linux-sg2042/drivers/media/i2c/s5k5baf.c

2064 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Samsung S5K5BAF UXGA 1/5" 2M CMOS Image Sensor
* with embedded SoC ISP.
*
* Copyright (C) 2013, Samsung Electronics Co., Ltd.
* Andrzej Hajda <a.hajda@samsung.com>
*
* Based on S5K6AA driver authored by Sylwester Nawrocki
* Copyright (C) 2013, Samsung Electronics Co., Ltd.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/media.h>
#include <linux/module.h>
#include <linux/of_gpio.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <media/media-entity.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-mediabus.h>
#include <media/v4l2-fwnode.h>
static int debug;
module_param(debug, int, 0644);
#define S5K5BAF_DRIVER_NAME "s5k5baf"
#define S5K5BAF_DEFAULT_MCLK_FREQ 24000000U
#define S5K5BAF_CLK_NAME "mclk"
#define S5K5BAF_FW_FILENAME "s5k5baf-cfg.bin"
#define S5K5BAF_FW_TAG "SF00"
#define S5K5BAG_FW_TAG_LEN 2
#define S5K5BAG_FW_MAX_COUNT 16
#define S5K5BAF_CIS_WIDTH 1600
#define S5K5BAF_CIS_HEIGHT 1200
#define S5K5BAF_WIN_WIDTH_MIN 8
#define S5K5BAF_WIN_HEIGHT_MIN 8
#define S5K5BAF_GAIN_RED_DEF 127
#define S5K5BAF_GAIN_GREEN_DEF 95
#define S5K5BAF_GAIN_BLUE_DEF 180
/* Default number of MIPI CSI-2 data lanes used */
#define S5K5BAF_DEF_NUM_LANES 1
#define AHB_MSB_ADDR_PTR 0xfcfc
/*
* Register interface pages (the most significant word of the address)
*/
#define PAGE_IF_HW 0xd000
#define PAGE_IF_SW 0x7000
/*
* H/W register Interface (PAGE_IF_HW)
*/
#define REG_SW_LOAD_COMPLETE 0x0014
#define REG_CMDWR_PAGE 0x0028
#define REG_CMDWR_ADDR 0x002a
#define REG_CMDRD_PAGE 0x002c
#define REG_CMDRD_ADDR 0x002e
#define REG_CMD_BUF 0x0f12
#define REG_SET_HOST_INT 0x1000
#define REG_CLEAR_HOST_INT 0x1030
#define REG_PATTERN_SET 0x3100
#define REG_PATTERN_WIDTH 0x3118
#define REG_PATTERN_HEIGHT 0x311a
#define REG_PATTERN_PARAM 0x311c
/*
* S/W register interface (PAGE_IF_SW)
*/
/* Firmware revision information */
#define REG_FW_APIVER 0x012e
#define S5K5BAF_FW_APIVER 0x0001
#define REG_FW_REVISION 0x0130
#define REG_FW_SENSOR_ID 0x0152
/* Initialization parameters */
/* Master clock frequency in KHz */
#define REG_I_INCLK_FREQ_L 0x01b8
#define REG_I_INCLK_FREQ_H 0x01ba
#define MIN_MCLK_FREQ_KHZ 6000U
#define MAX_MCLK_FREQ_KHZ 48000U
#define REG_I_USE_NPVI_CLOCKS 0x01c6
#define NPVI_CLOCKS 1
#define REG_I_USE_NMIPI_CLOCKS 0x01c8
#define NMIPI_CLOCKS 1
#define REG_I_BLOCK_INTERNAL_PLL_CALC 0x01ca
/* Clock configurations, n = 0..2. REG_I_* frequency unit is 4 kHz. */
#define REG_I_OPCLK_4KHZ(n) ((n) * 6 + 0x01cc)
#define REG_I_MIN_OUTRATE_4KHZ(n) ((n) * 6 + 0x01ce)
#define REG_I_MAX_OUTRATE_4KHZ(n) ((n) * 6 + 0x01d0)
#define SCLK_PVI_FREQ 24000
#define SCLK_MIPI_FREQ 48000
#define PCLK_MIN_FREQ 6000
#define PCLK_MAX_FREQ 48000
#define REG_I_USE_REGS_API 0x01de
#define REG_I_INIT_PARAMS_UPDATED 0x01e0
#define REG_I_ERROR_INFO 0x01e2
/* General purpose parameters */
#define REG_USER_BRIGHTNESS 0x01e4
#define REG_USER_CONTRAST 0x01e6
#define REG_USER_SATURATION 0x01e8
#define REG_USER_SHARPBLUR 0x01ea
#define REG_G_SPEC_EFFECTS 0x01ee
#define REG_G_ENABLE_PREV 0x01f0
#define REG_G_ENABLE_PREV_CHG 0x01f2
#define REG_G_NEW_CFG_SYNC 0x01f8
#define REG_G_PREVREQ_IN_WIDTH 0x01fa
#define REG_G_PREVREQ_IN_HEIGHT 0x01fc
#define REG_G_PREVREQ_IN_XOFFS 0x01fe
#define REG_G_PREVREQ_IN_YOFFS 0x0200
#define REG_G_PREVZOOM_IN_WIDTH 0x020a
#define REG_G_PREVZOOM_IN_HEIGHT 0x020c
#define REG_G_PREVZOOM_IN_XOFFS 0x020e
#define REG_G_PREVZOOM_IN_YOFFS 0x0210
#define REG_G_INPUTS_CHANGE_REQ 0x021a
#define REG_G_ACTIVE_PREV_CFG 0x021c
#define REG_G_PREV_CFG_CHG 0x021e
#define REG_G_PREV_OPEN_AFTER_CH 0x0220
#define REG_G_PREV_CFG_ERROR 0x0222
#define CFG_ERROR_RANGE 0x0b
#define REG_G_PREV_CFG_BYPASS_CHANGED 0x022a
#define REG_G_ACTUAL_P_FR_TIME 0x023a
#define REG_G_ACTUAL_P_OUT_RATE 0x023c
#define REG_G_ACTUAL_C_FR_TIME 0x023e
#define REG_G_ACTUAL_C_OUT_RATE 0x0240
/* Preview control section. n = 0...4. */
#define PREG(n, x) ((n) * 0x26 + x)
#define REG_P_OUT_WIDTH(n) PREG(n, 0x0242)
#define REG_P_OUT_HEIGHT(n) PREG(n, 0x0244)
#define REG_P_FMT(n) PREG(n, 0x0246)
#define REG_P_MAX_OUT_RATE(n) PREG(n, 0x0248)
#define REG_P_MIN_OUT_RATE(n) PREG(n, 0x024a)
#define REG_P_PVI_MASK(n) PREG(n, 0x024c)
#define PVI_MASK_MIPI 0x52
#define REG_P_CLK_INDEX(n) PREG(n, 0x024e)
#define CLK_PVI_INDEX 0
#define CLK_MIPI_INDEX NPVI_CLOCKS
#define REG_P_FR_RATE_TYPE(n) PREG(n, 0x0250)
#define FR_RATE_DYNAMIC 0
#define FR_RATE_FIXED 1
#define FR_RATE_FIXED_ACCURATE 2
#define REG_P_FR_RATE_Q_TYPE(n) PREG(n, 0x0252)
#define FR_RATE_Q_DYNAMIC 0
#define FR_RATE_Q_BEST_FRRATE 1 /* Binning enabled */
#define FR_RATE_Q_BEST_QUALITY 2 /* Binning disabled */
/* Frame period in 0.1 ms units */
#define REG_P_MAX_FR_TIME(n) PREG(n, 0x0254)
#define REG_P_MIN_FR_TIME(n) PREG(n, 0x0256)
#define S5K5BAF_MIN_FR_TIME 333 /* x100 us */
#define S5K5BAF_MAX_FR_TIME 6500 /* x100 us */
/* The below 5 registers are for "device correction" values */
#define REG_P_SATURATION(n) PREG(n, 0x0258)
#define REG_P_SHARP_BLUR(n) PREG(n, 0x025a)
#define REG_P_GLAMOUR(n) PREG(n, 0x025c)
#define REG_P_COLORTEMP(n) PREG(n, 0x025e)
#define REG_P_GAMMA_INDEX(n) PREG(n, 0x0260)
#define REG_P_PREV_MIRROR(n) PREG(n, 0x0262)
#define REG_P_CAP_MIRROR(n) PREG(n, 0x0264)
#define REG_P_CAP_ROTATION(n) PREG(n, 0x0266)
/* Extended image property controls */
/* Exposure time in 10 us units */
#define REG_SF_USR_EXPOSURE_L 0x03bc
#define REG_SF_USR_EXPOSURE_H 0x03be
#define REG_SF_USR_EXPOSURE_CHG 0x03c0
#define REG_SF_USR_TOT_GAIN 0x03c2
#define REG_SF_USR_TOT_GAIN_CHG 0x03c4
#define REG_SF_RGAIN 0x03c6
#define REG_SF_RGAIN_CHG 0x03c8
#define REG_SF_GGAIN 0x03ca
#define REG_SF_GGAIN_CHG 0x03cc
#define REG_SF_BGAIN 0x03ce
#define REG_SF_BGAIN_CHG 0x03d0
#define REG_SF_WBGAIN_CHG 0x03d2
#define REG_SF_FLICKER_QUANT 0x03d4
#define REG_SF_FLICKER_QUANT_CHG 0x03d6
/* Output interface (parallel/MIPI) setup */
#define REG_OIF_EN_MIPI_LANES 0x03f2
#define REG_OIF_EN_PACKETS 0x03f4
#define EN_PACKETS_CSI2 0xc3
#define REG_OIF_CFG_CHG 0x03f6
/* Auto-algorithms enable mask */
#define REG_DBG_AUTOALG_EN 0x03f8
#define AALG_ALL_EN BIT(0)
#define AALG_AE_EN BIT(1)
#define AALG_DIVLEI_EN BIT(2)
#define AALG_WB_EN BIT(3)
#define AALG_USE_WB_FOR_ISP BIT(4)
#define AALG_FLICKER_EN BIT(5)
#define AALG_FIT_EN BIT(6)
#define AALG_WRHW_EN BIT(7)
/* Pointers to color correction matrices */
#define REG_PTR_CCM_HORIZON 0x06d0
#define REG_PTR_CCM_INCANDESCENT 0x06d4
#define REG_PTR_CCM_WARM_WHITE 0x06d8
#define REG_PTR_CCM_COOL_WHITE 0x06dc
#define REG_PTR_CCM_DL50 0x06e0
#define REG_PTR_CCM_DL65 0x06e4
#define REG_PTR_CCM_OUTDOOR 0x06ec
#define REG_ARR_CCM(n) (0x2800 + 36 * (n))
static const char * const s5k5baf_supply_names[] = {
"vdda", /* Analog power supply 2.8V (2.6V to 3.0V) */
"vddreg", /* Regulator input power supply 1.8V (1.7V to 1.9V)
or 2.8V (2.6V to 3.0) */
"vddio", /* I/O power supply 1.8V (1.65V to 1.95V)
or 2.8V (2.5V to 3.1V) */
};
#define S5K5BAF_NUM_SUPPLIES ARRAY_SIZE(s5k5baf_supply_names)
struct s5k5baf_gpio {
int gpio;
int level;
};
enum s5k5baf_gpio_id {
STBY,
RSET,
NUM_GPIOS,
};
#define PAD_CIS 0
#define PAD_OUT 1
#define NUM_CIS_PADS 1
#define NUM_ISP_PADS 2
struct s5k5baf_pixfmt {
u32 code;
u32 colorspace;
/* REG_P_FMT(x) register value */
u16 reg_p_fmt;
};
struct s5k5baf_ctrls {
struct v4l2_ctrl_handler handler;
struct { /* Auto / manual white balance cluster */
struct v4l2_ctrl *awb;
struct v4l2_ctrl *gain_red;
struct v4l2_ctrl *gain_blue;
};
struct { /* Mirror cluster */
struct v4l2_ctrl *hflip;
struct v4l2_ctrl *vflip;
};
struct { /* Auto exposure / manual exposure and gain cluster */
struct v4l2_ctrl *auto_exp;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *gain;
};
};
enum {
S5K5BAF_FW_ID_PATCH,
S5K5BAF_FW_ID_CCM,
S5K5BAF_FW_ID_CIS,
};
struct s5k5baf_fw {
u16 count;
struct {
u16 id;
u16 offset;
} seq[];
};
struct s5k5baf {
struct s5k5baf_gpio gpios[NUM_GPIOS];
enum v4l2_mbus_type bus_type;
u8 nlanes;
struct regulator_bulk_data supplies[S5K5BAF_NUM_SUPPLIES];
struct clk *clock;
u32 mclk_frequency;
struct s5k5baf_fw *fw;
struct v4l2_subdev cis_sd;
struct media_pad cis_pad;
struct v4l2_subdev sd;
struct media_pad pads[NUM_ISP_PADS];
/* protects the struct members below */
struct mutex lock;
int error;
struct v4l2_rect crop_sink;
struct v4l2_rect compose;
struct v4l2_rect crop_source;
/* index to s5k5baf_formats array */
int pixfmt;
/* actual frame interval in 100us */
u16 fiv;
/* requested frame interval in 100us */
u16 req_fiv;
/* cache for REG_DBG_AUTOALG_EN register */
u16 auto_alg;
struct s5k5baf_ctrls ctrls;
unsigned int streaming:1;
unsigned int apply_cfg:1;
unsigned int apply_crop:1;
unsigned int valid_auto_alg:1;
unsigned int power;
};
static const struct s5k5baf_pixfmt s5k5baf_formats[] = {
{ MEDIA_BUS_FMT_VYUY8_2X8, V4L2_COLORSPACE_JPEG, 5 },
/* range 16-240 */
{ MEDIA_BUS_FMT_VYUY8_2X8, V4L2_COLORSPACE_REC709, 6 },
{ MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_JPEG, 0 },
};
static struct v4l2_rect s5k5baf_cis_rect = {
0, 0, S5K5BAF_CIS_WIDTH, S5K5BAF_CIS_HEIGHT
};
/* Setfile contains set of I2C command sequences. Each sequence has its ID.
* setfile format:
* u8 magic[4];
* u16 count; number of sequences
* struct {
* u16 id; sequence id
* u16 offset; sequence offset in data array
* } seq[count];
* u16 data[*]; array containing sequences
*
*/
static int s5k5baf_fw_parse(struct device *dev, struct s5k5baf_fw **fw,
size_t count, const __le16 *data)
{
struct s5k5baf_fw *f;
u16 *d, i, *end;
int ret;
if (count < S5K5BAG_FW_TAG_LEN + 1) {
dev_err(dev, "firmware file too short (%zu)\n", count);
return -EINVAL;
}
ret = memcmp(data, S5K5BAF_FW_TAG, S5K5BAG_FW_TAG_LEN * sizeof(u16));
if (ret != 0) {
dev_err(dev, "invalid firmware magic number\n");
return -EINVAL;
}
data += S5K5BAG_FW_TAG_LEN;
count -= S5K5BAG_FW_TAG_LEN;
d = devm_kcalloc(dev, count, sizeof(u16), GFP_KERNEL);
if (!d)
return -ENOMEM;
for (i = 0; i < count; ++i)
d[i] = le16_to_cpu(data[i]);
f = (struct s5k5baf_fw *)d;
if (count < 1 + 2 * f->count) {
dev_err(dev, "invalid firmware header (count=%d size=%zu)\n",
f->count, 2 * (count + S5K5BAG_FW_TAG_LEN));
return -EINVAL;
}
end = d + count;
d += 1 + 2 * f->count;
for (i = 0; i < f->count; ++i) {
if (f->seq[i].offset + d <= end)
continue;
dev_err(dev, "invalid firmware header (seq=%d)\n", i);
return -EINVAL;
}
*fw = f;
return 0;
}
static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct s5k5baf, ctrls.handler)->sd;
}
static inline bool s5k5baf_is_cis_subdev(struct v4l2_subdev *sd)
{
return sd->entity.function == MEDIA_ENT_F_CAM_SENSOR;
}
static inline struct s5k5baf *to_s5k5baf(struct v4l2_subdev *sd)
{
if (s5k5baf_is_cis_subdev(sd))
return container_of(sd, struct s5k5baf, cis_sd);
else
return container_of(sd, struct s5k5baf, sd);
}
static u16 s5k5baf_i2c_read(struct s5k5baf *state, u16 addr)
{
struct i2c_client *c = v4l2_get_subdevdata(&state->sd);
__be16 w, r;
u16 res;
struct i2c_msg msg[] = {
{ .addr = c->addr, .flags = 0,
.len = 2, .buf = (u8 *)&w },
{ .addr = c->addr, .flags = I2C_M_RD,
.len = 2, .buf = (u8 *)&r },
};
int ret;
if (state->error)
return 0;
w = cpu_to_be16(addr);
ret = i2c_transfer(c->adapter, msg, 2);
res = be16_to_cpu(r);
v4l2_dbg(3, debug, c, "i2c_read: 0x%04x : 0x%04x\n", addr, res);
if (ret != 2) {
v4l2_err(c, "i2c_read: error during transfer (%d)\n", ret);
state->error = ret;
}
return res;
}
static void s5k5baf_i2c_write(struct s5k5baf *state, u16 addr, u16 val)
{
u8 buf[4] = { addr >> 8, addr & 0xFF, val >> 8, val & 0xFF };
struct i2c_client *c = v4l2_get_subdevdata(&state->sd);
int ret;
if (state->error)
return;
ret = i2c_master_send(c, buf, 4);
v4l2_dbg(3, debug, c, "i2c_write: 0x%04x : 0x%04x\n", addr, val);
if (ret != 4) {
v4l2_err(c, "i2c_write: error during transfer (%d)\n", ret);
state->error = ret;
}
}
static u16 s5k5baf_read(struct s5k5baf *state, u16 addr)
{
s5k5baf_i2c_write(state, REG_CMDRD_ADDR, addr);
return s5k5baf_i2c_read(state, REG_CMD_BUF);
}
static void s5k5baf_write(struct s5k5baf *state, u16 addr, u16 val)
{
s5k5baf_i2c_write(state, REG_CMDWR_ADDR, addr);
s5k5baf_i2c_write(state, REG_CMD_BUF, val);
}
static void s5k5baf_write_arr_seq(struct s5k5baf *state, u16 addr,
u16 count, const u16 *seq)
{
struct i2c_client *c = v4l2_get_subdevdata(&state->sd);
__be16 buf[65];
s5k5baf_i2c_write(state, REG_CMDWR_ADDR, addr);
if (state->error)
return;
v4l2_dbg(3, debug, c, "i2c_write_seq(count=%d): %*ph\n", count,
min(2 * count, 64), seq);
buf[0] = cpu_to_be16(REG_CMD_BUF);
while (count > 0) {
int n = min_t(int, count, ARRAY_SIZE(buf) - 1);
int ret, i;
for (i = 1; i <= n; ++i)
buf[i] = cpu_to_be16(*seq++);
i *= 2;
ret = i2c_master_send(c, (char *)buf, i);
if (ret != i) {
v4l2_err(c, "i2c_write_seq: error during transfer (%d)\n", ret);
state->error = ret;
break;
}
count -= n;
}
}
#define s5k5baf_write_seq(state, addr, seq...) \
s5k5baf_write_arr_seq(state, addr, sizeof((char[]){ seq }), \
(const u16 []){ seq })
/* add items count at the beginning of the list */
#define NSEQ(seq...) sizeof((char[]){ seq }), seq
/*
* s5k5baf_write_nseq() - Writes sequences of values to sensor memory via i2c
* @nseq: sequence of u16 words in format:
* (N, address, value[1]...value[N-1])*,0
* Ex.:
* u16 seq[] = { NSEQ(0x4000, 1, 1), NSEQ(0x4010, 640, 480), 0 };
* ret = s5k5baf_write_nseq(c, seq);
*/
static void s5k5baf_write_nseq(struct s5k5baf *state, const u16 *nseq)
{
int count;
while ((count = *nseq++)) {
u16 addr = *nseq++;
--count;
s5k5baf_write_arr_seq(state, addr, count, nseq);
nseq += count;
}
}
static void s5k5baf_synchronize(struct s5k5baf *state, int timeout, u16 addr)
{
unsigned long end = jiffies + msecs_to_jiffies(timeout);
u16 reg;
s5k5baf_write(state, addr, 1);
do {
reg = s5k5baf_read(state, addr);
if (state->error || !reg)
return;
usleep_range(5000, 10000);
} while (time_is_after_jiffies(end));
v4l2_err(&state->sd, "timeout on register synchronize (%#x)\n", addr);
state->error = -ETIMEDOUT;
}
static u16 *s5k5baf_fw_get_seq(struct s5k5baf *state, u16 seq_id)
{
struct s5k5baf_fw *fw = state->fw;
u16 *data;
int i;
if (fw == NULL)
return NULL;
data = &fw->seq[0].id + 2 * fw->count;
for (i = 0; i < fw->count; ++i) {
if (fw->seq[i].id == seq_id)
return data + fw->seq[i].offset;
}
return NULL;
}
static void s5k5baf_hw_patch(struct s5k5baf *state)
{
u16 *seq = s5k5baf_fw_get_seq(state, S5K5BAF_FW_ID_PATCH);
if (seq)
s5k5baf_write_nseq(state, seq);
}
static void s5k5baf_hw_set_clocks(struct s5k5baf *state)
{
unsigned long mclk = state->mclk_frequency / 1000;
u16 status;
static const u16 nseq_clk_cfg[] = {
NSEQ(REG_I_USE_NPVI_CLOCKS,
NPVI_CLOCKS, NMIPI_CLOCKS, 0,
SCLK_PVI_FREQ / 4, PCLK_MIN_FREQ / 4, PCLK_MAX_FREQ / 4,
SCLK_MIPI_FREQ / 4, PCLK_MIN_FREQ / 4, PCLK_MAX_FREQ / 4),
NSEQ(REG_I_USE_REGS_API, 1),
0
};
s5k5baf_write_seq(state, REG_I_INCLK_FREQ_L, mclk & 0xffff, mclk >> 16);
s5k5baf_write_nseq(state, nseq_clk_cfg);
s5k5baf_synchronize(state, 250, REG_I_INIT_PARAMS_UPDATED);
status = s5k5baf_read(state, REG_I_ERROR_INFO);
if (!state->error && status) {
v4l2_err(&state->sd, "error configuring PLL (%d)\n", status);
state->error = -EINVAL;
}
}
/* set custom color correction matrices for various illuminations */
static void s5k5baf_hw_set_ccm(struct s5k5baf *state)
{
u16 *seq = s5k5baf_fw_get_seq(state, S5K5BAF_FW_ID_CCM);
if (seq)
s5k5baf_write_nseq(state, seq);
}
/* CIS sensor tuning, based on undocumented android driver code */
static void s5k5baf_hw_set_cis(struct s5k5baf *state)
{
u16 *seq = s5k5baf_fw_get_seq(state, S5K5BAF_FW_ID_CIS);
if (!seq)
return;
s5k5baf_i2c_write(state, REG_CMDWR_PAGE, PAGE_IF_HW);
s5k5baf_write_nseq(state, seq);
s5k5baf_i2c_write(state, REG_CMDWR_PAGE, PAGE_IF_SW);
}
static void s5k5baf_hw_sync_cfg(struct s5k5baf *state)
{
s5k5baf_write(state, REG_G_PREV_CFG_CHG, 1);
if (state->apply_crop) {
s5k5baf_write(state, REG_G_INPUTS_CHANGE_REQ, 1);
s5k5baf_write(state, REG_G_PREV_CFG_BYPASS_CHANGED, 1);
}
s5k5baf_synchronize(state, 500, REG_G_NEW_CFG_SYNC);
}
/* Set horizontal and vertical image flipping */
static void s5k5baf_hw_set_mirror(struct s5k5baf *state)
{
u16 flip = state->ctrls.vflip->val | (state->ctrls.vflip->val << 1);
s5k5baf_write(state, REG_P_PREV_MIRROR(0), flip);
if (state->streaming)
s5k5baf_hw_sync_cfg(state);
}
static void s5k5baf_hw_set_alg(struct s5k5baf *state, u16 alg, bool enable)
{
u16 cur_alg, new_alg;
if (!state->valid_auto_alg)
cur_alg = s5k5baf_read(state, REG_DBG_AUTOALG_EN);
else
cur_alg = state->auto_alg;
new_alg = enable ? (cur_alg | alg) : (cur_alg & ~alg);
if (new_alg != cur_alg)
s5k5baf_write(state, REG_DBG_AUTOALG_EN, new_alg);
if (state->error)
return;
state->valid_auto_alg = 1;
state->auto_alg = new_alg;
}
/* Configure auto/manual white balance and R/G/B gains */
static void s5k5baf_hw_set_awb(struct s5k5baf *state, int awb)
{
struct s5k5baf_ctrls *ctrls = &state->ctrls;
if (!awb)
s5k5baf_write_seq(state, REG_SF_RGAIN,
ctrls->gain_red->val, 1,
S5K5BAF_GAIN_GREEN_DEF, 1,
ctrls->gain_blue->val, 1,
1);
s5k5baf_hw_set_alg(state, AALG_WB_EN, awb);
}
/* Program FW with exposure time, 'exposure' in us units */
static void s5k5baf_hw_set_user_exposure(struct s5k5baf *state, int exposure)
{
unsigned int time = exposure / 10;
s5k5baf_write_seq(state, REG_SF_USR_EXPOSURE_L,
time & 0xffff, time >> 16, 1);
}
static void s5k5baf_hw_set_user_gain(struct s5k5baf *state, int gain)
{
s5k5baf_write_seq(state, REG_SF_USR_TOT_GAIN, gain, 1);
}
/* Set auto/manual exposure and total gain */
static void s5k5baf_hw_set_auto_exposure(struct s5k5baf *state, int value)
{
if (value == V4L2_EXPOSURE_AUTO) {
s5k5baf_hw_set_alg(state, AALG_AE_EN | AALG_DIVLEI_EN, true);
} else {
unsigned int exp_time = state->ctrls.exposure->val;
s5k5baf_hw_set_user_exposure(state, exp_time);
s5k5baf_hw_set_user_gain(state, state->ctrls.gain->val);
s5k5baf_hw_set_alg(state, AALG_AE_EN | AALG_DIVLEI_EN, false);
}
}
static void s5k5baf_hw_set_anti_flicker(struct s5k5baf *state, int v)
{
if (v == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) {
s5k5baf_hw_set_alg(state, AALG_FLICKER_EN, true);
} else {
/* The V4L2_CID_LINE_FREQUENCY control values match
* the register values */
s5k5baf_write_seq(state, REG_SF_FLICKER_QUANT, v, 1);
s5k5baf_hw_set_alg(state, AALG_FLICKER_EN, false);
}
}
static void s5k5baf_hw_set_colorfx(struct s5k5baf *state, int val)
{
static const u16 colorfx[] = {
[V4L2_COLORFX_NONE] = 0,
[V4L2_COLORFX_BW] = 1,
[V4L2_COLORFX_NEGATIVE] = 2,
[V4L2_COLORFX_SEPIA] = 3,
[V4L2_COLORFX_SKY_BLUE] = 4,
[V4L2_COLORFX_SKETCH] = 5,
};
s5k5baf_write(state, REG_G_SPEC_EFFECTS, colorfx[val]);
}
static int s5k5baf_find_pixfmt(struct v4l2_mbus_framefmt *mf)
{
int i, c = -1;
for (i = 0; i < ARRAY_SIZE(s5k5baf_formats); i++) {
if (mf->colorspace != s5k5baf_formats[i].colorspace)
continue;
if (mf->code == s5k5baf_formats[i].code)
return i;
if (c < 0)
c = i;
}
return (c < 0) ? 0 : c;
}
static int s5k5baf_clear_error(struct s5k5baf *state)
{
int ret = state->error;
state->error = 0;
return ret;
}
static int s5k5baf_hw_set_video_bus(struct s5k5baf *state)
{
u16 en_pkts;
if (state->bus_type == V4L2_MBUS_CSI2_DPHY)
en_pkts = EN_PACKETS_CSI2;
else
en_pkts = 0;
s5k5baf_write_seq(state, REG_OIF_EN_MIPI_LANES,
state->nlanes, en_pkts, 1);
return s5k5baf_clear_error(state);
}
static u16 s5k5baf_get_cfg_error(struct s5k5baf *state)
{
u16 err = s5k5baf_read(state, REG_G_PREV_CFG_ERROR);
if (err)
s5k5baf_write(state, REG_G_PREV_CFG_ERROR, 0);
return err;
}
static void s5k5baf_hw_set_fiv(struct s5k5baf *state, u16 fiv)
{
s5k5baf_write(state, REG_P_MAX_FR_TIME(0), fiv);
s5k5baf_hw_sync_cfg(state);
}
static void s5k5baf_hw_find_min_fiv(struct s5k5baf *state)
{
u16 err, fiv;
int n;
fiv = s5k5baf_read(state, REG_G_ACTUAL_P_FR_TIME);
if (state->error)
return;
for (n = 5; n > 0; --n) {
s5k5baf_hw_set_fiv(state, fiv);
err = s5k5baf_get_cfg_error(state);
if (state->error)
return;
switch (err) {
case CFG_ERROR_RANGE:
++fiv;
break;
case 0:
state->fiv = fiv;
v4l2_info(&state->sd,
"found valid frame interval: %d00us\n", fiv);
return;
default:
v4l2_err(&state->sd,
"error setting frame interval: %d\n", err);
state->error = -EINVAL;
}
}
v4l2_err(&state->sd, "cannot find correct frame interval\n");
state->error = -ERANGE;
}
static void s5k5baf_hw_validate_cfg(struct s5k5baf *state)
{
u16 err;
err = s5k5baf_get_cfg_error(state);
if (state->error)
return;
switch (err) {
case 0:
state->apply_cfg = 1;
return;
case CFG_ERROR_RANGE:
s5k5baf_hw_find_min_fiv(state);
if (!state->error)
state->apply_cfg = 1;
return;
default:
v4l2_err(&state->sd,
"error setting format: %d\n", err);
state->error = -EINVAL;
}
}
static void s5k5baf_rescale(struct v4l2_rect *r, const struct v4l2_rect *v,
const struct v4l2_rect *n,
const struct v4l2_rect *d)
{
r->left = v->left * n->width / d->width;
r->top = v->top * n->height / d->height;
r->width = v->width * n->width / d->width;
r->height = v->height * n->height / d->height;
}
static int s5k5baf_hw_set_crop_rects(struct s5k5baf *state)
{
struct v4l2_rect *p, r;
u16 err;
int ret;
p = &state->crop_sink;
s5k5baf_write_seq(state, REG_G_PREVREQ_IN_WIDTH, p->width, p->height,
p->left, p->top);
s5k5baf_rescale(&r, &state->crop_source, &state->crop_sink,
&state->compose);
s5k5baf_write_seq(state, REG_G_PREVZOOM_IN_WIDTH, r.width, r.height,
r.left, r.top);
s5k5baf_synchronize(state, 500, REG_G_INPUTS_CHANGE_REQ);
s5k5baf_synchronize(state, 500, REG_G_PREV_CFG_BYPASS_CHANGED);
err = s5k5baf_get_cfg_error(state);
ret = s5k5baf_clear_error(state);
if (ret < 0)
return ret;
switch (err) {
case 0:
break;
case CFG_ERROR_RANGE:
/* retry crop with frame interval set to max */
s5k5baf_hw_set_fiv(state, S5K5BAF_MAX_FR_TIME);
err = s5k5baf_get_cfg_error(state);
ret = s5k5baf_clear_error(state);
if (ret < 0)
return ret;
if (err) {
v4l2_err(&state->sd,
"crop error on max frame interval: %d\n", err);
state->error = -EINVAL;
}
s5k5baf_hw_set_fiv(state, state->req_fiv);
s5k5baf_hw_validate_cfg(state);
break;
default:
v4l2_err(&state->sd, "crop error: %d\n", err);
return -EINVAL;
}
if (!state->apply_cfg)
return 0;
p = &state->crop_source;
s5k5baf_write_seq(state, REG_P_OUT_WIDTH(0), p->width, p->height);
s5k5baf_hw_set_fiv(state, state->req_fiv);
s5k5baf_hw_validate_cfg(state);
return s5k5baf_clear_error(state);
}
static void s5k5baf_hw_set_config(struct s5k5baf *state)
{
u16 reg_fmt = s5k5baf_formats[state->pixfmt].reg_p_fmt;
struct v4l2_rect *r = &state->crop_source;
s5k5baf_write_seq(state, REG_P_OUT_WIDTH(0),
r->width, r->height, reg_fmt,
PCLK_MAX_FREQ >> 2, PCLK_MIN_FREQ >> 2,
PVI_MASK_MIPI, CLK_MIPI_INDEX,
FR_RATE_FIXED, FR_RATE_Q_DYNAMIC,
state->req_fiv, S5K5BAF_MIN_FR_TIME);
s5k5baf_hw_sync_cfg(state);
s5k5baf_hw_validate_cfg(state);
}
static void s5k5baf_hw_set_test_pattern(struct s5k5baf *state, int id)
{
s5k5baf_i2c_write(state, REG_PATTERN_WIDTH, 800);
s5k5baf_i2c_write(state, REG_PATTERN_HEIGHT, 511);
s5k5baf_i2c_write(state, REG_PATTERN_PARAM, 0);
s5k5baf_i2c_write(state, REG_PATTERN_SET, id);
}
static void s5k5baf_gpio_assert(struct s5k5baf *state, int id)
{
struct s5k5baf_gpio *gpio = &state->gpios[id];
gpio_set_value(gpio->gpio, gpio->level);
}
static void s5k5baf_gpio_deassert(struct s5k5baf *state, int id)
{
struct s5k5baf_gpio *gpio = &state->gpios[id];
gpio_set_value(gpio->gpio, !gpio->level);
}
static int s5k5baf_power_on(struct s5k5baf *state)
{
int ret;
ret = regulator_bulk_enable(S5K5BAF_NUM_SUPPLIES, state->supplies);
if (ret < 0)
goto err;
ret = clk_set_rate(state->clock, state->mclk_frequency);
if (ret < 0)
goto err_reg_dis;
ret = clk_prepare_enable(state->clock);
if (ret < 0)
goto err_reg_dis;
v4l2_dbg(1, debug, &state->sd, "clock frequency: %ld\n",
clk_get_rate(state->clock));
s5k5baf_gpio_deassert(state, STBY);
usleep_range(50, 100);
s5k5baf_gpio_deassert(state, RSET);
return 0;
err_reg_dis:
regulator_bulk_disable(S5K5BAF_NUM_SUPPLIES, state->supplies);
err:
v4l2_err(&state->sd, "%s() failed (%d)\n", __func__, ret);
return ret;
}
static int s5k5baf_power_off(struct s5k5baf *state)
{
int ret;
state->streaming = 0;
state->apply_cfg = 0;
state->apply_crop = 0;
s5k5baf_gpio_assert(state, RSET);
s5k5baf_gpio_assert(state, STBY);
if (!IS_ERR(state->clock))
clk_disable_unprepare(state->clock);
ret = regulator_bulk_disable(S5K5BAF_NUM_SUPPLIES,
state->supplies);
if (ret < 0)
v4l2_err(&state->sd, "failed to disable regulators\n");
return 0;
}
static void s5k5baf_hw_init(struct s5k5baf *state)
{
s5k5baf_i2c_write(state, AHB_MSB_ADDR_PTR, PAGE_IF_HW);
s5k5baf_i2c_write(state, REG_CLEAR_HOST_INT, 0);
s5k5baf_i2c_write(state, REG_SW_LOAD_COMPLETE, 1);
s5k5baf_i2c_write(state, REG_CMDRD_PAGE, PAGE_IF_SW);
s5k5baf_i2c_write(state, REG_CMDWR_PAGE, PAGE_IF_SW);
}
/*
* V4L2 subdev core and video operations
*/
static void s5k5baf_initialize_data(struct s5k5baf *state)
{
state->pixfmt = 0;
state->req_fiv = 10000 / 15;
state->fiv = state->req_fiv;
state->valid_auto_alg = 0;
}
static int s5k5baf_load_setfile(struct s5k5baf *state)
{
struct i2c_client *c = v4l2_get_subdevdata(&state->sd);
const struct firmware *fw;
int ret;
ret = request_firmware(&fw, S5K5BAF_FW_FILENAME, &c->dev);
if (ret < 0) {
dev_warn(&c->dev, "firmware file (%s) not loaded\n",
S5K5BAF_FW_FILENAME);
return ret;
}
ret = s5k5baf_fw_parse(&c->dev, &state->fw, fw->size / 2,
(__le16 *)fw->data);
release_firmware(fw);
return ret;
}
static int s5k5baf_set_power(struct v4l2_subdev *sd, int on)
{
struct s5k5baf *state = to_s5k5baf(sd);
int ret = 0;
mutex_lock(&state->lock);
if (state->power != !on)
goto out;
if (on) {
if (state->fw == NULL)
s5k5baf_load_setfile(state);
s5k5baf_initialize_data(state);
ret = s5k5baf_power_on(state);
if (ret < 0)
goto out;
s5k5baf_hw_init(state);
s5k5baf_hw_patch(state);
s5k5baf_i2c_write(state, REG_SET_HOST_INT, 1);
s5k5baf_hw_set_clocks(state);
ret = s5k5baf_hw_set_video_bus(state);
if (ret < 0)
goto out;
s5k5baf_hw_set_cis(state);
s5k5baf_hw_set_ccm(state);
ret = s5k5baf_clear_error(state);
if (!ret)
state->power++;
} else {
s5k5baf_power_off(state);
state->power--;
}
out:
mutex_unlock(&state->lock);
if (!ret && on)
ret = v4l2_ctrl_handler_setup(&state->ctrls.handler);
return ret;
}
static void s5k5baf_hw_set_stream(struct s5k5baf *state, int enable)
{
s5k5baf_write_seq(state, REG_G_ENABLE_PREV, enable, 1);
}
static int s5k5baf_s_stream(struct v4l2_subdev *sd, int on)
{
struct s5k5baf *state = to_s5k5baf(sd);
int ret;
mutex_lock(&state->lock);
if (state->streaming == !!on) {
ret = 0;
goto out;
}
if (on) {
s5k5baf_hw_set_config(state);
ret = s5k5baf_hw_set_crop_rects(state);
if (ret < 0)
goto out;
s5k5baf_hw_set_stream(state, 1);
s5k5baf_i2c_write(state, 0xb0cc, 0x000b);
} else {
s5k5baf_hw_set_stream(state, 0);
}
ret = s5k5baf_clear_error(state);
if (!ret)
state->streaming = !state->streaming;
out:
mutex_unlock(&state->lock);
return ret;
}
static int s5k5baf_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct s5k5baf *state = to_s5k5baf(sd);
mutex_lock(&state->lock);
fi->interval.numerator = state->fiv;
fi->interval.denominator = 10000;
mutex_unlock(&state->lock);
return 0;
}
static void s5k5baf_set_frame_interval(struct s5k5baf *state,
struct v4l2_subdev_frame_interval *fi)
{
struct v4l2_fract *i = &fi->interval;
if (fi->interval.denominator == 0)
state->req_fiv = S5K5BAF_MAX_FR_TIME;
else
state->req_fiv = clamp_t(u32,
i->numerator * 10000 / i->denominator,
S5K5BAF_MIN_FR_TIME,
S5K5BAF_MAX_FR_TIME);
state->fiv = state->req_fiv;
if (state->apply_cfg) {
s5k5baf_hw_set_fiv(state, state->req_fiv);
s5k5baf_hw_validate_cfg(state);
}
*i = (struct v4l2_fract){ state->fiv, 10000 };
if (state->fiv == state->req_fiv)
v4l2_info(&state->sd, "frame interval changed to %d00us\n",
state->fiv);
}
static int s5k5baf_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct s5k5baf *state = to_s5k5baf(sd);
mutex_lock(&state->lock);
s5k5baf_set_frame_interval(state, fi);
mutex_unlock(&state->lock);
return 0;
}
/*
* V4L2 subdev pad level and video operations
*/
static int s5k5baf_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
{
if (fie->index > S5K5BAF_MAX_FR_TIME - S5K5BAF_MIN_FR_TIME ||
fie->pad != PAD_CIS)
return -EINVAL;
v4l_bound_align_image(&fie->width, S5K5BAF_WIN_WIDTH_MIN,
S5K5BAF_CIS_WIDTH, 1,
&fie->height, S5K5BAF_WIN_HEIGHT_MIN,
S5K5BAF_CIS_HEIGHT, 1, 0);
fie->interval.numerator = S5K5BAF_MIN_FR_TIME + fie->index;
fie->interval.denominator = 10000;
return 0;
}
static int s5k5baf_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->pad == PAD_CIS) {
if (code->index > 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_FIXED;
return 0;
}
if (code->index >= ARRAY_SIZE(s5k5baf_formats))
return -EINVAL;
code->code = s5k5baf_formats[code->index].code;
return 0;
}
static int s5k5baf_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
int i;
if (fse->index > 0)
return -EINVAL;
if (fse->pad == PAD_CIS) {
fse->code = MEDIA_BUS_FMT_FIXED;
fse->min_width = S5K5BAF_CIS_WIDTH;
fse->max_width = S5K5BAF_CIS_WIDTH;
fse->min_height = S5K5BAF_CIS_HEIGHT;
fse->max_height = S5K5BAF_CIS_HEIGHT;
return 0;
}
i = ARRAY_SIZE(s5k5baf_formats);
while (--i)
if (fse->code == s5k5baf_formats[i].code)
break;
fse->code = s5k5baf_formats[i].code;
fse->min_width = S5K5BAF_WIN_WIDTH_MIN;
fse->max_width = S5K5BAF_CIS_WIDTH;
fse->max_height = S5K5BAF_WIN_HEIGHT_MIN;
fse->min_height = S5K5BAF_CIS_HEIGHT;
return 0;
}
static void s5k5baf_try_cis_format(struct v4l2_mbus_framefmt *mf)
{
mf->width = S5K5BAF_CIS_WIDTH;
mf->height = S5K5BAF_CIS_HEIGHT;
mf->code = MEDIA_BUS_FMT_FIXED;
mf->colorspace = V4L2_COLORSPACE_JPEG;
mf->field = V4L2_FIELD_NONE;
}
static int s5k5baf_try_isp_format(struct v4l2_mbus_framefmt *mf)
{
int pixfmt;
v4l_bound_align_image(&mf->width, S5K5BAF_WIN_WIDTH_MIN,
S5K5BAF_CIS_WIDTH, 1,
&mf->height, S5K5BAF_WIN_HEIGHT_MIN,
S5K5BAF_CIS_HEIGHT, 1, 0);
pixfmt = s5k5baf_find_pixfmt(mf);
mf->colorspace = s5k5baf_formats[pixfmt].colorspace;
mf->code = s5k5baf_formats[pixfmt].code;
mf->field = V4L2_FIELD_NONE;
return pixfmt;
}
static int s5k5baf_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct s5k5baf *state = to_s5k5baf(sd);
const struct s5k5baf_pixfmt *pixfmt;
struct v4l2_mbus_framefmt *mf;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
mf = v4l2_subdev_get_try_format(sd, sd_state, fmt->pad);
fmt->format = *mf;
return 0;
}
mf = &fmt->format;
if (fmt->pad == PAD_CIS) {
s5k5baf_try_cis_format(mf);
return 0;
}
mf->field = V4L2_FIELD_NONE;
mutex_lock(&state->lock);
pixfmt = &s5k5baf_formats[state->pixfmt];
mf->width = state->crop_source.width;
mf->height = state->crop_source.height;
mf->code = pixfmt->code;
mf->colorspace = pixfmt->colorspace;
mutex_unlock(&state->lock);
return 0;
}
static int s5k5baf_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *mf = &fmt->format;
struct s5k5baf *state = to_s5k5baf(sd);
const struct s5k5baf_pixfmt *pixfmt;
int ret = 0;
mf->field = V4L2_FIELD_NONE;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
*v4l2_subdev_get_try_format(sd, sd_state, fmt->pad) = *mf;
return 0;
}
if (fmt->pad == PAD_CIS) {
s5k5baf_try_cis_format(mf);
return 0;
}
mutex_lock(&state->lock);
if (state->streaming) {
mutex_unlock(&state->lock);
return -EBUSY;
}
state->pixfmt = s5k5baf_try_isp_format(mf);
pixfmt = &s5k5baf_formats[state->pixfmt];
mf->code = pixfmt->code;
mf->colorspace = pixfmt->colorspace;
mf->width = state->crop_source.width;
mf->height = state->crop_source.height;
mutex_unlock(&state->lock);
return ret;
}
enum selection_rect { R_CIS, R_CROP_SINK, R_COMPOSE, R_CROP_SOURCE, R_INVALID };
static enum selection_rect s5k5baf_get_sel_rect(u32 pad, u32 target)
{
switch (target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
return pad ? R_COMPOSE : R_CIS;
case V4L2_SEL_TGT_CROP:
return pad ? R_CROP_SOURCE : R_CROP_SINK;
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
return pad ? R_INVALID : R_CROP_SINK;
case V4L2_SEL_TGT_COMPOSE:
return pad ? R_INVALID : R_COMPOSE;
default:
return R_INVALID;
}
}
static int s5k5baf_is_bound_target(u32 target)
{
return target == V4L2_SEL_TGT_CROP_BOUNDS ||
target == V4L2_SEL_TGT_COMPOSE_BOUNDS;
}
static int s5k5baf_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
enum selection_rect rtype;
struct s5k5baf *state = to_s5k5baf(sd);
rtype = s5k5baf_get_sel_rect(sel->pad, sel->target);
switch (rtype) {
case R_INVALID:
return -EINVAL;
case R_CIS:
sel->r = s5k5baf_cis_rect;
return 0;
default:
break;
}
if (sel->which == V4L2_SUBDEV_FORMAT_TRY) {
if (rtype == R_COMPOSE)
sel->r = *v4l2_subdev_get_try_compose(sd, sd_state,
sel->pad);
else
sel->r = *v4l2_subdev_get_try_crop(sd, sd_state,
sel->pad);
return 0;
}
mutex_lock(&state->lock);
switch (rtype) {
case R_CROP_SINK:
sel->r = state->crop_sink;
break;
case R_COMPOSE:
sel->r = state->compose;
break;
case R_CROP_SOURCE:
sel->r = state->crop_source;
break;
default:
break;
}
if (s5k5baf_is_bound_target(sel->target)) {
sel->r.left = 0;
sel->r.top = 0;
}
mutex_unlock(&state->lock);
return 0;
}
/* bounds range [start, start+len) to [0, max) and aligns to 2 */
static void s5k5baf_bound_range(u32 *start, u32 *len, u32 max)
{
if (*len > max)
*len = max;
if (*start + *len > max)
*start = max - *len;
*start &= ~1;
*len &= ~1;
if (*len < S5K5BAF_WIN_WIDTH_MIN)
*len = S5K5BAF_WIN_WIDTH_MIN;
}
static void s5k5baf_bound_rect(struct v4l2_rect *r, u32 width, u32 height)
{
s5k5baf_bound_range(&r->left, &r->width, width);
s5k5baf_bound_range(&r->top, &r->height, height);
}
static void s5k5baf_set_rect_and_adjust(struct v4l2_rect **rects,
enum selection_rect first,
struct v4l2_rect *v)
{
struct v4l2_rect *r, *br;
enum selection_rect i = first;
*rects[first] = *v;
do {
r = rects[i];
br = rects[i - 1];
s5k5baf_bound_rect(r, br->width, br->height);
} while (++i != R_INVALID);
*v = *rects[first];
}
static bool s5k5baf_cmp_rect(const struct v4l2_rect *r1,
const struct v4l2_rect *r2)
{
return !memcmp(r1, r2, sizeof(*r1));
}
static int s5k5baf_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
static enum selection_rect rtype;
struct s5k5baf *state = to_s5k5baf(sd);
struct v4l2_rect **rects;
int ret = 0;
rtype = s5k5baf_get_sel_rect(sel->pad, sel->target);
if (rtype == R_INVALID || s5k5baf_is_bound_target(sel->target))
return -EINVAL;
/* allow only scaling on compose */
if (rtype == R_COMPOSE) {
sel->r.left = 0;
sel->r.top = 0;
}
if (sel->which == V4L2_SUBDEV_FORMAT_TRY) {
rects = (struct v4l2_rect * []) {
&s5k5baf_cis_rect,
v4l2_subdev_get_try_crop(sd, sd_state,
PAD_CIS),
v4l2_subdev_get_try_compose(sd, sd_state,
PAD_CIS),
v4l2_subdev_get_try_crop(sd, sd_state,
PAD_OUT)
};
s5k5baf_set_rect_and_adjust(rects, rtype, &sel->r);
return 0;
}
rects = (struct v4l2_rect * []) {
&s5k5baf_cis_rect,
&state->crop_sink,
&state->compose,
&state->crop_source
};
mutex_lock(&state->lock);
if (state->streaming) {
/* adjust sel->r to avoid output resolution change */
if (rtype < R_CROP_SOURCE) {
if (sel->r.width < state->crop_source.width)
sel->r.width = state->crop_source.width;
if (sel->r.height < state->crop_source.height)
sel->r.height = state->crop_source.height;
} else {
sel->r.width = state->crop_source.width;
sel->r.height = state->crop_source.height;
}
}
s5k5baf_set_rect_and_adjust(rects, rtype, &sel->r);
if (!s5k5baf_cmp_rect(&state->crop_sink, &s5k5baf_cis_rect) ||
!s5k5baf_cmp_rect(&state->compose, &s5k5baf_cis_rect))
state->apply_crop = 1;
if (state->streaming)
ret = s5k5baf_hw_set_crop_rects(state);
mutex_unlock(&state->lock);
return ret;
}
static const struct v4l2_subdev_pad_ops s5k5baf_cis_pad_ops = {
.enum_mbus_code = s5k5baf_enum_mbus_code,
.enum_frame_size = s5k5baf_enum_frame_size,
.get_fmt = s5k5baf_get_fmt,
.set_fmt = s5k5baf_set_fmt,
};
static const struct v4l2_subdev_pad_ops s5k5baf_pad_ops = {
.enum_mbus_code = s5k5baf_enum_mbus_code,
.enum_frame_size = s5k5baf_enum_frame_size,
.enum_frame_interval = s5k5baf_enum_frame_interval,
.get_fmt = s5k5baf_get_fmt,
.set_fmt = s5k5baf_set_fmt,
.get_selection = s5k5baf_get_selection,
.set_selection = s5k5baf_set_selection,
};
static const struct v4l2_subdev_video_ops s5k5baf_video_ops = {
.g_frame_interval = s5k5baf_g_frame_interval,
.s_frame_interval = s5k5baf_s_frame_interval,
.s_stream = s5k5baf_s_stream,
};
/*
* V4L2 subdev controls
*/
static int s5k5baf_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
struct s5k5baf *state = to_s5k5baf(sd);
int ret;
v4l2_dbg(1, debug, sd, "ctrl: %s, value: %d\n", ctrl->name, ctrl->val);
mutex_lock(&state->lock);
if (state->power == 0)
goto unlock;
switch (ctrl->id) {
case V4L2_CID_AUTO_WHITE_BALANCE:
s5k5baf_hw_set_awb(state, ctrl->val);
break;
case V4L2_CID_BRIGHTNESS:
s5k5baf_write(state, REG_USER_BRIGHTNESS, ctrl->val);
break;
case V4L2_CID_COLORFX:
s5k5baf_hw_set_colorfx(state, ctrl->val);
break;
case V4L2_CID_CONTRAST:
s5k5baf_write(state, REG_USER_CONTRAST, ctrl->val);
break;
case V4L2_CID_EXPOSURE_AUTO:
s5k5baf_hw_set_auto_exposure(state, ctrl->val);
break;
case V4L2_CID_HFLIP:
s5k5baf_hw_set_mirror(state);
break;
case V4L2_CID_POWER_LINE_FREQUENCY:
s5k5baf_hw_set_anti_flicker(state, ctrl->val);
break;
case V4L2_CID_SATURATION:
s5k5baf_write(state, REG_USER_SATURATION, ctrl->val);
break;
case V4L2_CID_SHARPNESS:
s5k5baf_write(state, REG_USER_SHARPBLUR, ctrl->val);
break;
case V4L2_CID_WHITE_BALANCE_TEMPERATURE:
s5k5baf_write(state, REG_P_COLORTEMP(0), ctrl->val);
if (state->apply_cfg)
s5k5baf_hw_sync_cfg(state);
break;
case V4L2_CID_TEST_PATTERN:
s5k5baf_hw_set_test_pattern(state, ctrl->val);
break;
}
unlock:
ret = s5k5baf_clear_error(state);
mutex_unlock(&state->lock);
return ret;
}
static const struct v4l2_ctrl_ops s5k5baf_ctrl_ops = {
.s_ctrl = s5k5baf_s_ctrl,
};
static const char * const s5k5baf_test_pattern_menu[] = {
"Disabled",
"Blank",
"Bars",
"Gradients",
"Textile",
"Textile2",
"Squares"
};
static int s5k5baf_initialize_ctrls(struct s5k5baf *state)
{
const struct v4l2_ctrl_ops *ops = &s5k5baf_ctrl_ops;
struct s5k5baf_ctrls *ctrls = &state->ctrls;
struct v4l2_ctrl_handler *hdl = &ctrls->handler;
int ret;
ret = v4l2_ctrl_handler_init(hdl, 16);
if (ret < 0) {
v4l2_err(&state->sd, "cannot init ctrl handler (%d)\n", ret);
return ret;
}
/* Auto white balance cluster */
ctrls->awb = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTO_WHITE_BALANCE,
0, 1, 1, 1);
ctrls->gain_red = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
0, 255, 1, S5K5BAF_GAIN_RED_DEF);
ctrls->gain_blue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
0, 255, 1, S5K5BAF_GAIN_BLUE_DEF);
v4l2_ctrl_auto_cluster(3, &ctrls->awb, 0, false);
ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
v4l2_ctrl_cluster(2, &ctrls->hflip);
ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
V4L2_CID_EXPOSURE_AUTO,
V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO);
/* Exposure time: x 1 us */
ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
0, 6000000U, 1, 100000U);
/* Total gain: 256 <=> 1x */
ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
0, 256, 1, 256);
v4l2_ctrl_auto_cluster(3, &ctrls->auto_exp, 0, false);
v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_POWER_LINE_FREQUENCY,
V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_COLORFX,
V4L2_COLORFX_SKY_BLUE, ~0x6f, V4L2_COLORFX_NONE);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_WHITE_BALANCE_TEMPERATURE,
0, 256, 1, 0);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, -127, 127, 1, 0);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS, -127, 127, 1, 0);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, -127, 127, 1, 0);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SHARPNESS, -127, 127, 1, 0);
v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(s5k5baf_test_pattern_menu) - 1,
0, 0, s5k5baf_test_pattern_menu);
if (hdl->error) {
v4l2_err(&state->sd, "error creating controls (%d)\n",
hdl->error);
ret = hdl->error;
v4l2_ctrl_handler_free(hdl);
return ret;
}
state->sd.ctrl_handler = hdl;
return 0;
}
/*
* V4L2 subdev internal operations
*/
static int s5k5baf_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct v4l2_mbus_framefmt *mf;
mf = v4l2_subdev_get_try_format(sd, fh->state, PAD_CIS);
s5k5baf_try_cis_format(mf);
if (s5k5baf_is_cis_subdev(sd))
return 0;
mf = v4l2_subdev_get_try_format(sd, fh->state, PAD_OUT);
mf->colorspace = s5k5baf_formats[0].colorspace;
mf->code = s5k5baf_formats[0].code;
mf->width = s5k5baf_cis_rect.width;
mf->height = s5k5baf_cis_rect.height;
mf->field = V4L2_FIELD_NONE;
*v4l2_subdev_get_try_crop(sd, fh->state, PAD_CIS) = s5k5baf_cis_rect;
*v4l2_subdev_get_try_compose(sd, fh->state, PAD_CIS) = s5k5baf_cis_rect;
*v4l2_subdev_get_try_crop(sd, fh->state, PAD_OUT) = s5k5baf_cis_rect;
return 0;
}
static int s5k5baf_check_fw_revision(struct s5k5baf *state)
{
u16 api_ver = 0, fw_rev = 0, s_id = 0;
int ret;
api_ver = s5k5baf_read(state, REG_FW_APIVER);
fw_rev = s5k5baf_read(state, REG_FW_REVISION) & 0xff;
s_id = s5k5baf_read(state, REG_FW_SENSOR_ID);
ret = s5k5baf_clear_error(state);
if (ret < 0)
return ret;
v4l2_info(&state->sd, "FW API=%#x, revision=%#x sensor_id=%#x\n",
api_ver, fw_rev, s_id);
if (api_ver != S5K5BAF_FW_APIVER) {
v4l2_err(&state->sd, "FW API version not supported\n");
return -ENODEV;
}
return 0;
}
static int s5k5baf_registered(struct v4l2_subdev *sd)
{
struct s5k5baf *state = to_s5k5baf(sd);
int ret;
ret = v4l2_device_register_subdev(sd->v4l2_dev, &state->cis_sd);
if (ret < 0)
v4l2_err(sd, "failed to register subdev %s\n",
state->cis_sd.name);
else
ret = media_create_pad_link(&state->cis_sd.entity, PAD_CIS,
&state->sd.entity, PAD_CIS,
MEDIA_LNK_FL_IMMUTABLE |
MEDIA_LNK_FL_ENABLED);
return ret;
}
static void s5k5baf_unregistered(struct v4l2_subdev *sd)
{
struct s5k5baf *state = to_s5k5baf(sd);
v4l2_device_unregister_subdev(&state->cis_sd);
}
static const struct v4l2_subdev_ops s5k5baf_cis_subdev_ops = {
.pad = &s5k5baf_cis_pad_ops,
};
static const struct v4l2_subdev_internal_ops s5k5baf_cis_subdev_internal_ops = {
.open = s5k5baf_open,
};
static const struct v4l2_subdev_internal_ops s5k5baf_subdev_internal_ops = {
.registered = s5k5baf_registered,
.unregistered = s5k5baf_unregistered,
.open = s5k5baf_open,
};
static const struct v4l2_subdev_core_ops s5k5baf_core_ops = {
.s_power = s5k5baf_set_power,
.log_status = v4l2_ctrl_subdev_log_status,
};
static const struct v4l2_subdev_ops s5k5baf_subdev_ops = {
.core = &s5k5baf_core_ops,
.pad = &s5k5baf_pad_ops,
.video = &s5k5baf_video_ops,
};
static int s5k5baf_configure_gpios(struct s5k5baf *state)
{
static const char * const name[] = { "S5K5BAF_STBY", "S5K5BAF_RST" };
struct i2c_client *c = v4l2_get_subdevdata(&state->sd);
struct s5k5baf_gpio *g = state->gpios;
int ret, i;
for (i = 0; i < NUM_GPIOS; ++i) {
int flags = GPIOF_DIR_OUT;
if (g[i].level)
flags |= GPIOF_INIT_HIGH;
ret = devm_gpio_request_one(&c->dev, g[i].gpio, flags, name[i]);
if (ret < 0) {
v4l2_err(c, "failed to request gpio %s\n", name[i]);
return ret;
}
}
return 0;
}
static int s5k5baf_parse_gpios(struct s5k5baf_gpio *gpios, struct device *dev)
{
static const char * const names[] = {
"stbyn-gpios",
"rstn-gpios",
};
struct device_node *node = dev->of_node;
enum of_gpio_flags flags;
int ret, i;
for (i = 0; i < NUM_GPIOS; ++i) {
ret = of_get_named_gpio_flags(node, names[i], 0, &flags);
if (ret < 0) {
dev_err(dev, "no %s GPIO pin provided\n", names[i]);
return ret;
}
gpios[i].gpio = ret;
gpios[i].level = !(flags & OF_GPIO_ACTIVE_LOW);
}
return 0;
}
static int s5k5baf_parse_device_node(struct s5k5baf *state, struct device *dev)
{
struct device_node *node = dev->of_node;
struct device_node *node_ep;
struct v4l2_fwnode_endpoint ep = { .bus_type = 0 };
int ret;
if (!node) {
dev_err(dev, "no device-tree node provided\n");
return -EINVAL;
}
ret = of_property_read_u32(node, "clock-frequency",
&state->mclk_frequency);
if (ret < 0) {
state->mclk_frequency = S5K5BAF_DEFAULT_MCLK_FREQ;
dev_info(dev, "using default %u Hz clock frequency\n",
state->mclk_frequency);
}
ret = s5k5baf_parse_gpios(state->gpios, dev);
if (ret < 0)
return ret;
node_ep = of_graph_get_next_endpoint(node, NULL);
if (!node_ep) {
dev_err(dev, "no endpoint defined at node %pOF\n", node);
return -EINVAL;
}
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(node_ep), &ep);
of_node_put(node_ep);
if (ret)
return ret;
state->bus_type = ep.bus_type;
switch (state->bus_type) {
case V4L2_MBUS_CSI2_DPHY:
state->nlanes = ep.bus.mipi_csi2.num_data_lanes;
break;
case V4L2_MBUS_PARALLEL:
break;
default:
dev_err(dev, "unsupported bus in endpoint defined at node %pOF\n",
node);
return -EINVAL;
}
return 0;
}
static int s5k5baf_configure_subdevs(struct s5k5baf *state,
struct i2c_client *c)
{
struct v4l2_subdev *sd;
int ret;
sd = &state->cis_sd;
v4l2_subdev_init(sd, &s5k5baf_cis_subdev_ops);
sd->owner = THIS_MODULE;
v4l2_set_subdevdata(sd, state);
snprintf(sd->name, sizeof(sd->name), "S5K5BAF-CIS %d-%04x",
i2c_adapter_id(c->adapter), c->addr);
sd->internal_ops = &s5k5baf_cis_subdev_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
state->cis_pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sd->entity, NUM_CIS_PADS, &state->cis_pad);
if (ret < 0)
goto err;
sd = &state->sd;
v4l2_i2c_subdev_init(sd, c, &s5k5baf_subdev_ops);
snprintf(sd->name, sizeof(sd->name), "S5K5BAF-ISP %d-%04x",
i2c_adapter_id(c->adapter), c->addr);
sd->internal_ops = &s5k5baf_subdev_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
state->pads[PAD_CIS].flags = MEDIA_PAD_FL_SINK;
state->pads[PAD_OUT].flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN;
ret = media_entity_pads_init(&sd->entity, NUM_ISP_PADS, state->pads);
if (!ret)
return 0;
media_entity_cleanup(&state->cis_sd.entity);
err:
dev_err(&c->dev, "cannot init media entity %s\n", sd->name);
return ret;
}
static int s5k5baf_configure_regulators(struct s5k5baf *state)
{
struct i2c_client *c = v4l2_get_subdevdata(&state->sd);
int ret;
int i;
for (i = 0; i < S5K5BAF_NUM_SUPPLIES; i++)
state->supplies[i].supply = s5k5baf_supply_names[i];
ret = devm_regulator_bulk_get(&c->dev, S5K5BAF_NUM_SUPPLIES,
state->supplies);
if (ret < 0)
v4l2_err(c, "failed to get regulators\n");
return ret;
}
static int s5k5baf_probe(struct i2c_client *c)
{
struct s5k5baf *state;
int ret;
state = devm_kzalloc(&c->dev, sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
mutex_init(&state->lock);
state->crop_sink = s5k5baf_cis_rect;
state->compose = s5k5baf_cis_rect;
state->crop_source = s5k5baf_cis_rect;
ret = s5k5baf_parse_device_node(state, &c->dev);
if (ret < 0)
return ret;
ret = s5k5baf_configure_subdevs(state, c);
if (ret < 0)
return ret;
ret = s5k5baf_configure_gpios(state);
if (ret < 0)
goto err_me;
ret = s5k5baf_configure_regulators(state);
if (ret < 0)
goto err_me;
state->clock = devm_clk_get(state->sd.dev, S5K5BAF_CLK_NAME);
if (IS_ERR(state->clock)) {
ret = -EPROBE_DEFER;
goto err_me;
}
ret = s5k5baf_power_on(state);
if (ret < 0) {
ret = -EPROBE_DEFER;
goto err_me;
}
s5k5baf_hw_init(state);
ret = s5k5baf_check_fw_revision(state);
s5k5baf_power_off(state);
if (ret < 0)
goto err_me;
ret = s5k5baf_initialize_ctrls(state);
if (ret < 0)
goto err_me;
ret = v4l2_async_register_subdev(&state->sd);
if (ret < 0)
goto err_ctrl;
return 0;
err_ctrl:
v4l2_ctrl_handler_free(state->sd.ctrl_handler);
err_me:
media_entity_cleanup(&state->sd.entity);
media_entity_cleanup(&state->cis_sd.entity);
return ret;
}
static int s5k5baf_remove(struct i2c_client *c)
{
struct v4l2_subdev *sd = i2c_get_clientdata(c);
struct s5k5baf *state = to_s5k5baf(sd);
v4l2_async_unregister_subdev(sd);
v4l2_ctrl_handler_free(sd->ctrl_handler);
media_entity_cleanup(&sd->entity);
sd = &state->cis_sd;
v4l2_device_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
return 0;
}
static const struct i2c_device_id s5k5baf_id[] = {
{ S5K5BAF_DRIVER_NAME, 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, s5k5baf_id);
static const struct of_device_id s5k5baf_of_match[] = {
{ .compatible = "samsung,s5k5baf" },
{ }
};
MODULE_DEVICE_TABLE(of, s5k5baf_of_match);
static struct i2c_driver s5k5baf_i2c_driver = {
.driver = {
.of_match_table = s5k5baf_of_match,
.name = S5K5BAF_DRIVER_NAME
},
.probe_new = s5k5baf_probe,
.remove = s5k5baf_remove,
.id_table = s5k5baf_id,
};
module_i2c_driver(s5k5baf_i2c_driver);
MODULE_DESCRIPTION("Samsung S5K5BAF(X) UXGA camera driver");
MODULE_AUTHOR("Andrzej Hajda <a.hajda@samsung.com>");
MODULE_LICENSE("GPL v2");