linux-sg2042/drivers/rtc/rtc-imxdi.c

866 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2010 Orex Computed Radiography
*/
/*
* This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
* to implement a Linux RTC. Times and alarms are truncated to seconds.
* Since the RTC framework performs API locking via rtc->ops_lock the
* only simultaneous accesses we need to deal with is updating DryIce
* registers while servicing an alarm.
*
* Note that reading the DSR (DryIce Status Register) automatically clears
* the WCF (Write Complete Flag). All DryIce writes are synchronized to the
* LP (Low Power) domain and set the WCF upon completion. Writes to the
* DIER (DryIce Interrupt Enable Register) are the only exception. These
* occur at normal bus speeds and do not set WCF. Periodic interrupts are
* not supported by the hardware.
*/
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/of.h>
/* DryIce Register Definitions */
#define DTCMR 0x00 /* Time Counter MSB Reg */
#define DTCLR 0x04 /* Time Counter LSB Reg */
#define DCAMR 0x08 /* Clock Alarm MSB Reg */
#define DCALR 0x0c /* Clock Alarm LSB Reg */
#define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */
#define DCR 0x10 /* Control Reg */
#define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */
#define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */
#define DCR_KSSL (1 << 27) /* Key-select soft lock */
#define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */
#define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */
#define DCR_TCHL (1 << 18) /* Timer-counter hard lock */
#define DCR_TCSL (1 << 17) /* Timer-counter soft lock */
#define DCR_FSHL (1 << 16) /* Failure state hard lock */
#define DCR_TCE (1 << 3) /* Time Counter Enable */
#define DCR_MCE (1 << 2) /* Monotonic Counter Enable */
#define DSR 0x14 /* Status Reg */
#define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */
#define DSR_ETBD (1 << 22) /* External tamper B detected */
#define DSR_ETAD (1 << 21) /* External tamper A detected */
#define DSR_EBD (1 << 20) /* External boot detected */
#define DSR_SAD (1 << 19) /* SCC alarm detected */
#define DSR_TTD (1 << 18) /* Temperature tamper detected */
#define DSR_CTD (1 << 17) /* Clock tamper detected */
#define DSR_VTD (1 << 16) /* Voltage tamper detected */
#define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */
#define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */
#define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/
#define DSR_WEF (1 << 7) /* Write Error Flag */
#define DSR_CAF (1 << 4) /* Clock Alarm Flag */
#define DSR_MCO (1 << 3) /* monotonic counter overflow */
#define DSR_TCO (1 << 2) /* time counter overflow */
#define DSR_NVF (1 << 1) /* Non-Valid Flag */
#define DSR_SVF (1 << 0) /* Security Violation Flag */
#define DIER 0x18 /* Interrupt Enable Reg (synchronous) */
#define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */
#define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */
#define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */
#define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */
#define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */
#define DMCR 0x1c /* DryIce Monotonic Counter Reg */
#define DTCR 0x28 /* DryIce Tamper Configuration Reg */
#define DTCR_MOE (1 << 9) /* monotonic overflow enabled */
#define DTCR_TOE (1 << 8) /* time overflow enabled */
#define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */
#define DTCR_ETBE (1 << 6) /* external B tamper enabled */
#define DTCR_ETAE (1 << 5) /* external A tamper enabled */
#define DTCR_EBE (1 << 4) /* external boot tamper enabled */
#define DTCR_SAIE (1 << 3) /* SCC enabled */
#define DTCR_TTE (1 << 2) /* temperature tamper enabled */
#define DTCR_CTE (1 << 1) /* clock tamper enabled */
#define DTCR_VTE (1 << 0) /* voltage tamper enabled */
#define DGPR 0x3c /* DryIce General Purpose Reg */
/**
* struct imxdi_dev - private imxdi rtc data
* @pdev: pionter to platform dev
* @rtc: pointer to rtc struct
* @ioaddr: IO registers pointer
* @clk: input reference clock
* @dsr: copy of the DSR register
* @irq_lock: interrupt enable register (DIER) lock
* @write_wait: registers write complete queue
* @write_mutex: serialize registers write
* @work: schedule alarm work
*/
struct imxdi_dev {
struct platform_device *pdev;
struct rtc_device *rtc;
void __iomem *ioaddr;
struct clk *clk;
u32 dsr;
spinlock_t irq_lock;
wait_queue_head_t write_wait;
struct mutex write_mutex;
struct work_struct work;
};
/* Some background:
*
* The DryIce unit is a complex security/tamper monitor device. To be able do
* its job in a useful manner it runs a bigger statemachine to bring it into
* security/tamper failure state and once again to bring it out of this state.
*
* This unit can be in one of three states:
*
* - "NON-VALID STATE"
* always after the battery power was removed
* - "FAILURE STATE"
* if one of the enabled security events has happened
* - "VALID STATE"
* if the unit works as expected
*
* Everything stops when the unit enters the failure state including the RTC
* counter (to be able to detect the time the security event happened).
*
* The following events (when enabled) let the DryIce unit enter the failure
* state:
*
* - wire-mesh-tamper detect
* - external tamper B detect
* - external tamper A detect
* - temperature tamper detect
* - clock tamper detect
* - voltage tamper detect
* - RTC counter overflow
* - monotonic counter overflow
* - external boot
*
* If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
* can only detect this state. In this case the unit is completely locked and
* must force a second "SYSTEM POR" to bring the DryIce into the
* "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
* If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
* a battery power cycle is required.
*
* In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
* and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
* task, we bring back this unit into life.
*/
/*
* Do a write into the unit without interrupt support.
* We do not need to check the WEF here, because the only reason this kind of
* write error can happen is if we write to the unit twice within the 122 us
* interval. This cannot happen, since we are using this function only while
* setting up the unit.
*/
static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
unsigned reg)
{
/* do the register write */
writel(val, imxdi->ioaddr + reg);
/*
* now it takes four 32,768 kHz clock cycles to take
* the change into effect = 122 us
*/
usleep_range(130, 200);
}
static void di_report_tamper_info(struct imxdi_dev *imxdi, u32 dsr)
{
u32 dtcr;
dtcr = readl(imxdi->ioaddr + DTCR);
dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
/* the following flags force a transition into the "FAILURE STATE" */
if (dsr & DSR_VTD)
dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
dtcr & DTCR_VTE ? "" : "Spurious ");
if (dsr & DSR_CTD)
dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
dtcr & DTCR_CTE ? "" : "Spurious ");
if (dsr & DSR_TTD)
dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
dtcr & DTCR_TTE ? "" : "Spurious ");
if (dsr & DSR_SAD)
dev_emerg(&imxdi->pdev->dev,
"%sSecure Controller Alarm Event\n",
dtcr & DTCR_SAIE ? "" : "Spurious ");
if (dsr & DSR_EBD)
dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
dtcr & DTCR_EBE ? "" : "Spurious ");
if (dsr & DSR_ETAD)
dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
dtcr & DTCR_ETAE ? "" : "Spurious ");
if (dsr & DSR_ETBD)
dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
dtcr & DTCR_ETBE ? "" : "Spurious ");
if (dsr & DSR_WTD)
dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
dtcr & DTCR_WTE ? "" : "Spurious ");
if (dsr & DSR_MCO)
dev_emerg(&imxdi->pdev->dev,
"%sMonotonic-counter Overflow Event\n",
dtcr & DTCR_MOE ? "" : "Spurious ");
if (dsr & DSR_TCO)
dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
dtcr & DTCR_TOE ? "" : "Spurious ");
}
static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
const char *power_supply)
{
dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
power_supply);
}
static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
{
u32 dcr;
dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
/* report the cause */
di_report_tamper_info(imxdi, dsr);
dcr = readl(imxdi->ioaddr + DCR);
if (dcr & DCR_FSHL) {
/* we are out of luck */
di_what_is_to_be_done(imxdi, "battery");
return -ENODEV;
}
/*
* with the next SYSTEM POR we will transit from the "FAILURE STATE"
* into the "NON-VALID STATE" + "FAILURE STATE"
*/
di_what_is_to_be_done(imxdi, "main");
return -ENODEV;
}
static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
{
/* initialize alarm */
di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
di_write_busy_wait(imxdi, 0, DCALR);
/* clear alarm flag */
if (dsr & DSR_CAF)
di_write_busy_wait(imxdi, DSR_CAF, DSR);
return 0;
}
static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
{
u32 dcr, sec;
/*
* lets disable all sources which can force the DryIce unit into
* the "FAILURE STATE" for now
*/
di_write_busy_wait(imxdi, 0x00000000, DTCR);
/* and lets protect them at runtime from any change */
di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
sec = readl(imxdi->ioaddr + DTCMR);
if (sec != 0)
dev_warn(&imxdi->pdev->dev,
"The security violation has happened at %u seconds\n",
sec);
/*
* the timer cannot be set/modified if
* - the TCHL or TCSL bit is set in DCR
*/
dcr = readl(imxdi->ioaddr + DCR);
if (!(dcr & DCR_TCE)) {
if (dcr & DCR_TCHL) {
/* we are out of luck */
di_what_is_to_be_done(imxdi, "battery");
return -ENODEV;
}
if (dcr & DCR_TCSL) {
di_what_is_to_be_done(imxdi, "main");
return -ENODEV;
}
}
/*
* - the timer counter stops/is stopped if
* - its overflow flag is set (TCO in DSR)
* -> clear overflow bit to make it count again
* - NVF is set in DSR
* -> clear non-valid bit to make it count again
* - its TCE (DCR) is cleared
* -> set TCE to make it count
* - it was never set before
* -> write a time into it (required again if the NVF was set)
*/
/* state handled */
di_write_busy_wait(imxdi, DSR_NVF, DSR);
/* clear overflow flag */
di_write_busy_wait(imxdi, DSR_TCO, DSR);
/* enable the counter */
di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
/* set and trigger it to make it count */
di_write_busy_wait(imxdi, sec, DTCMR);
/* now prepare for the valid state */
return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
}
static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
{
u32 dcr;
/*
* now we must first remove the tamper sources in order to get the
* device out of the "FAILURE STATE"
* To disable any of the following sources we need to modify the DTCR
*/
if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
dcr = __raw_readl(imxdi->ioaddr + DCR);
if (dcr & DCR_TDCHL) {
/*
* the tamper register is locked. We cannot disable the
* tamper detection. The TDCHL can only be reset by a
* DRYICE POR, but we cannot force a DRYICE POR in
* softwere because we are still in "FAILURE STATE".
* We need a DRYICE POR via battery power cycling....
*/
/*
* out of luck!
* we cannot disable them without a DRYICE POR
*/
di_what_is_to_be_done(imxdi, "battery");
return -ENODEV;
}
if (dcr & DCR_TDCSL) {
/* a soft lock can be removed by a SYSTEM POR */
di_what_is_to_be_done(imxdi, "main");
return -ENODEV;
}
}
/* disable all sources */
di_write_busy_wait(imxdi, 0x00000000, DTCR);
/* clear the status bits now */
di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
DSR_MCO | DSR_TCO), DSR);
dsr = readl(imxdi->ioaddr + DSR);
if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
DSR_WCF | DSR_WEF)) != 0)
dev_warn(&imxdi->pdev->dev,
"There are still some sources of pain in DSR: %08x!\n",
dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
DSR_WCF | DSR_WEF));
/*
* now we are trying to clear the "Security-violation flag" to
* get the DryIce out of this state
*/
di_write_busy_wait(imxdi, DSR_SVF, DSR);
/* success? */
dsr = readl(imxdi->ioaddr + DSR);
if (dsr & DSR_SVF) {
dev_crit(&imxdi->pdev->dev,
"Cannot clear the security violation flag. We are ending up in an endless loop!\n");
/* last resort */
di_what_is_to_be_done(imxdi, "battery");
return -ENODEV;
}
/*
* now we have left the "FAILURE STATE" and ending up in the
* "NON-VALID STATE" time to recover everything
*/
return di_handle_invalid_state(imxdi, dsr);
}
static int di_handle_state(struct imxdi_dev *imxdi)
{
int rc;
u32 dsr;
dsr = readl(imxdi->ioaddr + DSR);
switch (dsr & (DSR_NVF | DSR_SVF)) {
case DSR_NVF:
dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
rc = di_handle_invalid_state(imxdi, dsr);
break;
case DSR_SVF:
dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
rc = di_handle_failure_state(imxdi, dsr);
break;
case DSR_NVF | DSR_SVF:
dev_warn(&imxdi->pdev->dev,
"Failure+Invalid stated unit detected\n");
rc = di_handle_invalid_and_failure_state(imxdi, dsr);
break;
default:
dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
rc = di_handle_valid_state(imxdi, dsr);
}
return rc;
}
/*
* enable a dryice interrupt
*/
static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
{
unsigned long flags;
spin_lock_irqsave(&imxdi->irq_lock, flags);
writel(readl(imxdi->ioaddr + DIER) | intr,
imxdi->ioaddr + DIER);
spin_unlock_irqrestore(&imxdi->irq_lock, flags);
}
/*
* disable a dryice interrupt
*/
static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
{
unsigned long flags;
spin_lock_irqsave(&imxdi->irq_lock, flags);
writel(readl(imxdi->ioaddr + DIER) & ~intr,
imxdi->ioaddr + DIER);
spin_unlock_irqrestore(&imxdi->irq_lock, flags);
}
/*
* This function attempts to clear the dryice write-error flag.
*
* A dryice write error is similar to a bus fault and should not occur in
* normal operation. Clearing the flag requires another write, so the root
* cause of the problem may need to be fixed before the flag can be cleared.
*/
static void clear_write_error(struct imxdi_dev *imxdi)
{
int cnt;
dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
/* clear the write error flag */
writel(DSR_WEF, imxdi->ioaddr + DSR);
/* wait for it to take effect */
for (cnt = 0; cnt < 1000; cnt++) {
if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
return;
udelay(10);
}
dev_err(&imxdi->pdev->dev,
"ERROR: Cannot clear write-error flag!\n");
}
/*
* Write a dryice register and wait until it completes.
*
* This function uses interrupts to determine when the
* write has completed.
*/
static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
{
int ret;
int rc = 0;
/* serialize register writes */
mutex_lock(&imxdi->write_mutex);
/* enable the write-complete interrupt */
di_int_enable(imxdi, DIER_WCIE);
imxdi->dsr = 0;
/* do the register write */
writel(val, imxdi->ioaddr + reg);
/* wait for the write to finish */
ret = wait_event_interruptible_timeout(imxdi->write_wait,
imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
if (ret < 0) {
rc = ret;
goto out;
} else if (ret == 0) {
dev_warn(&imxdi->pdev->dev,
"Write-wait timeout "
"val = 0x%08x reg = 0x%08x\n", val, reg);
}
/* check for write error */
if (imxdi->dsr & DSR_WEF) {
clear_write_error(imxdi);
rc = -EIO;
}
out:
mutex_unlock(&imxdi->write_mutex);
return rc;
}
/*
* read the seconds portion of the current time from the dryice time counter
*/
static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct imxdi_dev *imxdi = dev_get_drvdata(dev);
unsigned long now;
now = readl(imxdi->ioaddr + DTCMR);
rtc_time64_to_tm(now, tm);
return 0;
}
/*
* set the seconds portion of dryice time counter and clear the
* fractional part.
*/
static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct imxdi_dev *imxdi = dev_get_drvdata(dev);
u32 dcr, dsr;
int rc;
dcr = readl(imxdi->ioaddr + DCR);
dsr = readl(imxdi->ioaddr + DSR);
if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
if (dcr & DCR_TCHL) {
/* we are even more out of luck */
di_what_is_to_be_done(imxdi, "battery");
return -EPERM;
}
if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
/* we are out of luck for now */
di_what_is_to_be_done(imxdi, "main");
return -EPERM;
}
}
/* zero the fractional part first */
rc = di_write_wait(imxdi, 0, DTCLR);
if (rc != 0)
return rc;
rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR);
if (rc != 0)
return rc;
return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
}
static int dryice_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct imxdi_dev *imxdi = dev_get_drvdata(dev);
if (enabled)
di_int_enable(imxdi, DIER_CAIE);
else
di_int_disable(imxdi, DIER_CAIE);
return 0;
}
/*
* read the seconds portion of the alarm register.
* the fractional part of the alarm register is always zero.
*/
static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct imxdi_dev *imxdi = dev_get_drvdata(dev);
u32 dcamr;
dcamr = readl(imxdi->ioaddr + DCAMR);
rtc_time64_to_tm(dcamr, &alarm->time);
/* alarm is enabled if the interrupt is enabled */
alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
/* don't allow the DSR read to mess up DSR_WCF */
mutex_lock(&imxdi->write_mutex);
/* alarm is pending if the alarm flag is set */
alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
mutex_unlock(&imxdi->write_mutex);
return 0;
}
/*
* set the seconds portion of dryice alarm register
*/
static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct imxdi_dev *imxdi = dev_get_drvdata(dev);
int rc;
/* write the new alarm time */
rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR);
if (rc)
return rc;
if (alarm->enabled)
di_int_enable(imxdi, DIER_CAIE); /* enable alarm intr */
else
di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
return 0;
}
static const struct rtc_class_ops dryice_rtc_ops = {
.read_time = dryice_rtc_read_time,
.set_time = dryice_rtc_set_time,
.alarm_irq_enable = dryice_rtc_alarm_irq_enable,
.read_alarm = dryice_rtc_read_alarm,
.set_alarm = dryice_rtc_set_alarm,
};
/*
* interrupt handler for dryice "normal" and security violation interrupt
*/
static irqreturn_t dryice_irq(int irq, void *dev_id)
{
struct imxdi_dev *imxdi = dev_id;
u32 dsr, dier;
irqreturn_t rc = IRQ_NONE;
dier = readl(imxdi->ioaddr + DIER);
dsr = readl(imxdi->ioaddr + DSR);
/* handle the security violation event */
if (dier & DIER_SVIE) {
if (dsr & DSR_SVF) {
/*
* Disable the interrupt when this kind of event has
* happened.
* There cannot be more than one event of this type,
* because it needs a complex state change
* including a main power cycle to get again out of
* this state.
*/
di_int_disable(imxdi, DIER_SVIE);
/* report the violation */
di_report_tamper_info(imxdi, dsr);
rc = IRQ_HANDLED;
}
}
/* handle write complete and write error cases */
if (dier & DIER_WCIE) {
/*If the write wait queue is empty then there is no pending
operations. It means the interrupt is for DryIce -Security.
IRQ must be returned as none.*/
if (list_empty_careful(&imxdi->write_wait.head))
return rc;
/* DSR_WCF clears itself on DSR read */
if (dsr & (DSR_WCF | DSR_WEF)) {
/* mask the interrupt */
di_int_disable(imxdi, DIER_WCIE);
/* save the dsr value for the wait queue */
imxdi->dsr |= dsr;
wake_up_interruptible(&imxdi->write_wait);
rc = IRQ_HANDLED;
}
}
/* handle the alarm case */
if (dier & DIER_CAIE) {
/* DSR_WCF clears itself on DSR read */
if (dsr & DSR_CAF) {
/* mask the interrupt */
di_int_disable(imxdi, DIER_CAIE);
/* finish alarm in user context */
schedule_work(&imxdi->work);
rc = IRQ_HANDLED;
}
}
return rc;
}
/*
* post the alarm event from user context so it can sleep
* on the write completion.
*/
static void dryice_work(struct work_struct *work)
{
struct imxdi_dev *imxdi = container_of(work,
struct imxdi_dev, work);
/* dismiss the interrupt (ignore error) */
di_write_wait(imxdi, DSR_CAF, DSR);
/* pass the alarm event to the rtc framework. */
rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
}
/*
* probe for dryice rtc device
*/
static int __init dryice_rtc_probe(struct platform_device *pdev)
{
struct imxdi_dev *imxdi;
int norm_irq, sec_irq;
int rc;
imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
if (!imxdi)
return -ENOMEM;
imxdi->pdev = pdev;
imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(imxdi->ioaddr))
return PTR_ERR(imxdi->ioaddr);
spin_lock_init(&imxdi->irq_lock);
norm_irq = platform_get_irq(pdev, 0);
if (norm_irq < 0)
return norm_irq;
/* the 2nd irq is the security violation irq
* make this optional, don't break the device tree ABI
*/
sec_irq = platform_get_irq(pdev, 1);
if (sec_irq <= 0)
sec_irq = IRQ_NOTCONNECTED;
init_waitqueue_head(&imxdi->write_wait);
INIT_WORK(&imxdi->work, dryice_work);
mutex_init(&imxdi->write_mutex);
imxdi->rtc = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(imxdi->rtc))
return PTR_ERR(imxdi->rtc);
imxdi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(imxdi->clk))
return PTR_ERR(imxdi->clk);
rc = clk_prepare_enable(imxdi->clk);
if (rc)
return rc;
/*
* Initialize dryice hardware
*/
/* mask all interrupts */
writel(0, imxdi->ioaddr + DIER);
rc = di_handle_state(imxdi);
if (rc != 0)
goto err;
rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
IRQF_SHARED, pdev->name, imxdi);
if (rc) {
dev_warn(&pdev->dev, "interrupt not available.\n");
goto err;
}
rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
IRQF_SHARED, pdev->name, imxdi);
if (rc) {
dev_warn(&pdev->dev, "security violation interrupt not available.\n");
/* this is not an error, see above */
}
platform_set_drvdata(pdev, imxdi);
imxdi->rtc->ops = &dryice_rtc_ops;
imxdi->rtc->range_max = U32_MAX;
rc = rtc_register_device(imxdi->rtc);
if (rc)
goto err;
return 0;
err:
clk_disable_unprepare(imxdi->clk);
return rc;
}
static int __exit dryice_rtc_remove(struct platform_device *pdev)
{
struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
flush_work(&imxdi->work);
/* mask all interrupts */
writel(0, imxdi->ioaddr + DIER);
clk_disable_unprepare(imxdi->clk);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id dryice_dt_ids[] = {
{ .compatible = "fsl,imx25-rtc" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, dryice_dt_ids);
#endif
static struct platform_driver dryice_rtc_driver = {
.driver = {
.name = "imxdi_rtc",
.of_match_table = of_match_ptr(dryice_dt_ids),
},
.remove = __exit_p(dryice_rtc_remove),
};
module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");