GFP_NOTRACK 0x200000u
#define ___GFP_DIRECT_RECLAIM 0x400000u
#define ___GFP_OTHER_NODE 0x800000u
#define ___GFP_WRITE 0x1000000u
#define ___GFP_KSWAPD_RECLAIM 0x2000000u
/* If the above are modified, __GFP_BITS_SHIFT may need updating */
/*
* Physical address zone modifiers (see linux/mmzone.h - low four bits)
*
* Do not put any conditional on these. If necessary modify the definitions
* without the underscores and use them consistently. The definitions here may
* be used in bit comparisons.
*/
#define __GFP_DMA ((__force gfp_t)___GFP_DMA)
#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* Page is movable */
#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
/*
* Page mobility and placement hints
*
* These flags provide hints about how mobile the page is. Pages with similar
* mobility are placed within the same pageblocks to minimise problems due
* to external fragmentation.
*
* __GFP_MOVABLE (also a zone modifier) indicates that the page can be
* moved by page migration during memory compaction or can be reclaimed.
*
* __GFP_RECLAIMABLE is used for slab allocations that specify
* SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
*
* __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
* these pages will be spread between local zones to avoid all the dirty
* pages being in one zone (fair zone allocation policy).
*
* __GFP_HARDWALL enforces the cpuset memory allocation policy.
*
* __GFP_THISNODE forces the allocation to be satisified from the requested
* node with no fallbacks or placement policy enforcements.
*
* __GFP_ACCOUNT causes the allocation to be accounted to kmemcg (only relevant
* to kmem allocations).
*/
#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
#define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
/*
* Watermark modifiers -- controls access to emergency reserves
*
* __GFP_HIGH indicates that the caller is high-priority and that granting
* the request is necessary before the system can make forward progress.
* For example, creating an IO context to clean pages.
*
* __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
* high priority. Users are typically interrupt handlers. This may be
* used in conjunction with __GFP_HIGH
*
* __GFP_MEMALLOC allows access to all memory. This should only be used when
* the caller guarantees the allocation will allow more memory to be freed
* very shortly e.g. process exiting or swapping. Users either should
* be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
*
* __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
* This takes precedence over the __GFP_MEMALLOC flag if both are set.
*
* __GFP_NOACCOUNT ignores the accounting for kmemcg limit enforcement.
*/
#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
/*
* Reclaim modifiers
*
* __GFP_IO can start physical IO.
*
* __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
* allocator recursing into the filesystem which might already be holding
* locks.
*
* __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
* This flag can be cleared to avoid unnecessary delays when a fallback
* option is available.
*
* __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
* the low watermark is reached and have it reclaim pages until the high
* watermark is reached. A caller may wish to clear this flag when fallback
* options are available and the reclaim is likely to disrupt the system. The
* canonical example is THP allocation where a fallback is cheap but
* reclaim/compaction may cause indirect stalls.
*
* __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
*
* __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
* _might_ fail. This depends upon the particular VM implementation.
*
* __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
* cannot handle allocation failures. New users should be evaluated carefully
* (and the flag should be used only when there is no reasonable failure
* policy) but it is definitely preferable to use the flag rather than
* opencode endless loop around allocator.
*
* __GFP_NORETRY: The VM implementation must not retry indefinitely and will
* return NULL when direct reclaim and memory compaction have failed to allow
* the allocation to succeed. The OOM killer is not called with the current
* implementation.
*/
#define __GFP_IO ((__force gfp_t)___GFP_IO)
#define __GFP_FS ((__force gfp_t)___GFP_FS)
#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT)
#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
/*
* Action modifiers
*
* __GFP_COLD indicates that the caller does not expect to be used in the near
* future. Where possible, a cache-cold page will be returned.
*
* __GFP_NOWARN suppresses allocation failure reports.
*
* __GFP_COMP address compound page metadata.
*
* __GFP_ZERO returns a zeroed page on success.
*
* __GFP_NOTRACK avoids tracking with kmemcheck.
*
* __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
* distinguishing in the source between false positives and allocations that
* cannot be supported (e.g. page tables).
*
* __GFP_OTHER_NODE is for allocations that are on a remote node but that
* should not be accounted for as a remote allocation in vmstat. A
* typical user would be khugepaged collapsing a huge page on a remote
* node.
*/
#define __GFP_COLD ((__force gfp_t)___GFP_COLD)
#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
#define __GFP_COMP ((__force gfp_t)___GFP_COMP)
#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK)
#define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
#define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE)
/* Room for N __GFP_FOO bits */
#define __GFP_BITS_SHIFT 26
#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
/*
* Useful GFP flag combinations that are commonly used. It is recommended
* that subsystems start with one of these combinations and then set/clear
* __GFP_FOO flags as necessary.
*
* GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
* watermark is applied to allow access to "atomic reserves"
*
* GFP_KERNEL is typical for kernel-internal allocations. The caller requires
* ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
*
* GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
* accounted to kmemcg.
*
* GFP_NOWAIT is for kernel allocations that should not stall for direct
* reclaim, start physical IO or use any filesystem callback.
*
* GFP_NOIO will use direct reclaim to discard clean pages or slab pages
* that do not require the starting of any physical IO.
*
* GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
*
* GFP_USER is for userspace allocations that also need to be directly
* accessibly by the kernel or hardware. It is typically used by hardware
* for buffers that are mapped to userspace (e.g. graphics) that hardware
* still must DMA to. cpuset limits are enforced for these allocations.
*
* GFP_DMA exists for historical reasons and should be avoided where possible.
* The flags indicates that the caller requires that the lowest zone be
* used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
* it would require careful auditing as some users really require it and
* others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
* lowest zone as a type of emergency reserve.
*
* GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
* address.
*
* GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
* do not need to be directly accessible by the kernel but that cannot
* move once in use. An example may be a hardware allocation that maps
* data directly into userspace but has no addressing limitations.
*
* GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
* need direct access to but can use kmap() when access is required. They
* are expected to be movable via page reclaim or page migration. Typically,
* pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
*
* GFP_TRANSHUGE is used for THP allocations. They are compound allocations
* that will fail quickly if memory is not available and will not wake
* kswapd on failure.
*/
#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
#define GFP_NOIO (__GFP_RECLAIM)
#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
#define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \
__GFP_RECLAIMABLE)
#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
#define GFP_DMA __GFP_DMA
#define GFP_DMA32 __GFP_DMA32
#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
#define GFP_TRANSHUGE ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & \
~__GFP_KSWAPD_RECLAIM)
/* Convert GFP flags to their corresponding migrate type */
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
#define GFP_MOVABLE_SHIFT 3
static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
{
VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
if (unlikely(page_group_by_mobility_disabled))
return MIGRATE_UNMOVABLE;
/* Group based on mobility */
return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
}
#undef GFP_MOVABLE_MASK
#undef GFP_MOVABLE_SHIFT
static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
{
return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
}
#ifdef CONFIG_HIGHMEM
#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
#else
#define OPT_ZONE_HIGHMEM ZONE_NORMAL
#endif
#ifdef CONFIG_ZONE_DMA
#define OPT_ZONE_DMA ZONE_DMA
#else
#define OPT_ZONE_DMA ZONE_NORMAL
#endif
#ifdef CONFIG_ZONE_DMA32
#define OPT_ZONE_DMA32 ZONE_DMA32
#else
#define OPT_ZONE_DMA32 ZONE_NORMAL
#endif
/*
* GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
* zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long
* and there are 16 of them to cover all possible combinations of
* __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
*
* The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
* But GFP_MOVABLE is not only a zone specifier but also an allocation
* policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
* Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
*
* bit result
* =================
* 0x0 => NORMAL
* 0x1 => DMA or NORMAL
* 0x2 => HIGHMEM or NORMAL
* 0x3 => BAD (DMA+HIGHMEM)
* 0x4 => DMA32 or DMA or NORMAL
* 0x5 => BAD (DMA+DMA32)
* 0x6 => BAD (HIGHMEM+DMA32)
* 0x7 => BAD (HIGHMEM+DMA32+DMA)
* 0x8 => NORMAL (MOVABLE+0)
* 0x9 => DMA or NORMAL (MOVABLE+DMA)
* 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
* 0xb => BAD (MOVABLE+HIGHMEM+DMA)
* 0xc => DMA32 (MOVABLE+DMA32)
* 0xd => BAD (MOVABLE+DMA32+DMA)
* 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
* 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
*
* ZONES_SHIFT must be <= 2 on 32 bit platforms.
*/
#if 16 * ZONES_SHIFT > BITS_PER_LONG
#error ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
#endif
#define GFP_ZONE_TABLE ( \
(ZONE_NORMAL << 0 * ZONES_SHIFT) \
| (OPT_ZONE_DMA << ___GFP_DMA * ZONES_SHIFT) \
| (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * ZONES_SHIFT) \
| (OPT_ZONE_DMA32 << ___GFP_DMA32 * ZONES_SHIFT) \
| (ZONE_NORMAL << ___GFP_MOVABLE * ZONES_SHIFT) \
| (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * ZONES_SHIFT) \
| (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * ZONES_SHIFT) \
| (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * ZONES_SHIFT) \
)
/*
* GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
* __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
* entry starting with bit 0. Bit is set if the combination is not
* allowed.
*/
#define GFP_ZONE_BAD ( \
1 << (___GFP_DMA | ___GFP_HIGHMEM) \
| 1 << (___GFP_DMA | ___GFP_DMA32) \
| 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
)
static inline enum zone_type gfp_zone(gfp_t flags)
{
enum zone_type z;
int bit = (__force int) (flags & GFP_ZONEMASK);
z = (GFP_ZONE_TABLE >> (bit * ZONES_SHIFT)) &
((1 << ZONES_SHIFT) - 1);
VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
return z;
}
/*
* There is only one page-allocator function, and two main namespaces to
* it. The alloc_page*() variants return 'struct page *' and as such
* can allocate highmem pages, the *get*page*() variants return
* virtual kernel addresses to the allocated page(s).
*/
static inline int gfp_zonelist(gfp_t flags)
{
#ifdef CONFIG_NUMA
if (unlikely(flags & __GFP_THISNODE))
return ZONELIST_NOFALLBACK;
#endif
return ZONELIST_FALLBACK;
}
/*
* We get the zone list from the current node and the gfp_mask.
* This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
* There are two zonelists per node, one for all zones with memory and
* one containing just zones from the node the zonelist belongs to.
*
* For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
* optimized to &contig_page_data at compile-time.
*/
static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
{
return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
}
#ifndef HAVE_ARCH_FREE_PAGE
static inline void arch_free_page(struct page *page, int order) { }
#endif
#ifndef HAVE_ARCH_ALLOC_PAGE
static inline void arch_alloc_page(struct page *page, int order) { }
#endif
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, nodemask_t *nodemask);
static inline struct page *
__alloc_pages(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist)
{
return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);
}
/*
* Allocate pages, preferring the node given as nid. The node must be valid and
* online. For more general interface, see alloc_pages_node().
*/
static inline struct page *
__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
{
VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
VM_WARN_ON(!node_online(nid));
return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
}
/*
* Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
* prefer the current CPU's closest node. Otherwise node must be valid and
* online.
*/
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
unsigned int order)
{
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
return __alloc_pages_node(nid, gfp_mask, order);
}
#ifdef CONFIG_NUMA
extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
static inline struct page *
alloc_pages(gfp_t gfp_mask, unsigned int order)
{
return alloc_pages_current(gfp_mask, order);
}
extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
struct vm_area_struct *vma, unsigned long addr,
int node, bool hugepage);
#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
#else
#define alloc_pages(gfp_mask, order) \
alloc_pages_node(numa_node_id(), gfp_mask, order)
#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
alloc_pages(gfp_mask, order)
#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
alloc_pages(gfp_mask, order)
#endif
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
#define alloc_page_vma(gfp_mask, vma, addr) \
alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
#define alloc_page_vma_node(gfp_mask, vma, addr, node) \
alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
extern struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order);
extern struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask,
unsigned int order);
extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
extern unsigned long get_zeroed_page(gfp_t gfp_mask);
void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
void free_pages_exact(void *virt, size_t size);
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
#define __get_free_page(gfp_mask) \
__get_free_pages((gfp_mask), 0)
#define __get_dma_pages(gfp_mask, order) \
__get_free_pages((gfp_mask) | GFP_DMA, (order))
extern void __free_pages(struct page *page, unsigned int order);
extern void free_pages(unsigned long addr, unsigned int order);
extern void free_hot_cold_page(struct page *page, bool cold);
extern void free_hot_cold_page_list(struct list_head *list, bool cold);
struct page_frag_cache;
extern void *__alloc_page_frag(struct page_frag_cache *nc,
unsigned int fragsz, gfp_t gfp_mask);
extern void __free_page_frag(void *addr);
extern void __free_kmem_pages(struct page *page, unsigned int order);
extern void free_kmem_pages(unsigned long addr, unsigned int order);
#define __free_page(page) __free_pages((page), 0)
#define free_page(addr) free_pages((addr), 0)
void page_alloc_init(void);
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
void drain_all_pages(struct zone *zone);
void drain_local_pages(struct zone *zone);
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
void page_alloc_init_late(void);
#else
static inline void page_alloc_init_late(void)
{
}
#endif
/*
* gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
* GFP flags are used before interrupts are enabled. Once interrupts are
* enabled, it is set to __GFP_BITS_MASK while the system is running. During
* hibernation, it is used by PM to avoid I/O during memory allocation while
* devices are suspended.
*/
extern gfp_t gfp_allowed_mask;
/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
extern void pm_restrict_gfp_mask(void);
extern void pm_restore_gfp_mask(void);
#ifdef CONFIG_PM_SLEEP
extern bool pm_suspended_storage(void);
#else
static inline bool pm_suspended_storage(void)
{
return false;
}
#endif /* CONFIG_PM_SLEEP */
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
/* The below functions must be run on a range from a single zone. */
extern int alloc_contig_range(unsigned long start, unsigned long end,
unsigned migratetype);
extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
#endif
#ifdef CONFIG_CMA
/* CMA stuff */
extern void init_cma_reserved_pageblock(struct page *page);
#endif
#endif /* __LINUX_GFP_H */