2082 lines
49 KiB
C
2082 lines
49 KiB
C
/*
|
|
* Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
|
|
*
|
|
* Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
|
|
*
|
|
* Interactivity improvements by Mike Galbraith
|
|
* (C) 2007 Mike Galbraith <efault@gmx.de>
|
|
*
|
|
* Various enhancements by Dmitry Adamushko.
|
|
* (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
|
|
*
|
|
* Group scheduling enhancements by Srivatsa Vaddagiri
|
|
* Copyright IBM Corporation, 2007
|
|
* Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
|
|
*
|
|
* Scaled math optimizations by Thomas Gleixner
|
|
* Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
|
|
*
|
|
* Adaptive scheduling granularity, math enhancements by Peter Zijlstra
|
|
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
|
|
*/
|
|
|
|
#include <linux/latencytop.h>
|
|
|
|
/*
|
|
* Targeted preemption latency for CPU-bound tasks:
|
|
* (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
|
|
*
|
|
* NOTE: this latency value is not the same as the concept of
|
|
* 'timeslice length' - timeslices in CFS are of variable length
|
|
* and have no persistent notion like in traditional, time-slice
|
|
* based scheduling concepts.
|
|
*
|
|
* (to see the precise effective timeslice length of your workload,
|
|
* run vmstat and monitor the context-switches (cs) field)
|
|
*/
|
|
unsigned int sysctl_sched_latency = 5000000ULL;
|
|
|
|
/*
|
|
* Minimal preemption granularity for CPU-bound tasks:
|
|
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
|
|
*/
|
|
unsigned int sysctl_sched_min_granularity = 1000000ULL;
|
|
|
|
/*
|
|
* is kept at sysctl_sched_latency / sysctl_sched_min_granularity
|
|
*/
|
|
static unsigned int sched_nr_latency = 5;
|
|
|
|
/*
|
|
* After fork, child runs first. If set to 0 (default) then
|
|
* parent will (try to) run first.
|
|
*/
|
|
unsigned int sysctl_sched_child_runs_first __read_mostly;
|
|
|
|
/*
|
|
* sys_sched_yield() compat mode
|
|
*
|
|
* This option switches the agressive yield implementation of the
|
|
* old scheduler back on.
|
|
*/
|
|
unsigned int __read_mostly sysctl_sched_compat_yield;
|
|
|
|
/*
|
|
* SCHED_OTHER wake-up granularity.
|
|
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
|
|
*
|
|
* This option delays the preemption effects of decoupled workloads
|
|
* and reduces their over-scheduling. Synchronous workloads will still
|
|
* have immediate wakeup/sleep latencies.
|
|
*/
|
|
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
|
|
|
|
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
|
|
|
|
static const struct sched_class fair_sched_class;
|
|
|
|
/**************************************************************
|
|
* CFS operations on generic schedulable entities:
|
|
*/
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
|
/* cpu runqueue to which this cfs_rq is attached */
|
|
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
|
|
{
|
|
return cfs_rq->rq;
|
|
}
|
|
|
|
/* An entity is a task if it doesn't "own" a runqueue */
|
|
#define entity_is_task(se) (!se->my_q)
|
|
|
|
static inline struct task_struct *task_of(struct sched_entity *se)
|
|
{
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
WARN_ON_ONCE(!entity_is_task(se));
|
|
#endif
|
|
return container_of(se, struct task_struct, se);
|
|
}
|
|
|
|
/* Walk up scheduling entities hierarchy */
|
|
#define for_each_sched_entity(se) \
|
|
for (; se; se = se->parent)
|
|
|
|
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
|
|
{
|
|
return p->se.cfs_rq;
|
|
}
|
|
|
|
/* runqueue on which this entity is (to be) queued */
|
|
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
|
|
{
|
|
return se->cfs_rq;
|
|
}
|
|
|
|
/* runqueue "owned" by this group */
|
|
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
|
|
{
|
|
return grp->my_q;
|
|
}
|
|
|
|
/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
|
|
* another cpu ('this_cpu')
|
|
*/
|
|
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
|
|
{
|
|
return cfs_rq->tg->cfs_rq[this_cpu];
|
|
}
|
|
|
|
/* Iterate thr' all leaf cfs_rq's on a runqueue */
|
|
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
|
|
list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
|
|
|
|
/* Do the two (enqueued) entities belong to the same group ? */
|
|
static inline int
|
|
is_same_group(struct sched_entity *se, struct sched_entity *pse)
|
|
{
|
|
if (se->cfs_rq == pse->cfs_rq)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline struct sched_entity *parent_entity(struct sched_entity *se)
|
|
{
|
|
return se->parent;
|
|
}
|
|
|
|
/* return depth at which a sched entity is present in the hierarchy */
|
|
static inline int depth_se(struct sched_entity *se)
|
|
{
|
|
int depth = 0;
|
|
|
|
for_each_sched_entity(se)
|
|
depth++;
|
|
|
|
return depth;
|
|
}
|
|
|
|
static void
|
|
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
|
|
{
|
|
int se_depth, pse_depth;
|
|
|
|
/*
|
|
* preemption test can be made between sibling entities who are in the
|
|
* same cfs_rq i.e who have a common parent. Walk up the hierarchy of
|
|
* both tasks until we find their ancestors who are siblings of common
|
|
* parent.
|
|
*/
|
|
|
|
/* First walk up until both entities are at same depth */
|
|
se_depth = depth_se(*se);
|
|
pse_depth = depth_se(*pse);
|
|
|
|
while (se_depth > pse_depth) {
|
|
se_depth--;
|
|
*se = parent_entity(*se);
|
|
}
|
|
|
|
while (pse_depth > se_depth) {
|
|
pse_depth--;
|
|
*pse = parent_entity(*pse);
|
|
}
|
|
|
|
while (!is_same_group(*se, *pse)) {
|
|
*se = parent_entity(*se);
|
|
*pse = parent_entity(*pse);
|
|
}
|
|
}
|
|
|
|
#else /* !CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
static inline struct task_struct *task_of(struct sched_entity *se)
|
|
{
|
|
return container_of(se, struct task_struct, se);
|
|
}
|
|
|
|
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
|
|
{
|
|
return container_of(cfs_rq, struct rq, cfs);
|
|
}
|
|
|
|
#define entity_is_task(se) 1
|
|
|
|
#define for_each_sched_entity(se) \
|
|
for (; se; se = NULL)
|
|
|
|
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
|
|
{
|
|
return &task_rq(p)->cfs;
|
|
}
|
|
|
|
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
|
|
{
|
|
struct task_struct *p = task_of(se);
|
|
struct rq *rq = task_rq(p);
|
|
|
|
return &rq->cfs;
|
|
}
|
|
|
|
/* runqueue "owned" by this group */
|
|
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
|
|
{
|
|
return &cpu_rq(this_cpu)->cfs;
|
|
}
|
|
|
|
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
|
|
for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
|
|
|
|
static inline int
|
|
is_same_group(struct sched_entity *se, struct sched_entity *pse)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline struct sched_entity *parent_entity(struct sched_entity *se)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void
|
|
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
|
|
/**************************************************************
|
|
* Scheduling class tree data structure manipulation methods:
|
|
*/
|
|
|
|
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
|
|
{
|
|
s64 delta = (s64)(vruntime - min_vruntime);
|
|
if (delta > 0)
|
|
min_vruntime = vruntime;
|
|
|
|
return min_vruntime;
|
|
}
|
|
|
|
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
|
|
{
|
|
s64 delta = (s64)(vruntime - min_vruntime);
|
|
if (delta < 0)
|
|
min_vruntime = vruntime;
|
|
|
|
return min_vruntime;
|
|
}
|
|
|
|
static inline int entity_before(struct sched_entity *a,
|
|
struct sched_entity *b)
|
|
{
|
|
return (s64)(a->vruntime - b->vruntime) < 0;
|
|
}
|
|
|
|
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
return se->vruntime - cfs_rq->min_vruntime;
|
|
}
|
|
|
|
static void update_min_vruntime(struct cfs_rq *cfs_rq)
|
|
{
|
|
u64 vruntime = cfs_rq->min_vruntime;
|
|
|
|
if (cfs_rq->curr)
|
|
vruntime = cfs_rq->curr->vruntime;
|
|
|
|
if (cfs_rq->rb_leftmost) {
|
|
struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
|
|
struct sched_entity,
|
|
run_node);
|
|
|
|
if (!cfs_rq->curr)
|
|
vruntime = se->vruntime;
|
|
else
|
|
vruntime = min_vruntime(vruntime, se->vruntime);
|
|
}
|
|
|
|
cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
|
|
}
|
|
|
|
/*
|
|
* Enqueue an entity into the rb-tree:
|
|
*/
|
|
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct sched_entity *entry;
|
|
s64 key = entity_key(cfs_rq, se);
|
|
int leftmost = 1;
|
|
|
|
/*
|
|
* Find the right place in the rbtree:
|
|
*/
|
|
while (*link) {
|
|
parent = *link;
|
|
entry = rb_entry(parent, struct sched_entity, run_node);
|
|
/*
|
|
* We dont care about collisions. Nodes with
|
|
* the same key stay together.
|
|
*/
|
|
if (key < entity_key(cfs_rq, entry)) {
|
|
link = &parent->rb_left;
|
|
} else {
|
|
link = &parent->rb_right;
|
|
leftmost = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Maintain a cache of leftmost tree entries (it is frequently
|
|
* used):
|
|
*/
|
|
if (leftmost)
|
|
cfs_rq->rb_leftmost = &se->run_node;
|
|
|
|
rb_link_node(&se->run_node, parent, link);
|
|
rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
|
|
}
|
|
|
|
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
if (cfs_rq->rb_leftmost == &se->run_node) {
|
|
struct rb_node *next_node;
|
|
|
|
next_node = rb_next(&se->run_node);
|
|
cfs_rq->rb_leftmost = next_node;
|
|
}
|
|
|
|
rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
|
|
}
|
|
|
|
static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct rb_node *left = cfs_rq->rb_leftmost;
|
|
|
|
if (!left)
|
|
return NULL;
|
|
|
|
return rb_entry(left, struct sched_entity, run_node);
|
|
}
|
|
|
|
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
|
|
|
|
if (!last)
|
|
return NULL;
|
|
|
|
return rb_entry(last, struct sched_entity, run_node);
|
|
}
|
|
|
|
/**************************************************************
|
|
* Scheduling class statistics methods:
|
|
*/
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
int sched_nr_latency_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
|
|
if (ret || !write)
|
|
return ret;
|
|
|
|
sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
|
|
sysctl_sched_min_granularity);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* delta /= w
|
|
*/
|
|
static inline unsigned long
|
|
calc_delta_fair(unsigned long delta, struct sched_entity *se)
|
|
{
|
|
if (unlikely(se->load.weight != NICE_0_LOAD))
|
|
delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
|
|
|
|
return delta;
|
|
}
|
|
|
|
/*
|
|
* The idea is to set a period in which each task runs once.
|
|
*
|
|
* When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
|
|
* this period because otherwise the slices get too small.
|
|
*
|
|
* p = (nr <= nl) ? l : l*nr/nl
|
|
*/
|
|
static u64 __sched_period(unsigned long nr_running)
|
|
{
|
|
u64 period = sysctl_sched_latency;
|
|
unsigned long nr_latency = sched_nr_latency;
|
|
|
|
if (unlikely(nr_running > nr_latency)) {
|
|
period = sysctl_sched_min_granularity;
|
|
period *= nr_running;
|
|
}
|
|
|
|
return period;
|
|
}
|
|
|
|
/*
|
|
* We calculate the wall-time slice from the period by taking a part
|
|
* proportional to the weight.
|
|
*
|
|
* s = p*P[w/rw]
|
|
*/
|
|
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
|
|
|
|
for_each_sched_entity(se) {
|
|
struct load_weight *load;
|
|
struct load_weight lw;
|
|
|
|
cfs_rq = cfs_rq_of(se);
|
|
load = &cfs_rq->load;
|
|
|
|
if (unlikely(!se->on_rq)) {
|
|
lw = cfs_rq->load;
|
|
|
|
update_load_add(&lw, se->load.weight);
|
|
load = &lw;
|
|
}
|
|
slice = calc_delta_mine(slice, se->load.weight, load);
|
|
}
|
|
return slice;
|
|
}
|
|
|
|
/*
|
|
* We calculate the vruntime slice of a to be inserted task
|
|
*
|
|
* vs = s/w
|
|
*/
|
|
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
return calc_delta_fair(sched_slice(cfs_rq, se), se);
|
|
}
|
|
|
|
/*
|
|
* Update the current task's runtime statistics. Skip current tasks that
|
|
* are not in our scheduling class.
|
|
*/
|
|
static inline void
|
|
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
|
|
unsigned long delta_exec)
|
|
{
|
|
unsigned long delta_exec_weighted;
|
|
|
|
schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
|
|
|
|
curr->sum_exec_runtime += delta_exec;
|
|
schedstat_add(cfs_rq, exec_clock, delta_exec);
|
|
delta_exec_weighted = calc_delta_fair(delta_exec, curr);
|
|
curr->vruntime += delta_exec_weighted;
|
|
update_min_vruntime(cfs_rq);
|
|
}
|
|
|
|
static void update_curr(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct sched_entity *curr = cfs_rq->curr;
|
|
u64 now = rq_of(cfs_rq)->clock;
|
|
unsigned long delta_exec;
|
|
|
|
if (unlikely(!curr))
|
|
return;
|
|
|
|
/*
|
|
* Get the amount of time the current task was running
|
|
* since the last time we changed load (this cannot
|
|
* overflow on 32 bits):
|
|
*/
|
|
delta_exec = (unsigned long)(now - curr->exec_start);
|
|
if (!delta_exec)
|
|
return;
|
|
|
|
__update_curr(cfs_rq, curr, delta_exec);
|
|
curr->exec_start = now;
|
|
|
|
if (entity_is_task(curr)) {
|
|
struct task_struct *curtask = task_of(curr);
|
|
|
|
trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
|
|
cpuacct_charge(curtask, delta_exec);
|
|
account_group_exec_runtime(curtask, delta_exec);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
|
|
}
|
|
|
|
/*
|
|
* Task is being enqueued - update stats:
|
|
*/
|
|
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
/*
|
|
* Are we enqueueing a waiting task? (for current tasks
|
|
* a dequeue/enqueue event is a NOP)
|
|
*/
|
|
if (se != cfs_rq->curr)
|
|
update_stats_wait_start(cfs_rq, se);
|
|
}
|
|
|
|
static void
|
|
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
schedstat_set(se->wait_max, max(se->wait_max,
|
|
rq_of(cfs_rq)->clock - se->wait_start));
|
|
schedstat_set(se->wait_count, se->wait_count + 1);
|
|
schedstat_set(se->wait_sum, se->wait_sum +
|
|
rq_of(cfs_rq)->clock - se->wait_start);
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
if (entity_is_task(se)) {
|
|
trace_sched_stat_wait(task_of(se),
|
|
rq_of(cfs_rq)->clock - se->wait_start);
|
|
}
|
|
#endif
|
|
schedstat_set(se->wait_start, 0);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
/*
|
|
* Mark the end of the wait period if dequeueing a
|
|
* waiting task:
|
|
*/
|
|
if (se != cfs_rq->curr)
|
|
update_stats_wait_end(cfs_rq, se);
|
|
}
|
|
|
|
/*
|
|
* We are picking a new current task - update its stats:
|
|
*/
|
|
static inline void
|
|
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
/*
|
|
* We are starting a new run period:
|
|
*/
|
|
se->exec_start = rq_of(cfs_rq)->clock;
|
|
}
|
|
|
|
/**************************************************
|
|
* Scheduling class queueing methods:
|
|
*/
|
|
|
|
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
|
|
static void
|
|
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
|
|
{
|
|
cfs_rq->task_weight += weight;
|
|
}
|
|
#else
|
|
static inline void
|
|
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
update_load_add(&cfs_rq->load, se->load.weight);
|
|
if (!parent_entity(se))
|
|
inc_cpu_load(rq_of(cfs_rq), se->load.weight);
|
|
if (entity_is_task(se)) {
|
|
add_cfs_task_weight(cfs_rq, se->load.weight);
|
|
list_add(&se->group_node, &cfs_rq->tasks);
|
|
}
|
|
cfs_rq->nr_running++;
|
|
se->on_rq = 1;
|
|
}
|
|
|
|
static void
|
|
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
update_load_sub(&cfs_rq->load, se->load.weight);
|
|
if (!parent_entity(se))
|
|
dec_cpu_load(rq_of(cfs_rq), se->load.weight);
|
|
if (entity_is_task(se)) {
|
|
add_cfs_task_weight(cfs_rq, -se->load.weight);
|
|
list_del_init(&se->group_node);
|
|
}
|
|
cfs_rq->nr_running--;
|
|
se->on_rq = 0;
|
|
}
|
|
|
|
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
struct task_struct *tsk = NULL;
|
|
|
|
if (entity_is_task(se))
|
|
tsk = task_of(se);
|
|
|
|
if (se->sleep_start) {
|
|
u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
|
|
|
|
if ((s64)delta < 0)
|
|
delta = 0;
|
|
|
|
if (unlikely(delta > se->sleep_max))
|
|
se->sleep_max = delta;
|
|
|
|
se->sleep_start = 0;
|
|
se->sum_sleep_runtime += delta;
|
|
|
|
if (tsk) {
|
|
account_scheduler_latency(tsk, delta >> 10, 1);
|
|
trace_sched_stat_sleep(tsk, delta);
|
|
}
|
|
}
|
|
if (se->block_start) {
|
|
u64 delta = rq_of(cfs_rq)->clock - se->block_start;
|
|
|
|
if ((s64)delta < 0)
|
|
delta = 0;
|
|
|
|
if (unlikely(delta > se->block_max))
|
|
se->block_max = delta;
|
|
|
|
se->block_start = 0;
|
|
se->sum_sleep_runtime += delta;
|
|
|
|
if (tsk) {
|
|
if (tsk->in_iowait) {
|
|
se->iowait_sum += delta;
|
|
se->iowait_count++;
|
|
trace_sched_stat_iowait(tsk, delta);
|
|
}
|
|
|
|
/*
|
|
* Blocking time is in units of nanosecs, so shift by
|
|
* 20 to get a milliseconds-range estimation of the
|
|
* amount of time that the task spent sleeping:
|
|
*/
|
|
if (unlikely(prof_on == SLEEP_PROFILING)) {
|
|
profile_hits(SLEEP_PROFILING,
|
|
(void *)get_wchan(tsk),
|
|
delta >> 20);
|
|
}
|
|
account_scheduler_latency(tsk, delta >> 10, 0);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
s64 d = se->vruntime - cfs_rq->min_vruntime;
|
|
|
|
if (d < 0)
|
|
d = -d;
|
|
|
|
if (d > 3*sysctl_sched_latency)
|
|
schedstat_inc(cfs_rq, nr_spread_over);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
|
|
{
|
|
u64 vruntime = cfs_rq->min_vruntime;
|
|
|
|
/*
|
|
* The 'current' period is already promised to the current tasks,
|
|
* however the extra weight of the new task will slow them down a
|
|
* little, place the new task so that it fits in the slot that
|
|
* stays open at the end.
|
|
*/
|
|
if (initial && sched_feat(START_DEBIT))
|
|
vruntime += sched_vslice(cfs_rq, se);
|
|
|
|
/* sleeps up to a single latency don't count. */
|
|
if (!initial && sched_feat(FAIR_SLEEPERS)) {
|
|
unsigned long thresh = sysctl_sched_latency;
|
|
|
|
/*
|
|
* Convert the sleeper threshold into virtual time.
|
|
* SCHED_IDLE is a special sub-class. We care about
|
|
* fairness only relative to other SCHED_IDLE tasks,
|
|
* all of which have the same weight.
|
|
*/
|
|
if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
|
|
task_of(se)->policy != SCHED_IDLE))
|
|
thresh = calc_delta_fair(thresh, se);
|
|
|
|
/*
|
|
* Halve their sleep time's effect, to allow
|
|
* for a gentler effect of sleepers:
|
|
*/
|
|
if (sched_feat(GENTLE_FAIR_SLEEPERS))
|
|
thresh >>= 1;
|
|
|
|
vruntime -= thresh;
|
|
}
|
|
|
|
/* ensure we never gain time by being placed backwards. */
|
|
vruntime = max_vruntime(se->vruntime, vruntime);
|
|
|
|
se->vruntime = vruntime;
|
|
}
|
|
|
|
static void
|
|
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
|
|
{
|
|
/*
|
|
* Update run-time statistics of the 'current'.
|
|
*/
|
|
update_curr(cfs_rq);
|
|
account_entity_enqueue(cfs_rq, se);
|
|
|
|
if (wakeup) {
|
|
place_entity(cfs_rq, se, 0);
|
|
enqueue_sleeper(cfs_rq, se);
|
|
}
|
|
|
|
update_stats_enqueue(cfs_rq, se);
|
|
check_spread(cfs_rq, se);
|
|
if (se != cfs_rq->curr)
|
|
__enqueue_entity(cfs_rq, se);
|
|
}
|
|
|
|
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
if (!se || cfs_rq->last == se)
|
|
cfs_rq->last = NULL;
|
|
|
|
if (!se || cfs_rq->next == se)
|
|
cfs_rq->next = NULL;
|
|
}
|
|
|
|
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
for_each_sched_entity(se)
|
|
__clear_buddies(cfs_rq_of(se), se);
|
|
}
|
|
|
|
static void
|
|
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
|
|
{
|
|
/*
|
|
* Update run-time statistics of the 'current'.
|
|
*/
|
|
update_curr(cfs_rq);
|
|
|
|
update_stats_dequeue(cfs_rq, se);
|
|
if (sleep) {
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
if (entity_is_task(se)) {
|
|
struct task_struct *tsk = task_of(se);
|
|
|
|
if (tsk->state & TASK_INTERRUPTIBLE)
|
|
se->sleep_start = rq_of(cfs_rq)->clock;
|
|
if (tsk->state & TASK_UNINTERRUPTIBLE)
|
|
se->block_start = rq_of(cfs_rq)->clock;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
clear_buddies(cfs_rq, se);
|
|
|
|
if (se != cfs_rq->curr)
|
|
__dequeue_entity(cfs_rq, se);
|
|
account_entity_dequeue(cfs_rq, se);
|
|
update_min_vruntime(cfs_rq);
|
|
}
|
|
|
|
/*
|
|
* Preempt the current task with a newly woken task if needed:
|
|
*/
|
|
static void
|
|
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
|
|
{
|
|
unsigned long ideal_runtime, delta_exec;
|
|
|
|
ideal_runtime = sched_slice(cfs_rq, curr);
|
|
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
|
|
if (delta_exec > ideal_runtime) {
|
|
resched_task(rq_of(cfs_rq)->curr);
|
|
/*
|
|
* The current task ran long enough, ensure it doesn't get
|
|
* re-elected due to buddy favours.
|
|
*/
|
|
clear_buddies(cfs_rq, curr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ensure that a task that missed wakeup preemption by a
|
|
* narrow margin doesn't have to wait for a full slice.
|
|
* This also mitigates buddy induced latencies under load.
|
|
*/
|
|
if (!sched_feat(WAKEUP_PREEMPT))
|
|
return;
|
|
|
|
if (delta_exec < sysctl_sched_min_granularity)
|
|
return;
|
|
|
|
if (cfs_rq->nr_running > 1) {
|
|
struct sched_entity *se = __pick_next_entity(cfs_rq);
|
|
s64 delta = curr->vruntime - se->vruntime;
|
|
|
|
if (delta > ideal_runtime)
|
|
resched_task(rq_of(cfs_rq)->curr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
/* 'current' is not kept within the tree. */
|
|
if (se->on_rq) {
|
|
/*
|
|
* Any task has to be enqueued before it get to execute on
|
|
* a CPU. So account for the time it spent waiting on the
|
|
* runqueue.
|
|
*/
|
|
update_stats_wait_end(cfs_rq, se);
|
|
__dequeue_entity(cfs_rq, se);
|
|
}
|
|
|
|
update_stats_curr_start(cfs_rq, se);
|
|
cfs_rq->curr = se;
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/*
|
|
* Track our maximum slice length, if the CPU's load is at
|
|
* least twice that of our own weight (i.e. dont track it
|
|
* when there are only lesser-weight tasks around):
|
|
*/
|
|
if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
|
|
se->slice_max = max(se->slice_max,
|
|
se->sum_exec_runtime - se->prev_sum_exec_runtime);
|
|
}
|
|
#endif
|
|
se->prev_sum_exec_runtime = se->sum_exec_runtime;
|
|
}
|
|
|
|
static int
|
|
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
|
|
|
|
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct sched_entity *se = __pick_next_entity(cfs_rq);
|
|
struct sched_entity *left = se;
|
|
|
|
if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
|
|
se = cfs_rq->next;
|
|
|
|
/*
|
|
* Prefer last buddy, try to return the CPU to a preempted task.
|
|
*/
|
|
if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
|
|
se = cfs_rq->last;
|
|
|
|
clear_buddies(cfs_rq, se);
|
|
|
|
return se;
|
|
}
|
|
|
|
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
|
|
{
|
|
/*
|
|
* If still on the runqueue then deactivate_task()
|
|
* was not called and update_curr() has to be done:
|
|
*/
|
|
if (prev->on_rq)
|
|
update_curr(cfs_rq);
|
|
|
|
check_spread(cfs_rq, prev);
|
|
if (prev->on_rq) {
|
|
update_stats_wait_start(cfs_rq, prev);
|
|
/* Put 'current' back into the tree. */
|
|
__enqueue_entity(cfs_rq, prev);
|
|
}
|
|
cfs_rq->curr = NULL;
|
|
}
|
|
|
|
static void
|
|
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
|
|
{
|
|
/*
|
|
* Update run-time statistics of the 'current'.
|
|
*/
|
|
update_curr(cfs_rq);
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
/*
|
|
* queued ticks are scheduled to match the slice, so don't bother
|
|
* validating it and just reschedule.
|
|
*/
|
|
if (queued) {
|
|
resched_task(rq_of(cfs_rq)->curr);
|
|
return;
|
|
}
|
|
/*
|
|
* don't let the period tick interfere with the hrtick preemption
|
|
*/
|
|
if (!sched_feat(DOUBLE_TICK) &&
|
|
hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
|
|
return;
|
|
#endif
|
|
|
|
if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
|
|
check_preempt_tick(cfs_rq, curr);
|
|
}
|
|
|
|
/**************************************************
|
|
* CFS operations on tasks:
|
|
*/
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct sched_entity *se = &p->se;
|
|
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
|
|
WARN_ON(task_rq(p) != rq);
|
|
|
|
if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
|
|
u64 slice = sched_slice(cfs_rq, se);
|
|
u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
|
|
s64 delta = slice - ran;
|
|
|
|
if (delta < 0) {
|
|
if (rq->curr == p)
|
|
resched_task(p);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Don't schedule slices shorter than 10000ns, that just
|
|
* doesn't make sense. Rely on vruntime for fairness.
|
|
*/
|
|
if (rq->curr != p)
|
|
delta = max_t(s64, 10000LL, delta);
|
|
|
|
hrtick_start(rq, delta);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* called from enqueue/dequeue and updates the hrtick when the
|
|
* current task is from our class and nr_running is low enough
|
|
* to matter.
|
|
*/
|
|
static void hrtick_update(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
|
|
if (curr->sched_class != &fair_sched_class)
|
|
return;
|
|
|
|
if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
|
|
hrtick_start_fair(rq, curr);
|
|
}
|
|
#else /* !CONFIG_SCHED_HRTICK */
|
|
static inline void
|
|
hrtick_start_fair(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline void hrtick_update(struct rq *rq)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The enqueue_task method is called before nr_running is
|
|
* increased. Here we update the fair scheduling stats and
|
|
* then put the task into the rbtree:
|
|
*/
|
|
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
struct sched_entity *se = &p->se;
|
|
|
|
for_each_sched_entity(se) {
|
|
if (se->on_rq)
|
|
break;
|
|
cfs_rq = cfs_rq_of(se);
|
|
enqueue_entity(cfs_rq, se, wakeup);
|
|
wakeup = 1;
|
|
}
|
|
|
|
hrtick_update(rq);
|
|
}
|
|
|
|
/*
|
|
* The dequeue_task method is called before nr_running is
|
|
* decreased. We remove the task from the rbtree and
|
|
* update the fair scheduling stats:
|
|
*/
|
|
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
struct sched_entity *se = &p->se;
|
|
|
|
for_each_sched_entity(se) {
|
|
cfs_rq = cfs_rq_of(se);
|
|
dequeue_entity(cfs_rq, se, sleep);
|
|
/* Don't dequeue parent if it has other entities besides us */
|
|
if (cfs_rq->load.weight)
|
|
break;
|
|
sleep = 1;
|
|
}
|
|
|
|
hrtick_update(rq);
|
|
}
|
|
|
|
/*
|
|
* sched_yield() support is very simple - we dequeue and enqueue.
|
|
*
|
|
* If compat_yield is turned on then we requeue to the end of the tree.
|
|
*/
|
|
static void yield_task_fair(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
|
|
struct sched_entity *rightmost, *se = &curr->se;
|
|
|
|
/*
|
|
* Are we the only task in the tree?
|
|
*/
|
|
if (unlikely(cfs_rq->nr_running == 1))
|
|
return;
|
|
|
|
clear_buddies(cfs_rq, se);
|
|
|
|
if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
|
|
update_rq_clock(rq);
|
|
/*
|
|
* Update run-time statistics of the 'current'.
|
|
*/
|
|
update_curr(cfs_rq);
|
|
|
|
return;
|
|
}
|
|
/*
|
|
* Find the rightmost entry in the rbtree:
|
|
*/
|
|
rightmost = __pick_last_entity(cfs_rq);
|
|
/*
|
|
* Already in the rightmost position?
|
|
*/
|
|
if (unlikely(!rightmost || entity_before(rightmost, se)))
|
|
return;
|
|
|
|
/*
|
|
* Minimally necessary key value to be last in the tree:
|
|
* Upon rescheduling, sched_class::put_prev_task() will place
|
|
* 'current' within the tree based on its new key value.
|
|
*/
|
|
se->vruntime = rightmost->vruntime + 1;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/*
|
|
* effective_load() calculates the load change as seen from the root_task_group
|
|
*
|
|
* Adding load to a group doesn't make a group heavier, but can cause movement
|
|
* of group shares between cpus. Assuming the shares were perfectly aligned one
|
|
* can calculate the shift in shares.
|
|
*
|
|
* The problem is that perfectly aligning the shares is rather expensive, hence
|
|
* we try to avoid doing that too often - see update_shares(), which ratelimits
|
|
* this change.
|
|
*
|
|
* We compensate this by not only taking the current delta into account, but
|
|
* also considering the delta between when the shares were last adjusted and
|
|
* now.
|
|
*
|
|
* We still saw a performance dip, some tracing learned us that between
|
|
* cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
|
|
* significantly. Therefore try to bias the error in direction of failing
|
|
* the affine wakeup.
|
|
*
|
|
*/
|
|
static long effective_load(struct task_group *tg, int cpu,
|
|
long wl, long wg)
|
|
{
|
|
struct sched_entity *se = tg->se[cpu];
|
|
|
|
if (!tg->parent)
|
|
return wl;
|
|
|
|
/*
|
|
* By not taking the decrease of shares on the other cpu into
|
|
* account our error leans towards reducing the affine wakeups.
|
|
*/
|
|
if (!wl && sched_feat(ASYM_EFF_LOAD))
|
|
return wl;
|
|
|
|
for_each_sched_entity(se) {
|
|
long S, rw, s, a, b;
|
|
long more_w;
|
|
|
|
/*
|
|
* Instead of using this increment, also add the difference
|
|
* between when the shares were last updated and now.
|
|
*/
|
|
more_w = se->my_q->load.weight - se->my_q->rq_weight;
|
|
wl += more_w;
|
|
wg += more_w;
|
|
|
|
S = se->my_q->tg->shares;
|
|
s = se->my_q->shares;
|
|
rw = se->my_q->rq_weight;
|
|
|
|
a = S*(rw + wl);
|
|
b = S*rw + s*wg;
|
|
|
|
wl = s*(a-b);
|
|
|
|
if (likely(b))
|
|
wl /= b;
|
|
|
|
/*
|
|
* Assume the group is already running and will
|
|
* thus already be accounted for in the weight.
|
|
*
|
|
* That is, moving shares between CPUs, does not
|
|
* alter the group weight.
|
|
*/
|
|
wg = 0;
|
|
}
|
|
|
|
return wl;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline unsigned long effective_load(struct task_group *tg, int cpu,
|
|
unsigned long wl, unsigned long wg)
|
|
{
|
|
return wl;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
|
|
{
|
|
struct task_struct *curr = current;
|
|
unsigned long this_load, load;
|
|
int idx, this_cpu, prev_cpu;
|
|
unsigned long tl_per_task;
|
|
unsigned int imbalance;
|
|
struct task_group *tg;
|
|
unsigned long weight;
|
|
int balanced;
|
|
|
|
idx = sd->wake_idx;
|
|
this_cpu = smp_processor_id();
|
|
prev_cpu = task_cpu(p);
|
|
load = source_load(prev_cpu, idx);
|
|
this_load = target_load(this_cpu, idx);
|
|
|
|
if (sync) {
|
|
if (sched_feat(SYNC_LESS) &&
|
|
(curr->se.avg_overlap > sysctl_sched_migration_cost ||
|
|
p->se.avg_overlap > sysctl_sched_migration_cost))
|
|
sync = 0;
|
|
} else {
|
|
if (sched_feat(SYNC_MORE) &&
|
|
(curr->se.avg_overlap < sysctl_sched_migration_cost &&
|
|
p->se.avg_overlap < sysctl_sched_migration_cost))
|
|
sync = 1;
|
|
}
|
|
|
|
/*
|
|
* If sync wakeup then subtract the (maximum possible)
|
|
* effect of the currently running task from the load
|
|
* of the current CPU:
|
|
*/
|
|
if (sync) {
|
|
tg = task_group(current);
|
|
weight = current->se.load.weight;
|
|
|
|
this_load += effective_load(tg, this_cpu, -weight, -weight);
|
|
load += effective_load(tg, prev_cpu, 0, -weight);
|
|
}
|
|
|
|
tg = task_group(p);
|
|
weight = p->se.load.weight;
|
|
|
|
imbalance = 100 + (sd->imbalance_pct - 100) / 2;
|
|
|
|
/*
|
|
* In low-load situations, where prev_cpu is idle and this_cpu is idle
|
|
* due to the sync cause above having dropped this_load to 0, we'll
|
|
* always have an imbalance, but there's really nothing you can do
|
|
* about that, so that's good too.
|
|
*
|
|
* Otherwise check if either cpus are near enough in load to allow this
|
|
* task to be woken on this_cpu.
|
|
*/
|
|
balanced = !this_load ||
|
|
100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
|
|
imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
|
|
|
|
/*
|
|
* If the currently running task will sleep within
|
|
* a reasonable amount of time then attract this newly
|
|
* woken task:
|
|
*/
|
|
if (sync && balanced)
|
|
return 1;
|
|
|
|
schedstat_inc(p, se.nr_wakeups_affine_attempts);
|
|
tl_per_task = cpu_avg_load_per_task(this_cpu);
|
|
|
|
if (balanced ||
|
|
(this_load <= load &&
|
|
this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
|
|
/*
|
|
* This domain has SD_WAKE_AFFINE and
|
|
* p is cache cold in this domain, and
|
|
* there is no bad imbalance.
|
|
*/
|
|
schedstat_inc(sd, ttwu_move_affine);
|
|
schedstat_inc(p, se.nr_wakeups_affine);
|
|
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* find_idlest_group finds and returns the least busy CPU group within the
|
|
* domain.
|
|
*/
|
|
static struct sched_group *
|
|
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
|
|
int this_cpu, int load_idx)
|
|
{
|
|
struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
|
|
unsigned long min_load = ULONG_MAX, this_load = 0;
|
|
int imbalance = 100 + (sd->imbalance_pct-100)/2;
|
|
|
|
do {
|
|
unsigned long load, avg_load;
|
|
int local_group;
|
|
int i;
|
|
|
|
/* Skip over this group if it has no CPUs allowed */
|
|
if (!cpumask_intersects(sched_group_cpus(group),
|
|
&p->cpus_allowed))
|
|
continue;
|
|
|
|
local_group = cpumask_test_cpu(this_cpu,
|
|
sched_group_cpus(group));
|
|
|
|
/* Tally up the load of all CPUs in the group */
|
|
avg_load = 0;
|
|
|
|
for_each_cpu(i, sched_group_cpus(group)) {
|
|
/* Bias balancing toward cpus of our domain */
|
|
if (local_group)
|
|
load = source_load(i, load_idx);
|
|
else
|
|
load = target_load(i, load_idx);
|
|
|
|
avg_load += load;
|
|
}
|
|
|
|
/* Adjust by relative CPU power of the group */
|
|
avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
|
|
|
|
if (local_group) {
|
|
this_load = avg_load;
|
|
this = group;
|
|
} else if (avg_load < min_load) {
|
|
min_load = avg_load;
|
|
idlest = group;
|
|
}
|
|
} while (group = group->next, group != sd->groups);
|
|
|
|
if (!idlest || 100*this_load < imbalance*min_load)
|
|
return NULL;
|
|
return idlest;
|
|
}
|
|
|
|
/*
|
|
* find_idlest_cpu - find the idlest cpu among the cpus in group.
|
|
*/
|
|
static int
|
|
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
|
|
{
|
|
unsigned long load, min_load = ULONG_MAX;
|
|
int idlest = -1;
|
|
int i;
|
|
|
|
/* Traverse only the allowed CPUs */
|
|
for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
|
|
load = weighted_cpuload(i);
|
|
|
|
if (load < min_load || (load == min_load && i == this_cpu)) {
|
|
min_load = load;
|
|
idlest = i;
|
|
}
|
|
}
|
|
|
|
return idlest;
|
|
}
|
|
|
|
/*
|
|
* Try and locate an idle CPU in the sched_domain.
|
|
*/
|
|
static int
|
|
select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int prev_cpu = task_cpu(p);
|
|
int i;
|
|
|
|
/*
|
|
* If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
|
|
* test in select_task_rq_fair) and the prev_cpu is idle then that's
|
|
* always a better target than the current cpu.
|
|
*/
|
|
if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
|
|
return prev_cpu;
|
|
|
|
/*
|
|
* Otherwise, iterate the domain and find an elegible idle cpu.
|
|
*/
|
|
for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
|
|
if (!cpu_rq(i)->cfs.nr_running) {
|
|
target = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return target;
|
|
}
|
|
|
|
/*
|
|
* sched_balance_self: balance the current task (running on cpu) in domains
|
|
* that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
|
|
* SD_BALANCE_EXEC.
|
|
*
|
|
* Balance, ie. select the least loaded group.
|
|
*
|
|
* Returns the target CPU number, or the same CPU if no balancing is needed.
|
|
*
|
|
* preempt must be disabled.
|
|
*/
|
|
static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
|
|
{
|
|
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
|
|
int cpu = smp_processor_id();
|
|
int prev_cpu = task_cpu(p);
|
|
int new_cpu = cpu;
|
|
int want_affine = 0;
|
|
int want_sd = 1;
|
|
int sync = wake_flags & WF_SYNC;
|
|
|
|
if (sd_flag & SD_BALANCE_WAKE) {
|
|
if (sched_feat(AFFINE_WAKEUPS) &&
|
|
cpumask_test_cpu(cpu, &p->cpus_allowed))
|
|
want_affine = 1;
|
|
new_cpu = prev_cpu;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, tmp) {
|
|
/*
|
|
* If power savings logic is enabled for a domain, see if we
|
|
* are not overloaded, if so, don't balance wider.
|
|
*/
|
|
if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
|
|
unsigned long power = 0;
|
|
unsigned long nr_running = 0;
|
|
unsigned long capacity;
|
|
int i;
|
|
|
|
for_each_cpu(i, sched_domain_span(tmp)) {
|
|
power += power_of(i);
|
|
nr_running += cpu_rq(i)->cfs.nr_running;
|
|
}
|
|
|
|
capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
|
|
|
|
if (tmp->flags & SD_POWERSAVINGS_BALANCE)
|
|
nr_running /= 2;
|
|
|
|
if (nr_running < capacity)
|
|
want_sd = 0;
|
|
}
|
|
|
|
/*
|
|
* While iterating the domains looking for a spanning
|
|
* WAKE_AFFINE domain, adjust the affine target to any idle cpu
|
|
* in cache sharing domains along the way.
|
|
*/
|
|
if (want_affine) {
|
|
int target = -1;
|
|
|
|
/*
|
|
* If both cpu and prev_cpu are part of this domain,
|
|
* cpu is a valid SD_WAKE_AFFINE target.
|
|
*/
|
|
if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
|
|
target = cpu;
|
|
|
|
/*
|
|
* If there's an idle sibling in this domain, make that
|
|
* the wake_affine target instead of the current cpu.
|
|
*/
|
|
if (tmp->flags & SD_PREFER_SIBLING)
|
|
target = select_idle_sibling(p, tmp, target);
|
|
|
|
if (target >= 0) {
|
|
if (tmp->flags & SD_WAKE_AFFINE) {
|
|
affine_sd = tmp;
|
|
want_affine = 0;
|
|
}
|
|
cpu = target;
|
|
}
|
|
}
|
|
|
|
if (!want_sd && !want_affine)
|
|
break;
|
|
|
|
if (!(tmp->flags & sd_flag))
|
|
continue;
|
|
|
|
if (want_sd)
|
|
sd = tmp;
|
|
}
|
|
|
|
if (sched_feat(LB_SHARES_UPDATE)) {
|
|
/*
|
|
* Pick the largest domain to update shares over
|
|
*/
|
|
tmp = sd;
|
|
if (affine_sd && (!tmp ||
|
|
cpumask_weight(sched_domain_span(affine_sd)) >
|
|
cpumask_weight(sched_domain_span(sd))))
|
|
tmp = affine_sd;
|
|
|
|
if (tmp)
|
|
update_shares(tmp);
|
|
}
|
|
|
|
if (affine_sd && wake_affine(affine_sd, p, sync)) {
|
|
new_cpu = cpu;
|
|
goto out;
|
|
}
|
|
|
|
while (sd) {
|
|
int load_idx = sd->forkexec_idx;
|
|
struct sched_group *group;
|
|
int weight;
|
|
|
|
if (!(sd->flags & sd_flag)) {
|
|
sd = sd->child;
|
|
continue;
|
|
}
|
|
|
|
if (sd_flag & SD_BALANCE_WAKE)
|
|
load_idx = sd->wake_idx;
|
|
|
|
group = find_idlest_group(sd, p, cpu, load_idx);
|
|
if (!group) {
|
|
sd = sd->child;
|
|
continue;
|
|
}
|
|
|
|
new_cpu = find_idlest_cpu(group, p, cpu);
|
|
if (new_cpu == -1 || new_cpu == cpu) {
|
|
/* Now try balancing at a lower domain level of cpu */
|
|
sd = sd->child;
|
|
continue;
|
|
}
|
|
|
|
/* Now try balancing at a lower domain level of new_cpu */
|
|
cpu = new_cpu;
|
|
weight = cpumask_weight(sched_domain_span(sd));
|
|
sd = NULL;
|
|
for_each_domain(cpu, tmp) {
|
|
if (weight <= cpumask_weight(sched_domain_span(tmp)))
|
|
break;
|
|
if (tmp->flags & sd_flag)
|
|
sd = tmp;
|
|
}
|
|
/* while loop will break here if sd == NULL */
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
return new_cpu;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* Adaptive granularity
|
|
*
|
|
* se->avg_wakeup gives the average time a task runs until it does a wakeup,
|
|
* with the limit of wakeup_gran -- when it never does a wakeup.
|
|
*
|
|
* So the smaller avg_wakeup is the faster we want this task to preempt,
|
|
* but we don't want to treat the preemptee unfairly and therefore allow it
|
|
* to run for at least the amount of time we'd like to run.
|
|
*
|
|
* NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
|
|
*
|
|
* NOTE: we use *nr_running to scale with load, this nicely matches the
|
|
* degrading latency on load.
|
|
*/
|
|
static unsigned long
|
|
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
|
|
{
|
|
u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
|
|
u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
|
|
u64 gran = 0;
|
|
|
|
if (this_run < expected_wakeup)
|
|
gran = expected_wakeup - this_run;
|
|
|
|
return min_t(s64, gran, sysctl_sched_wakeup_granularity);
|
|
}
|
|
|
|
static unsigned long
|
|
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
|
|
{
|
|
unsigned long gran = sysctl_sched_wakeup_granularity;
|
|
|
|
if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
|
|
gran = adaptive_gran(curr, se);
|
|
|
|
/*
|
|
* Since its curr running now, convert the gran from real-time
|
|
* to virtual-time in his units.
|
|
*/
|
|
if (sched_feat(ASYM_GRAN)) {
|
|
/*
|
|
* By using 'se' instead of 'curr' we penalize light tasks, so
|
|
* they get preempted easier. That is, if 'se' < 'curr' then
|
|
* the resulting gran will be larger, therefore penalizing the
|
|
* lighter, if otoh 'se' > 'curr' then the resulting gran will
|
|
* be smaller, again penalizing the lighter task.
|
|
*
|
|
* This is especially important for buddies when the leftmost
|
|
* task is higher priority than the buddy.
|
|
*/
|
|
if (unlikely(se->load.weight != NICE_0_LOAD))
|
|
gran = calc_delta_fair(gran, se);
|
|
} else {
|
|
if (unlikely(curr->load.weight != NICE_0_LOAD))
|
|
gran = calc_delta_fair(gran, curr);
|
|
}
|
|
|
|
return gran;
|
|
}
|
|
|
|
/*
|
|
* Should 'se' preempt 'curr'.
|
|
*
|
|
* |s1
|
|
* |s2
|
|
* |s3
|
|
* g
|
|
* |<--->|c
|
|
*
|
|
* w(c, s1) = -1
|
|
* w(c, s2) = 0
|
|
* w(c, s3) = 1
|
|
*
|
|
*/
|
|
static int
|
|
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
|
|
{
|
|
s64 gran, vdiff = curr->vruntime - se->vruntime;
|
|
|
|
if (vdiff <= 0)
|
|
return -1;
|
|
|
|
gran = wakeup_gran(curr, se);
|
|
if (vdiff > gran)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_last_buddy(struct sched_entity *se)
|
|
{
|
|
if (likely(task_of(se)->policy != SCHED_IDLE)) {
|
|
for_each_sched_entity(se)
|
|
cfs_rq_of(se)->last = se;
|
|
}
|
|
}
|
|
|
|
static void set_next_buddy(struct sched_entity *se)
|
|
{
|
|
if (likely(task_of(se)->policy != SCHED_IDLE)) {
|
|
for_each_sched_entity(se)
|
|
cfs_rq_of(se)->next = se;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Preempt the current task with a newly woken task if needed:
|
|
*/
|
|
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
struct sched_entity *se = &curr->se, *pse = &p->se;
|
|
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
|
|
int sync = wake_flags & WF_SYNC;
|
|
int scale = cfs_rq->nr_running >= sched_nr_latency;
|
|
|
|
update_curr(cfs_rq);
|
|
|
|
if (unlikely(rt_prio(p->prio))) {
|
|
resched_task(curr);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(p->sched_class != &fair_sched_class))
|
|
return;
|
|
|
|
if (unlikely(se == pse))
|
|
return;
|
|
|
|
if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
|
|
set_next_buddy(pse);
|
|
|
|
/*
|
|
* We can come here with TIF_NEED_RESCHED already set from new task
|
|
* wake up path.
|
|
*/
|
|
if (test_tsk_need_resched(curr))
|
|
return;
|
|
|
|
/*
|
|
* Batch and idle tasks do not preempt (their preemption is driven by
|
|
* the tick):
|
|
*/
|
|
if (unlikely(p->policy != SCHED_NORMAL))
|
|
return;
|
|
|
|
/* Idle tasks are by definition preempted by everybody. */
|
|
if (unlikely(curr->policy == SCHED_IDLE)) {
|
|
resched_task(curr);
|
|
return;
|
|
}
|
|
|
|
if ((sched_feat(WAKEUP_SYNC) && sync) ||
|
|
(sched_feat(WAKEUP_OVERLAP) &&
|
|
(se->avg_overlap < sysctl_sched_migration_cost &&
|
|
pse->avg_overlap < sysctl_sched_migration_cost))) {
|
|
resched_task(curr);
|
|
return;
|
|
}
|
|
|
|
if (sched_feat(WAKEUP_RUNNING)) {
|
|
if (pse->avg_running < se->avg_running) {
|
|
set_next_buddy(pse);
|
|
resched_task(curr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!sched_feat(WAKEUP_PREEMPT))
|
|
return;
|
|
|
|
find_matching_se(&se, &pse);
|
|
|
|
BUG_ON(!pse);
|
|
|
|
if (wakeup_preempt_entity(se, pse) == 1) {
|
|
resched_task(curr);
|
|
/*
|
|
* Only set the backward buddy when the current task is still
|
|
* on the rq. This can happen when a wakeup gets interleaved
|
|
* with schedule on the ->pre_schedule() or idle_balance()
|
|
* point, either of which can * drop the rq lock.
|
|
*
|
|
* Also, during early boot the idle thread is in the fair class,
|
|
* for obvious reasons its a bad idea to schedule back to it.
|
|
*/
|
|
if (unlikely(!se->on_rq || curr == rq->idle))
|
|
return;
|
|
if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
|
|
set_last_buddy(se);
|
|
}
|
|
}
|
|
|
|
static struct task_struct *pick_next_task_fair(struct rq *rq)
|
|
{
|
|
struct task_struct *p;
|
|
struct cfs_rq *cfs_rq = &rq->cfs;
|
|
struct sched_entity *se;
|
|
|
|
if (!cfs_rq->nr_running)
|
|
return NULL;
|
|
|
|
do {
|
|
se = pick_next_entity(cfs_rq);
|
|
set_next_entity(cfs_rq, se);
|
|
cfs_rq = group_cfs_rq(se);
|
|
} while (cfs_rq);
|
|
|
|
p = task_of(se);
|
|
hrtick_start_fair(rq, p);
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Account for a descheduled task:
|
|
*/
|
|
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
struct sched_entity *se = &prev->se;
|
|
struct cfs_rq *cfs_rq;
|
|
|
|
for_each_sched_entity(se) {
|
|
cfs_rq = cfs_rq_of(se);
|
|
put_prev_entity(cfs_rq, se);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**************************************************
|
|
* Fair scheduling class load-balancing methods:
|
|
*/
|
|
|
|
/*
|
|
* Load-balancing iterator. Note: while the runqueue stays locked
|
|
* during the whole iteration, the current task might be
|
|
* dequeued so the iterator has to be dequeue-safe. Here we
|
|
* achieve that by always pre-iterating before returning
|
|
* the current task:
|
|
*/
|
|
static struct task_struct *
|
|
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
|
|
{
|
|
struct task_struct *p = NULL;
|
|
struct sched_entity *se;
|
|
|
|
if (next == &cfs_rq->tasks)
|
|
return NULL;
|
|
|
|
se = list_entry(next, struct sched_entity, group_node);
|
|
p = task_of(se);
|
|
cfs_rq->balance_iterator = next->next;
|
|
|
|
return p;
|
|
}
|
|
|
|
static struct task_struct *load_balance_start_fair(void *arg)
|
|
{
|
|
struct cfs_rq *cfs_rq = arg;
|
|
|
|
return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
|
|
}
|
|
|
|
static struct task_struct *load_balance_next_fair(void *arg)
|
|
{
|
|
struct cfs_rq *cfs_rq = arg;
|
|
|
|
return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
|
|
}
|
|
|
|
static unsigned long
|
|
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
unsigned long max_load_move, struct sched_domain *sd,
|
|
enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
|
|
struct cfs_rq *cfs_rq)
|
|
{
|
|
struct rq_iterator cfs_rq_iterator;
|
|
|
|
cfs_rq_iterator.start = load_balance_start_fair;
|
|
cfs_rq_iterator.next = load_balance_next_fair;
|
|
cfs_rq_iterator.arg = cfs_rq;
|
|
|
|
return balance_tasks(this_rq, this_cpu, busiest,
|
|
max_load_move, sd, idle, all_pinned,
|
|
this_best_prio, &cfs_rq_iterator);
|
|
}
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
static unsigned long
|
|
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
unsigned long max_load_move,
|
|
struct sched_domain *sd, enum cpu_idle_type idle,
|
|
int *all_pinned, int *this_best_prio)
|
|
{
|
|
long rem_load_move = max_load_move;
|
|
int busiest_cpu = cpu_of(busiest);
|
|
struct task_group *tg;
|
|
|
|
rcu_read_lock();
|
|
update_h_load(busiest_cpu);
|
|
|
|
list_for_each_entry_rcu(tg, &task_groups, list) {
|
|
struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
|
|
unsigned long busiest_h_load = busiest_cfs_rq->h_load;
|
|
unsigned long busiest_weight = busiest_cfs_rq->load.weight;
|
|
u64 rem_load, moved_load;
|
|
|
|
/*
|
|
* empty group
|
|
*/
|
|
if (!busiest_cfs_rq->task_weight)
|
|
continue;
|
|
|
|
rem_load = (u64)rem_load_move * busiest_weight;
|
|
rem_load = div_u64(rem_load, busiest_h_load + 1);
|
|
|
|
moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
|
|
rem_load, sd, idle, all_pinned, this_best_prio,
|
|
tg->cfs_rq[busiest_cpu]);
|
|
|
|
if (!moved_load)
|
|
continue;
|
|
|
|
moved_load *= busiest_h_load;
|
|
moved_load = div_u64(moved_load, busiest_weight + 1);
|
|
|
|
rem_load_move -= moved_load;
|
|
if (rem_load_move < 0)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return max_load_move - rem_load_move;
|
|
}
|
|
#else
|
|
static unsigned long
|
|
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
unsigned long max_load_move,
|
|
struct sched_domain *sd, enum cpu_idle_type idle,
|
|
int *all_pinned, int *this_best_prio)
|
|
{
|
|
return __load_balance_fair(this_rq, this_cpu, busiest,
|
|
max_load_move, sd, idle, all_pinned,
|
|
this_best_prio, &busiest->cfs);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
struct sched_domain *sd, enum cpu_idle_type idle)
|
|
{
|
|
struct cfs_rq *busy_cfs_rq;
|
|
struct rq_iterator cfs_rq_iterator;
|
|
|
|
cfs_rq_iterator.start = load_balance_start_fair;
|
|
cfs_rq_iterator.next = load_balance_next_fair;
|
|
|
|
for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
|
|
/*
|
|
* pass busy_cfs_rq argument into
|
|
* load_balance_[start|next]_fair iterators
|
|
*/
|
|
cfs_rq_iterator.arg = busy_cfs_rq;
|
|
if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
|
|
&cfs_rq_iterator))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* scheduler tick hitting a task of our scheduling class:
|
|
*/
|
|
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
struct sched_entity *se = &curr->se;
|
|
|
|
for_each_sched_entity(se) {
|
|
cfs_rq = cfs_rq_of(se);
|
|
entity_tick(cfs_rq, se, queued);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Share the fairness runtime between parent and child, thus the
|
|
* total amount of pressure for CPU stays equal - new tasks
|
|
* get a chance to run but frequent forkers are not allowed to
|
|
* monopolize the CPU. Note: the parent runqueue is locked,
|
|
* the child is not running yet.
|
|
*/
|
|
static void task_new_fair(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct cfs_rq *cfs_rq = task_cfs_rq(p);
|
|
struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
|
|
int this_cpu = smp_processor_id();
|
|
|
|
sched_info_queued(p);
|
|
|
|
update_curr(cfs_rq);
|
|
if (curr)
|
|
se->vruntime = curr->vruntime;
|
|
place_entity(cfs_rq, se, 1);
|
|
|
|
/* 'curr' will be NULL if the child belongs to a different group */
|
|
if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
|
|
curr && entity_before(curr, se)) {
|
|
/*
|
|
* Upon rescheduling, sched_class::put_prev_task() will place
|
|
* 'current' within the tree based on its new key value.
|
|
*/
|
|
swap(curr->vruntime, se->vruntime);
|
|
resched_task(rq->curr);
|
|
}
|
|
|
|
enqueue_task_fair(rq, p, 0);
|
|
}
|
|
|
|
/*
|
|
* Priority of the task has changed. Check to see if we preempt
|
|
* the current task.
|
|
*/
|
|
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
|
|
int oldprio, int running)
|
|
{
|
|
/*
|
|
* Reschedule if we are currently running on this runqueue and
|
|
* our priority decreased, or if we are not currently running on
|
|
* this runqueue and our priority is higher than the current's
|
|
*/
|
|
if (running) {
|
|
if (p->prio > oldprio)
|
|
resched_task(rq->curr);
|
|
} else
|
|
check_preempt_curr(rq, p, 0);
|
|
}
|
|
|
|
/*
|
|
* We switched to the sched_fair class.
|
|
*/
|
|
static void switched_to_fair(struct rq *rq, struct task_struct *p,
|
|
int running)
|
|
{
|
|
/*
|
|
* We were most likely switched from sched_rt, so
|
|
* kick off the schedule if running, otherwise just see
|
|
* if we can still preempt the current task.
|
|
*/
|
|
if (running)
|
|
resched_task(rq->curr);
|
|
else
|
|
check_preempt_curr(rq, p, 0);
|
|
}
|
|
|
|
/* Account for a task changing its policy or group.
|
|
*
|
|
* This routine is mostly called to set cfs_rq->curr field when a task
|
|
* migrates between groups/classes.
|
|
*/
|
|
static void set_curr_task_fair(struct rq *rq)
|
|
{
|
|
struct sched_entity *se = &rq->curr->se;
|
|
|
|
for_each_sched_entity(se)
|
|
set_next_entity(cfs_rq_of(se), se);
|
|
}
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
static void moved_group_fair(struct task_struct *p)
|
|
{
|
|
struct cfs_rq *cfs_rq = task_cfs_rq(p);
|
|
|
|
update_curr(cfs_rq);
|
|
place_entity(cfs_rq, &p->se, 1);
|
|
}
|
|
#endif
|
|
|
|
unsigned int get_rr_interval_fair(struct task_struct *task)
|
|
{
|
|
struct sched_entity *se = &task->se;
|
|
unsigned long flags;
|
|
struct rq *rq;
|
|
unsigned int rr_interval = 0;
|
|
|
|
/*
|
|
* Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
|
|
* idle runqueue:
|
|
*/
|
|
rq = task_rq_lock(task, &flags);
|
|
if (rq->cfs.load.weight)
|
|
rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
|
|
task_rq_unlock(rq, &flags);
|
|
|
|
return rr_interval;
|
|
}
|
|
|
|
/*
|
|
* All the scheduling class methods:
|
|
*/
|
|
static const struct sched_class fair_sched_class = {
|
|
.next = &idle_sched_class,
|
|
.enqueue_task = enqueue_task_fair,
|
|
.dequeue_task = dequeue_task_fair,
|
|
.yield_task = yield_task_fair,
|
|
|
|
.check_preempt_curr = check_preempt_wakeup,
|
|
|
|
.pick_next_task = pick_next_task_fair,
|
|
.put_prev_task = put_prev_task_fair,
|
|
|
|
#ifdef CONFIG_SMP
|
|
.select_task_rq = select_task_rq_fair,
|
|
|
|
.load_balance = load_balance_fair,
|
|
.move_one_task = move_one_task_fair,
|
|
#endif
|
|
|
|
.set_curr_task = set_curr_task_fair,
|
|
.task_tick = task_tick_fair,
|
|
.task_new = task_new_fair,
|
|
|
|
.prio_changed = prio_changed_fair,
|
|
.switched_to = switched_to_fair,
|
|
|
|
.get_rr_interval = get_rr_interval_fair,
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
.moved_group = moved_group_fair,
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
static void print_cfs_stats(struct seq_file *m, int cpu)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
|
|
rcu_read_lock();
|
|
for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
|
|
print_cfs_rq(m, cpu, cfs_rq);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|