linux-sg2042/arch/m32r/kernel/process.c

352 lines
8.0 KiB
C

/*
* linux/arch/m32r/kernel/process.c
*
* Copyright (c) 2001, 2002 Hiroyuki Kondo, Hirokazu Takata,
* Hitoshi Yamamoto
* Taken from sh version.
* Copyright (C) 1995 Linus Torvalds
* SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
*/
#undef DEBUG_PROCESS
#ifdef DEBUG_PROCESS
#define DPRINTK(fmt, args...) printk("%s:%d:%s: " fmt, __FILE__, __LINE__, \
__FUNCTION__, ##args)
#else
#define DPRINTK(fmt, args...)
#endif
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/hardirq.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/elf.h>
#include <asm/m32r.h>
#include <linux/err.h>
static int hlt_counter=0;
/*
* Return saved PC of a blocked thread.
*/
unsigned long thread_saved_pc(struct task_struct *tsk)
{
return tsk->thread.lr;
}
/*
* Powermanagement idle function, if any..
*/
void (*pm_idle)(void) = NULL;
EXPORT_SYMBOL(pm_idle);
void (*pm_power_off)(void) = NULL;
EXPORT_SYMBOL(pm_power_off);
void disable_hlt(void)
{
hlt_counter++;
}
EXPORT_SYMBOL(disable_hlt);
void enable_hlt(void)
{
hlt_counter--;
}
EXPORT_SYMBOL(enable_hlt);
/*
* We use this is we don't have any better
* idle routine..
*/
void default_idle(void)
{
/* M32R_FIXME: Please use "cpu_sleep" mode. */
cpu_relax();
}
/*
* On SMP it's slightly faster (but much more power-consuming!)
* to poll the ->work.need_resched flag instead of waiting for the
* cross-CPU IPI to arrive. Use this option with caution.
*/
static void poll_idle (void)
{
/* M32R_FIXME */
cpu_relax();
}
/*
* The idle thread. There's no useful work to be
* done, so just try to conserve power and have a
* low exit latency (ie sit in a loop waiting for
* somebody to say that they'd like to reschedule)
*/
void cpu_idle (void)
{
/* endless idle loop with no priority at all */
while (1) {
while (!need_resched()) {
void (*idle)(void) = pm_idle;
if (!idle)
idle = default_idle;
idle();
}
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
void machine_restart(char *__unused)
{
#if defined(CONFIG_PLAT_MAPPI3)
outw(1, (unsigned long)PLD_REBOOT);
#endif
printk("Please push reset button!\n");
while (1)
cpu_relax();
}
void machine_halt(void)
{
printk("Please push reset button!\n");
while (1)
cpu_relax();
}
void machine_power_off(void)
{
/* M32R_FIXME */
}
static int __init idle_setup (char *str)
{
if (!strncmp(str, "poll", 4)) {
printk("using poll in idle threads.\n");
pm_idle = poll_idle;
} else if (!strncmp(str, "sleep", 4)) {
printk("using sleep in idle threads.\n");
pm_idle = default_idle;
}
return 1;
}
__setup("idle=", idle_setup);
void show_regs(struct pt_regs * regs)
{
printk("\n");
printk("BPC[%08lx]:PSW[%08lx]:LR [%08lx]:FP [%08lx]\n", \
regs->bpc, regs->psw, regs->lr, regs->fp);
printk("BBPC[%08lx]:BBPSW[%08lx]:SPU[%08lx]:SPI[%08lx]\n", \
regs->bbpc, regs->bbpsw, regs->spu, regs->spi);
printk("R0 [%08lx]:R1 [%08lx]:R2 [%08lx]:R3 [%08lx]\n", \
regs->r0, regs->r1, regs->r2, regs->r3);
printk("R4 [%08lx]:R5 [%08lx]:R6 [%08lx]:R7 [%08lx]\n", \
regs->r4, regs->r5, regs->r6, regs->r7);
printk("R8 [%08lx]:R9 [%08lx]:R10[%08lx]:R11[%08lx]\n", \
regs->r8, regs->r9, regs->r10, regs->r11);
printk("R12[%08lx]\n", \
regs->r12);
#if defined(CONFIG_ISA_M32R2) && defined(CONFIG_ISA_DSP_LEVEL2)
printk("ACC0H[%08lx]:ACC0L[%08lx]\n", \
regs->acc0h, regs->acc0l);
printk("ACC1H[%08lx]:ACC1L[%08lx]\n", \
regs->acc1h, regs->acc1l);
#elif defined(CONFIG_ISA_M32R2) || defined(CONFIG_ISA_M32R)
printk("ACCH[%08lx]:ACCL[%08lx]\n", \
regs->acc0h, regs->acc0l);
#else
#error unknown isa configuration
#endif
}
/*
* Create a kernel thread
*/
/*
* This is the mechanism for creating a new kernel thread.
*
* NOTE! Only a kernel-only process(ie the swapper or direct descendants
* who haven't done an "execve()") should use this: it will work within
* a system call from a "real" process, but the process memory space will
* not be free'd until both the parent and the child have exited.
*/
static void kernel_thread_helper(void *nouse, int (*fn)(void *), void *arg)
{
fn(arg);
do_exit(-1);
}
int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
struct pt_regs regs;
memset(&regs, 0, sizeof (regs));
regs.r1 = (unsigned long)fn;
regs.r2 = (unsigned long)arg;
regs.bpc = (unsigned long)kernel_thread_helper;
regs.psw = M32R_PSW_BIE;
/* Ok, create the new process. */
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
NULL);
}
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
/* Nothing to do. */
DPRINTK("pid = %d\n", current->pid);
}
void flush_thread(void)
{
DPRINTK("pid = %d\n", current->pid);
memset(&current->thread.debug_trap, 0, sizeof(struct debug_trap));
}
void release_thread(struct task_struct *dead_task)
{
/* do nothing */
DPRINTK("pid = %d\n", dead_task->pid);
}
/* Fill in the fpu structure for a core dump.. */
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
{
return 0; /* Task didn't use the fpu at all. */
}
int copy_thread(int nr, unsigned long clone_flags, unsigned long spu,
unsigned long unused, struct task_struct *tsk, struct pt_regs *regs)
{
struct pt_regs *childregs = task_pt_regs(tsk);
extern void ret_from_fork(void);
/* Copy registers */
*childregs = *regs;
childregs->spu = spu;
childregs->r0 = 0; /* Child gets zero as return value */
regs->r0 = tsk->pid;
tsk->thread.sp = (unsigned long)childregs;
tsk->thread.lr = (unsigned long)ret_from_fork;
return 0;
}
/*
* Capture the user space registers if the task is not running (in user space)
*/
int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
{
/* M32R_FIXME */
return 1;
}
asmlinkage int sys_fork(unsigned long r0, unsigned long r1, unsigned long r2,
unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6,
struct pt_regs regs)
{
#ifdef CONFIG_MMU
return do_fork(SIGCHLD, regs.spu, &regs, 0, NULL, NULL);
#else
return -EINVAL;
#endif /* CONFIG_MMU */
}
asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
unsigned long parent_tidptr,
unsigned long child_tidptr,
unsigned long r4, unsigned long r5, unsigned long r6,
struct pt_regs regs)
{
if (!newsp)
newsp = regs.spu;
return do_fork(clone_flags, newsp, &regs, 0,
(int __user *)parent_tidptr, (int __user *)child_tidptr);
}
/*
* This is trivial, and on the face of it looks like it
* could equally well be done in user mode.
*
* Not so, for quite unobvious reasons - register pressure.
* In user mode vfork() cannot have a stack frame, and if
* done by calling the "clone()" system call directly, you
* do not have enough call-clobbered registers to hold all
* the information you need.
*/
asmlinkage int sys_vfork(unsigned long r0, unsigned long r1, unsigned long r2,
unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6,
struct pt_regs regs)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.spu, &regs, 0,
NULL, NULL);
}
/*
* sys_execve() executes a new program.
*/
asmlinkage int sys_execve(char __user *ufilename, char __user * __user *uargv,
char __user * __user *uenvp,
unsigned long r3, unsigned long r4, unsigned long r5,
unsigned long r6, struct pt_regs regs)
{
int error;
char *filename;
filename = getname(ufilename);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename, uargv, uenvp, &regs);
if (error == 0) {
task_lock(current);
current->ptrace &= ~PT_DTRACE;
task_unlock(current);
}
putname(filename);
out:
return error;
}
/*
* These bracket the sleeping functions..
*/
#define first_sched ((unsigned long) scheduling_functions_start_here)
#define last_sched ((unsigned long) scheduling_functions_end_here)
unsigned long get_wchan(struct task_struct *p)
{
/* M32R_FIXME */
return (0);
}