linux-sg2042/drivers/w1/slaves/w1_therm.c

748 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* w1_therm.c
*
* Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
*/
#include <asm/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/hwmon.h>
#include <linux/w1.h>
#define W1_THERM_DS18S20 0x10
#define W1_THERM_DS1822 0x22
#define W1_THERM_DS18B20 0x28
#define W1_THERM_DS1825 0x3B
#define W1_THERM_DS28EA00 0x42
/* Allow the strong pullup to be disabled, but default to enabled.
* If it was disabled a parasite powered device might not get the require
* current to do a temperature conversion. If it is enabled parasite powered
* devices have a better chance of getting the current required.
* In case the parasite power-detection is not working (seems to be the case
* for some DS18S20) the strong pullup can also be forced, regardless of the
* power state of the devices.
*
* Summary of options:
* - strong_pullup = 0 Disable strong pullup completely
* - strong_pullup = 1 Enable automatic strong pullup detection
* - strong_pullup = 2 Force strong pullup
*/
static int w1_strong_pullup = 1;
module_param_named(strong_pullup, w1_strong_pullup, int, 0);
struct w1_therm_family_data {
uint8_t rom[9];
atomic_t refcnt;
};
struct therm_info {
u8 rom[9];
u8 crc;
u8 verdict;
};
/* return the address of the refcnt in the family data */
#define THERM_REFCNT(family_data) \
(&((struct w1_therm_family_data *)family_data)->refcnt)
static int w1_therm_add_slave(struct w1_slave *sl)
{
sl->family_data = kzalloc(sizeof(struct w1_therm_family_data),
GFP_KERNEL);
if (!sl->family_data)
return -ENOMEM;
atomic_set(THERM_REFCNT(sl->family_data), 1);
return 0;
}
static void w1_therm_remove_slave(struct w1_slave *sl)
{
int refcnt = atomic_sub_return(1, THERM_REFCNT(sl->family_data));
while (refcnt) {
msleep(1000);
refcnt = atomic_read(THERM_REFCNT(sl->family_data));
}
kfree(sl->family_data);
sl->family_data = NULL;
}
static ssize_t w1_slave_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t w1_slave_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size);
static ssize_t w1_seq_show(struct device *device,
struct device_attribute *attr, char *buf);
static DEVICE_ATTR_RW(w1_slave);
static DEVICE_ATTR_RO(w1_seq);
static struct attribute *w1_therm_attrs[] = {
&dev_attr_w1_slave.attr,
NULL,
};
static struct attribute *w1_ds28ea00_attrs[] = {
&dev_attr_w1_slave.attr,
&dev_attr_w1_seq.attr,
NULL,
};
ATTRIBUTE_GROUPS(w1_therm);
ATTRIBUTE_GROUPS(w1_ds28ea00);
#if IS_REACHABLE(CONFIG_HWMON)
static int w1_read_temp(struct device *dev, u32 attr, int channel,
long *val);
static umode_t w1_is_visible(const void *_data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
return attr == hwmon_temp_input ? 0444 : 0;
}
static int w1_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return w1_read_temp(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static const u32 w1_temp_config[] = {
HWMON_T_INPUT,
0
};
static const struct hwmon_channel_info w1_temp = {
.type = hwmon_temp,
.config = w1_temp_config,
};
static const struct hwmon_channel_info *w1_info[] = {
&w1_temp,
NULL
};
static const struct hwmon_ops w1_hwmon_ops = {
.is_visible = w1_is_visible,
.read = w1_read,
};
static const struct hwmon_chip_info w1_chip_info = {
.ops = &w1_hwmon_ops,
.info = w1_info,
};
#define W1_CHIPINFO (&w1_chip_info)
#else
#define W1_CHIPINFO NULL
#endif
static struct w1_family_ops w1_therm_fops = {
.add_slave = w1_therm_add_slave,
.remove_slave = w1_therm_remove_slave,
.groups = w1_therm_groups,
.chip_info = W1_CHIPINFO,
};
static struct w1_family_ops w1_ds28ea00_fops = {
.add_slave = w1_therm_add_slave,
.remove_slave = w1_therm_remove_slave,
.groups = w1_ds28ea00_groups,
.chip_info = W1_CHIPINFO,
};
static struct w1_family w1_therm_family_DS18S20 = {
.fid = W1_THERM_DS18S20,
.fops = &w1_therm_fops,
};
static struct w1_family w1_therm_family_DS18B20 = {
.fid = W1_THERM_DS18B20,
.fops = &w1_therm_fops,
};
static struct w1_family w1_therm_family_DS1822 = {
.fid = W1_THERM_DS1822,
.fops = &w1_therm_fops,
};
static struct w1_family w1_therm_family_DS28EA00 = {
.fid = W1_THERM_DS28EA00,
.fops = &w1_ds28ea00_fops,
};
static struct w1_family w1_therm_family_DS1825 = {
.fid = W1_THERM_DS1825,
.fops = &w1_therm_fops,
};
struct w1_therm_family_converter {
u8 broken;
u16 reserved;
struct w1_family *f;
int (*convert)(u8 rom[9]);
int (*precision)(struct device *device, int val);
int (*eeprom)(struct device *device);
};
/* write configuration to eeprom */
static inline int w1_therm_eeprom(struct device *device);
/* Set precision for conversion */
static inline int w1_DS18B20_precision(struct device *device, int val);
static inline int w1_DS18S20_precision(struct device *device, int val);
/* The return value is millidegrees Centigrade. */
static inline int w1_DS18B20_convert_temp(u8 rom[9]);
static inline int w1_DS18S20_convert_temp(u8 rom[9]);
static struct w1_therm_family_converter w1_therm_families[] = {
{
.f = &w1_therm_family_DS18S20,
.convert = w1_DS18S20_convert_temp,
.precision = w1_DS18S20_precision,
.eeprom = w1_therm_eeprom
},
{
.f = &w1_therm_family_DS1822,
.convert = w1_DS18B20_convert_temp,
.precision = w1_DS18S20_precision,
.eeprom = w1_therm_eeprom
},
{
.f = &w1_therm_family_DS18B20,
.convert = w1_DS18B20_convert_temp,
.precision = w1_DS18B20_precision,
.eeprom = w1_therm_eeprom
},
{
.f = &w1_therm_family_DS28EA00,
.convert = w1_DS18B20_convert_temp,
.precision = w1_DS18S20_precision,
.eeprom = w1_therm_eeprom
},
{
.f = &w1_therm_family_DS1825,
.convert = w1_DS18B20_convert_temp,
.precision = w1_DS18S20_precision,
.eeprom = w1_therm_eeprom
}
};
static inline int w1_therm_eeprom(struct device *device)
{
struct w1_slave *sl = dev_to_w1_slave(device);
struct w1_master *dev = sl->master;
u8 rom[9], external_power;
int ret, max_trying = 10;
u8 *family_data = sl->family_data;
if (!sl->family_data) {
ret = -ENODEV;
goto error;
}
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(family_data));
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
memset(rom, 0, sizeof(rom));
while (max_trying--) {
if (!w1_reset_select_slave(sl)) {
unsigned int tm = 10;
unsigned long sleep_rem;
/* check if in parasite mode */
w1_write_8(dev, W1_READ_PSUPPLY);
external_power = w1_read_8(dev);
if (w1_reset_select_slave(sl))
continue;
/* 10ms strong pullup/delay after the copy command */
if (w1_strong_pullup == 2 ||
(!external_power && w1_strong_pullup))
w1_next_pullup(dev, tm);
w1_write_8(dev, W1_COPY_SCRATCHPAD);
if (external_power) {
mutex_unlock(&dev->bus_mutex);
sleep_rem = msleep_interruptible(tm);
if (sleep_rem != 0) {
ret = -EINTR;
goto dec_refcnt;
}
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
} else if (!w1_strong_pullup) {
sleep_rem = msleep_interruptible(tm);
if (sleep_rem != 0) {
ret = -EINTR;
goto mt_unlock;
}
}
break;
}
}
mt_unlock:
mutex_unlock(&dev->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(family_data));
error:
return ret;
}
/* DS18S20 does not feature configuration register */
static inline int w1_DS18S20_precision(struct device *device, int val)
{
return 0;
}
static inline int w1_DS18B20_precision(struct device *device, int val)
{
struct w1_slave *sl = dev_to_w1_slave(device);
struct w1_master *dev = sl->master;
u8 rom[9], crc;
int ret, max_trying = 10;
u8 *family_data = sl->family_data;
uint8_t precision_bits;
uint8_t mask = 0x60;
if (val > 12 || val < 9) {
pr_warn("Unsupported precision\n");
ret = -EINVAL;
goto error;
}
if (!sl->family_data) {
ret = -ENODEV;
goto error;
}
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(family_data));
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
memset(rom, 0, sizeof(rom));
/* translate precision to bitmask (see datasheet page 9) */
switch (val) {
case 9:
precision_bits = 0x00;
break;
case 10:
precision_bits = 0x20;
break;
case 11:
precision_bits = 0x40;
break;
case 12:
default:
precision_bits = 0x60;
break;
}
while (max_trying--) {
crc = 0;
if (!w1_reset_select_slave(sl)) {
int count = 0;
/* read values to only alter precision bits */
w1_write_8(dev, W1_READ_SCRATCHPAD);
count = w1_read_block(dev, rom, 9);
if (count != 9)
dev_warn(device, "w1_read_block() returned %u instead of 9.\n", count);
crc = w1_calc_crc8(rom, 8);
if (rom[8] == crc) {
rom[4] = (rom[4] & ~mask) | (precision_bits & mask);
if (!w1_reset_select_slave(sl)) {
w1_write_8(dev, W1_WRITE_SCRATCHPAD);
w1_write_8(dev, rom[2]);
w1_write_8(dev, rom[3]);
w1_write_8(dev, rom[4]);
break;
}
}
}
}
mutex_unlock(&dev->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(family_data));
error:
return ret;
}
static inline int w1_DS18B20_convert_temp(u8 rom[9])
{
s16 t = le16_to_cpup((__le16 *)rom);
return t*1000/16;
}
static inline int w1_DS18S20_convert_temp(u8 rom[9])
{
int t, h;
if (!rom[7])
return 0;
if (rom[1] == 0)
t = ((s32)rom[0] >> 1)*1000;
else
t = 1000*(-1*(s32)(0x100-rom[0]) >> 1);
t -= 250;
h = 1000*((s32)rom[7] - (s32)rom[6]);
h /= (s32)rom[7];
t += h;
return t;
}
static inline int w1_convert_temp(u8 rom[9], u8 fid)
{
int i;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i)
if (w1_therm_families[i].f->fid == fid)
return w1_therm_families[i].convert(rom);
return 0;
}
static ssize_t w1_slave_store(struct device *device,
struct device_attribute *attr, const char *buf,
size_t size)
{
int val, ret;
struct w1_slave *sl = dev_to_w1_slave(device);
int i;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i) {
if (w1_therm_families[i].f->fid == sl->family->fid) {
/* zero value indicates to write current configuration to eeprom */
if (val == 0)
ret = w1_therm_families[i].eeprom(device);
else
ret = w1_therm_families[i].precision(device, val);
break;
}
}
return ret ? : size;
}
static ssize_t read_therm(struct device *device,
struct w1_slave *sl, struct therm_info *info)
{
struct w1_master *dev = sl->master;
u8 external_power;
int ret, max_trying = 10;
u8 *family_data = sl->family_data;
if (!family_data) {
ret = -ENODEV;
goto error;
}
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(family_data));
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
memset(info->rom, 0, sizeof(info->rom));
while (max_trying--) {
info->verdict = 0;
info->crc = 0;
if (!w1_reset_select_slave(sl)) {
int count = 0;
unsigned int tm = 750;
unsigned long sleep_rem;
w1_write_8(dev, W1_READ_PSUPPLY);
external_power = w1_read_8(dev);
if (w1_reset_select_slave(sl))
continue;
/* 750ms strong pullup (or delay) after the convert */
if (w1_strong_pullup == 2 ||
(!external_power && w1_strong_pullup))
w1_next_pullup(dev, tm);
w1_write_8(dev, W1_CONVERT_TEMP);
if (external_power) {
mutex_unlock(&dev->bus_mutex);
sleep_rem = msleep_interruptible(tm);
if (sleep_rem != 0) {
ret = -EINTR;
goto dec_refcnt;
}
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
} else if (!w1_strong_pullup) {
sleep_rem = msleep_interruptible(tm);
if (sleep_rem != 0) {
ret = -EINTR;
goto mt_unlock;
}
}
if (!w1_reset_select_slave(sl)) {
w1_write_8(dev, W1_READ_SCRATCHPAD);
count = w1_read_block(dev, info->rom, 9);
if (count != 9) {
dev_warn(device, "w1_read_block() "
"returned %u instead of 9.\n",
count);
}
info->crc = w1_calc_crc8(info->rom, 8);
if (info->rom[8] == info->crc)
info->verdict = 1;
}
}
if (info->verdict)
break;
}
mt_unlock:
mutex_unlock(&dev->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(family_data));
error:
return ret;
}
static ssize_t w1_slave_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
struct therm_info info;
u8 *family_data = sl->family_data;
int ret, i;
ssize_t c = PAGE_SIZE;
u8 fid = sl->family->fid;
ret = read_therm(device, sl, &info);
if (ret)
return ret;
for (i = 0; i < 9; ++i)
c -= snprintf(buf + PAGE_SIZE - c, c, "%02x ", info.rom[i]);
c -= snprintf(buf + PAGE_SIZE - c, c, ": crc=%02x %s\n",
info.crc, (info.verdict) ? "YES" : "NO");
if (info.verdict)
memcpy(family_data, info.rom, sizeof(info.rom));
else
dev_warn(device, "Read failed CRC check\n");
for (i = 0; i < 9; ++i)
c -= snprintf(buf + PAGE_SIZE - c, c, "%02x ",
((u8 *)family_data)[i]);
c -= snprintf(buf + PAGE_SIZE - c, c, "t=%d\n",
w1_convert_temp(info.rom, fid));
ret = PAGE_SIZE - c;
return ret;
}
#if IS_REACHABLE(CONFIG_HWMON)
static int w1_read_temp(struct device *device, u32 attr, int channel,
long *val)
{
struct w1_slave *sl = dev_get_drvdata(device);
struct therm_info info;
u8 fid = sl->family->fid;
int ret;
switch (attr) {
case hwmon_temp_input:
ret = read_therm(device, sl, &info);
if (ret)
return ret;
if (!info.verdict) {
ret = -EIO;
return ret;
}
*val = w1_convert_temp(info.rom, fid);
ret = 0;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
#endif
#define W1_42_CHAIN 0x99
#define W1_42_CHAIN_OFF 0x3C
#define W1_42_CHAIN_OFF_INV 0xC3
#define W1_42_CHAIN_ON 0x5A
#define W1_42_CHAIN_ON_INV 0xA5
#define W1_42_CHAIN_DONE 0x96
#define W1_42_CHAIN_DONE_INV 0x69
#define W1_42_COND_READ 0x0F
#define W1_42_SUCCESS_CONFIRM_BYTE 0xAA
#define W1_42_FINISHED_BYTE 0xFF
static ssize_t w1_seq_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
ssize_t c = PAGE_SIZE;
int rv;
int i;
u8 ack;
u64 rn;
struct w1_reg_num *reg_num;
int seq = 0;
mutex_lock(&sl->master->bus_mutex);
/* Place all devices in CHAIN state */
if (w1_reset_bus(sl->master))
goto error;
w1_write_8(sl->master, W1_SKIP_ROM);
w1_write_8(sl->master, W1_42_CHAIN);
w1_write_8(sl->master, W1_42_CHAIN_ON);
w1_write_8(sl->master, W1_42_CHAIN_ON_INV);
msleep(sl->master->pullup_duration);
/* check for acknowledgment */
ack = w1_read_8(sl->master);
if (ack != W1_42_SUCCESS_CONFIRM_BYTE)
goto error;
/* In case the bus fails to send 0xFF, limit*/
for (i = 0; i <= 64; i++) {
if (w1_reset_bus(sl->master))
goto error;
w1_write_8(sl->master, W1_42_COND_READ);
rv = w1_read_block(sl->master, (u8 *)&rn, 8);
reg_num = (struct w1_reg_num *) &rn;
if (reg_num->family == W1_42_FINISHED_BYTE)
break;
if (sl->reg_num.id == reg_num->id)
seq = i;
w1_write_8(sl->master, W1_42_CHAIN);
w1_write_8(sl->master, W1_42_CHAIN_DONE);
w1_write_8(sl->master, W1_42_CHAIN_DONE_INV);
w1_read_block(sl->master, &ack, sizeof(ack));
/* check for acknowledgment */
ack = w1_read_8(sl->master);
if (ack != W1_42_SUCCESS_CONFIRM_BYTE)
goto error;
}
/* Exit from CHAIN state */
if (w1_reset_bus(sl->master))
goto error;
w1_write_8(sl->master, W1_SKIP_ROM);
w1_write_8(sl->master, W1_42_CHAIN);
w1_write_8(sl->master, W1_42_CHAIN_OFF);
w1_write_8(sl->master, W1_42_CHAIN_OFF_INV);
/* check for acknowledgment */
ack = w1_read_8(sl->master);
if (ack != W1_42_SUCCESS_CONFIRM_BYTE)
goto error;
mutex_unlock(&sl->master->bus_mutex);
c -= snprintf(buf + PAGE_SIZE - c, c, "%d\n", seq);
return PAGE_SIZE - c;
error:
mutex_unlock(&sl->master->bus_mutex);
return -EIO;
}
static int __init w1_therm_init(void)
{
int err, i;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i) {
err = w1_register_family(w1_therm_families[i].f);
if (err)
w1_therm_families[i].broken = 1;
}
return 0;
}
static void __exit w1_therm_fini(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i)
if (!w1_therm_families[i].broken)
w1_unregister_family(w1_therm_families[i].f);
}
module_init(w1_therm_init);
module_exit(w1_therm_fini);
MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
MODULE_DESCRIPTION("Driver for 1-wire Dallas network protocol, temperature family.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS18S20));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS1822));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS18B20));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS1825));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS28EA00));