linux-sg2042/arch/x86/mm/numa_32.c

266 lines
8.3 KiB
C

/*
* Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
* August 2002: added remote node KVA remap - Martin J. Bligh
*
* Copyright (C) 2002, IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/module.h>
#include "numa_internal.h"
#ifdef CONFIG_DISCONTIGMEM
/*
* 4) physnode_map - the mapping between a pfn and owning node
* physnode_map keeps track of the physical memory layout of a generic
* numa node on a 64Mb break (each element of the array will
* represent 64Mb of memory and will be marked by the node id. so,
* if the first gig is on node 0, and the second gig is on node 1
* physnode_map will contain:
*
* physnode_map[0-15] = 0;
* physnode_map[16-31] = 1;
* physnode_map[32- ] = -1;
*/
s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1};
EXPORT_SYMBOL(physnode_map);
void memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
nid, start, end);
printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
printk(KERN_DEBUG " ");
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
physnode_map[pfn / PAGES_PER_SECTION] = nid;
printk(KERN_CONT "%lx ", pfn);
}
printk(KERN_CONT "\n");
}
unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long nr_pages = end_pfn - start_pfn;
if (!nr_pages)
return 0;
return (nr_pages + 1) * sizeof(struct page);
}
#endif
extern unsigned long highend_pfn, highstart_pfn;
#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
static void *node_remap_start_vaddr[MAX_NUMNODES];
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
/*
* Remap memory allocator
*/
static unsigned long node_remap_start_pfn[MAX_NUMNODES];
static void *node_remap_end_vaddr[MAX_NUMNODES];
static void *node_remap_alloc_vaddr[MAX_NUMNODES];
/**
* alloc_remap - Allocate remapped memory
* @nid: NUMA node to allocate memory from
* @size: The size of allocation
*
* Allocate @size bytes from the remap area of NUMA node @nid. The
* size of the remap area is predetermined by init_alloc_remap() and
* only the callers considered there should call this function. For
* more info, please read the comment on top of init_alloc_remap().
*
* The caller must be ready to handle allocation failure from this
* function and fall back to regular memory allocator in such cases.
*
* CONTEXT:
* Single CPU early boot context.
*
* RETURNS:
* Pointer to the allocated memory on success, %NULL on failure.
*/
void *alloc_remap(int nid, unsigned long size)
{
void *allocation = node_remap_alloc_vaddr[nid];
size = ALIGN(size, L1_CACHE_BYTES);
if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
return NULL;
node_remap_alloc_vaddr[nid] += size;
memset(allocation, 0, size);
return allocation;
}
#ifdef CONFIG_HIBERNATION
/**
* resume_map_numa_kva - add KVA mapping to the temporary page tables created
* during resume from hibernation
* @pgd_base - temporary resume page directory
*/
void resume_map_numa_kva(pgd_t *pgd_base)
{
int node;
for_each_online_node(node) {
unsigned long start_va, start_pfn, nr_pages, pfn;
start_va = (unsigned long)node_remap_start_vaddr[node];
start_pfn = node_remap_start_pfn[node];
nr_pages = (node_remap_end_vaddr[node] -
node_remap_start_vaddr[node]) >> PAGE_SHIFT;
printk(KERN_DEBUG "%s: node %d\n", __func__, node);
for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) {
unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
pgd_t *pgd = pgd_base + pgd_index(vaddr);
pud_t *pud = pud_offset(pgd, vaddr);
pmd_t *pmd = pmd_offset(pud, vaddr);
set_pmd(pmd, pfn_pmd(start_pfn + pfn,
PAGE_KERNEL_LARGE_EXEC));
printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
__func__, vaddr, start_pfn + pfn);
}
}
}
#endif
/**
* init_alloc_remap - Initialize remap allocator for a NUMA node
* @nid: NUMA node to initizlie remap allocator for
*
* NUMA nodes may end up without any lowmem. As allocating pgdat and
* memmap on a different node with lowmem is inefficient, a special
* remap allocator is implemented which can be used by alloc_remap().
*
* For each node, the amount of memory which will be necessary for
* pgdat and memmap is calculated and two memory areas of the size are
* allocated - one in the node and the other in lowmem; then, the area
* in the node is remapped to the lowmem area.
*
* As pgdat and memmap must be allocated in lowmem anyway, this
* doesn't waste lowmem address space; however, the actual lowmem
* which gets remapped over is wasted. The amount shouldn't be
* problematic on machines this feature will be used.
*
* Initialization failure isn't fatal. alloc_remap() is used
* opportunistically and the callers will fall back to other memory
* allocation mechanisms on failure.
*/
void __init init_alloc_remap(int nid, u64 start, u64 end)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long end_pfn = end >> PAGE_SHIFT;
unsigned long size, pfn;
u64 node_pa, remap_pa;
void *remap_va;
/*
* The acpi/srat node info can show hot-add memroy zones where
* memory could be added but not currently present.
*/
printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
nid, start_pfn, end_pfn);
/* calculate the necessary space aligned to large page size */
size = node_memmap_size_bytes(nid, start_pfn, end_pfn);
size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
size = ALIGN(size, LARGE_PAGE_BYTES);
/* allocate node memory and the lowmem remap area */
node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES);
if (!node_pa) {
pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
size, nid);
return;
}
memblock_reserve(node_pa, size);
remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
max_low_pfn << PAGE_SHIFT,
size, LARGE_PAGE_BYTES);
if (!remap_pa) {
pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
size, nid);
memblock_free(node_pa, size);
return;
}
memblock_reserve(remap_pa, size);
remap_va = phys_to_virt(remap_pa);
/* perform actual remap */
for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE)
set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT),
(node_pa >> PAGE_SHIFT) + pfn,
PAGE_KERNEL_LARGE);
/* initialize remap allocator parameters */
node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
node_remap_start_vaddr[nid] = remap_va;
node_remap_end_vaddr[nid] = remap_va + size;
node_remap_alloc_vaddr[nid] = remap_va;
printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
nid, node_pa, node_pa + size, remap_va, remap_va + size);
}
void __init initmem_init(void)
{
x86_numa_init();
#ifdef CONFIG_HIGHMEM
highstart_pfn = highend_pfn = max_pfn;
if (max_pfn > max_low_pfn)
highstart_pfn = max_low_pfn;
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
pages_to_mb(highend_pfn - highstart_pfn));
num_physpages = highend_pfn;
high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
#else
num_physpages = max_low_pfn;
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
#endif
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
pages_to_mb(max_low_pfn));
printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
max_low_pfn, highstart_pfn);
printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
(ulong) pfn_to_kaddr(max_low_pfn));
printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
(ulong) pfn_to_kaddr(highstart_pfn));
setup_bootmem_allocator();
}