linux-sg2042/include/asm-x86/percpu.h

219 lines
5.7 KiB
C

#ifndef _ASM_X86_PERCPU_H_
#define _ASM_X86_PERCPU_H_
#ifdef CONFIG_X86_64
#include <linux/compiler.h>
/* Same as asm-generic/percpu.h, except that we store the per cpu offset
in the PDA. Longer term the PDA and every per cpu variable
should be just put into a single section and referenced directly
from %gs */
#ifdef CONFIG_SMP
#include <asm/pda.h>
#define __per_cpu_offset(cpu) (cpu_pda(cpu)->data_offset)
#define __my_cpu_offset read_pda(data_offset)
#define per_cpu_offset(x) (__per_cpu_offset(x))
#endif
#include <asm-generic/percpu.h>
DECLARE_PER_CPU(struct x8664_pda, pda);
/*
* These are supposed to be implemented as a single instruction which
* operates on the per-cpu data base segment. x86-64 doesn't have
* that yet, so this is a fairly inefficient workaround for the
* meantime. The single instruction is atomic with respect to
* preemption and interrupts, so we need to explicitly disable
* interrupts here to achieve the same effect. However, because it
* can be used from within interrupt-disable/enable, we can't actually
* disable interrupts; disabling preemption is enough.
*/
#define x86_read_percpu(var) \
({ \
typeof(per_cpu_var(var)) __tmp; \
preempt_disable(); \
__tmp = __get_cpu_var(var); \
preempt_enable(); \
__tmp; \
})
#define x86_write_percpu(var, val) \
do { \
preempt_disable(); \
__get_cpu_var(var) = (val); \
preempt_enable(); \
} while(0)
#else /* CONFIG_X86_64 */
#ifdef __ASSEMBLY__
/*
* PER_CPU finds an address of a per-cpu variable.
*
* Args:
* var - variable name
* reg - 32bit register
*
* The resulting address is stored in the "reg" argument.
*
* Example:
* PER_CPU(cpu_gdt_descr, %ebx)
*/
#ifdef CONFIG_SMP
#define PER_CPU(var, reg) \
movl %fs:per_cpu__##this_cpu_off, reg; \
lea per_cpu__##var(reg), reg
#define PER_CPU_VAR(var) %fs:per_cpu__##var
#else /* ! SMP */
#define PER_CPU(var, reg) \
movl $per_cpu__##var, reg
#define PER_CPU_VAR(var) per_cpu__##var
#endif /* SMP */
#else /* ...!ASSEMBLY */
/*
* PER_CPU finds an address of a per-cpu variable.
*
* Args:
* var - variable name
* cpu - 32bit register containing the current CPU number
*
* The resulting address is stored in the "cpu" argument.
*
* Example:
* PER_CPU(cpu_gdt_descr, %ebx)
*/
#ifdef CONFIG_SMP
#define __my_cpu_offset x86_read_percpu(this_cpu_off)
/* fs segment starts at (positive) offset == __per_cpu_offset[cpu] */
#define __percpu_seg "%%fs:"
#else /* !SMP */
#define __percpu_seg ""
#endif /* SMP */
#include <asm-generic/percpu.h>
/* We can use this directly for local CPU (faster). */
DECLARE_PER_CPU(unsigned long, this_cpu_off);
/* For arch-specific code, we can use direct single-insn ops (they
* don't give an lvalue though). */
extern void __bad_percpu_size(void);
#define percpu_to_op(op, var, val) \
do { \
typedef typeof(var) T__; \
if (0) { \
T__ tmp__; \
tmp__ = (val); \
} \
switch (sizeof(var)) { \
case 1: \
asm(op "b %1,"__percpu_seg"%0" \
: "+m" (var) \
: "ri" ((T__)val)); \
break; \
case 2: \
asm(op "w %1,"__percpu_seg"%0" \
: "+m" (var) \
: "ri" ((T__)val)); \
break; \
case 4: \
asm(op "l %1,"__percpu_seg"%0" \
: "+m" (var) \
: "ri" ((T__)val)); \
break; \
default: __bad_percpu_size(); \
} \
} while (0)
#define percpu_from_op(op, var) \
({ \
typeof(var) ret__; \
switch (sizeof(var)) { \
case 1: \
asm(op "b "__percpu_seg"%1,%0" \
: "=r" (ret__) \
: "m" (var)); \
break; \
case 2: \
asm(op "w "__percpu_seg"%1,%0" \
: "=r" (ret__) \
: "m" (var)); \
break; \
case 4: \
asm(op "l "__percpu_seg"%1,%0" \
: "=r" (ret__) \
: "m" (var)); \
break; \
default: __bad_percpu_size(); \
} \
ret__; \
})
#define x86_read_percpu(var) percpu_from_op("mov", per_cpu__##var)
#define x86_write_percpu(var, val) percpu_to_op("mov", per_cpu__##var, val)
#define x86_add_percpu(var, val) percpu_to_op("add", per_cpu__##var, val)
#define x86_sub_percpu(var, val) percpu_to_op("sub", per_cpu__##var, val)
#define x86_or_percpu(var, val) percpu_to_op("or", per_cpu__##var, val)
#endif /* !__ASSEMBLY__ */
#endif /* !CONFIG_X86_64 */
#ifdef CONFIG_SMP
/*
* Define the "EARLY_PER_CPU" macros. These are used for some per_cpu
* variables that are initialized and accessed before there are per_cpu
* areas allocated.
*/
#define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \
DEFINE_PER_CPU(_type, _name) = _initvalue; \
__typeof__(_type) _name##_early_map[NR_CPUS] __initdata = \
{ [0 ... NR_CPUS-1] = _initvalue }; \
__typeof__(_type) *_name##_early_ptr = _name##_early_map
#define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \
EXPORT_PER_CPU_SYMBOL(_name)
#define DECLARE_EARLY_PER_CPU(_type, _name) \
DECLARE_PER_CPU(_type, _name); \
extern __typeof__(_type) *_name##_early_ptr; \
extern __typeof__(_type) _name##_early_map[]
#define early_per_cpu_ptr(_name) (_name##_early_ptr)
#define early_per_cpu_map(_name, _idx) (_name##_early_map[_idx])
#define early_per_cpu(_name, _cpu) \
(early_per_cpu_ptr(_name) ? \
early_per_cpu_ptr(_name)[_cpu] : \
per_cpu(_name, _cpu))
#else /* !CONFIG_SMP */
#define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \
DEFINE_PER_CPU(_type, _name) = _initvalue
#define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \
EXPORT_PER_CPU_SYMBOL(_name)
#define DECLARE_EARLY_PER_CPU(_type, _name) \
DECLARE_PER_CPU(_type, _name)
#define early_per_cpu(_name, _cpu) per_cpu(_name, _cpu)
#define early_per_cpu_ptr(_name) NULL
/* no early_per_cpu_map() */
#endif /* !CONFIG_SMP */
#endif /* _ASM_X86_PERCPU_H_ */