499 lines
11 KiB
C
499 lines
11 KiB
C
/*
|
|
* Blackfin performance counters
|
|
*
|
|
* Copyright 2011 Analog Devices Inc.
|
|
*
|
|
* Ripped from SuperH version:
|
|
*
|
|
* Copyright (C) 2009 Paul Mundt
|
|
*
|
|
* Heavily based on the x86 and PowerPC implementations.
|
|
*
|
|
* x86:
|
|
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
|
|
* Copyright (C) 2009 Jaswinder Singh Rajput
|
|
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
|
|
* Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
|
|
*
|
|
* ppc:
|
|
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
|
|
*
|
|
* Licensed under the GPL-2 or later.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/perf_event.h>
|
|
#include <asm/bfin_pfmon.h>
|
|
|
|
/*
|
|
* We have two counters, and each counter can support an event type.
|
|
* The 'o' is PFCNTx=1 and 's' is PFCNTx=0
|
|
*
|
|
* 0x04 o pc invariant branches
|
|
* 0x06 o mispredicted branches
|
|
* 0x09 o predicted branches taken
|
|
* 0x0B o EXCPT insn
|
|
* 0x0C o CSYNC/SSYNC insn
|
|
* 0x0D o Insns committed
|
|
* 0x0E o Interrupts taken
|
|
* 0x0F o Misaligned address exceptions
|
|
* 0x80 o Code memory fetches stalled due to DMA
|
|
* 0x83 o 64bit insn fetches delivered
|
|
* 0x9A o data cache fills (bank a)
|
|
* 0x9B o data cache fills (bank b)
|
|
* 0x9C o data cache lines evicted (bank a)
|
|
* 0x9D o data cache lines evicted (bank b)
|
|
* 0x9E o data cache high priority fills
|
|
* 0x9F o data cache low priority fills
|
|
* 0x00 s loop 0 iterations
|
|
* 0x01 s loop 1 iterations
|
|
* 0x0A s CSYNC/SSYNC stalls
|
|
* 0x10 s DAG read/after write hazards
|
|
* 0x13 s RAW data hazards
|
|
* 0x81 s code TAG stalls
|
|
* 0x82 s code fill stalls
|
|
* 0x90 s processor to memory stalls
|
|
* 0x91 s data memory stalls not hidden by 0x90
|
|
* 0x92 s data store buffer full stalls
|
|
* 0x93 s data memory write buffer full stalls due to high->low priority
|
|
* 0x95 s data memory fill buffer stalls
|
|
* 0x96 s data TAG collision stalls
|
|
* 0x97 s data collision stalls
|
|
* 0x98 s data stalls
|
|
* 0x99 s data stalls sent to processor
|
|
*/
|
|
|
|
static const int event_map[] = {
|
|
/* use CYCLES cpu register */
|
|
[PERF_COUNT_HW_CPU_CYCLES] = -1,
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = 0x0D,
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = -1,
|
|
[PERF_COUNT_HW_CACHE_MISSES] = 0x83,
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09,
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = 0x06,
|
|
[PERF_COUNT_HW_BUS_CYCLES] = -1,
|
|
};
|
|
|
|
#define C(x) PERF_COUNT_HW_CACHE_##x
|
|
|
|
static const int cache_events[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[C(L1D)] = { /* Data bank A */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS) ] = 0x9A,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS) ] = 0,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS) ] = 0x83,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
const char *perf_pmu_name(void)
|
|
{
|
|
return "bfin";
|
|
}
|
|
EXPORT_SYMBOL(perf_pmu_name);
|
|
|
|
int perf_num_counters(void)
|
|
{
|
|
return ARRAY_SIZE(event_map);
|
|
}
|
|
EXPORT_SYMBOL(perf_num_counters);
|
|
|
|
static u64 bfin_pfmon_read(int idx)
|
|
{
|
|
return bfin_read32(PFCNTR0 + (idx * 4));
|
|
}
|
|
|
|
static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx)
|
|
{
|
|
bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK));
|
|
}
|
|
|
|
static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx)
|
|
{
|
|
u32 val, mask;
|
|
|
|
val = PFPWR;
|
|
if (idx) {
|
|
mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1);
|
|
/* The packed config is for event0, so shift it to event1 slots */
|
|
val |= (hwc->config << (PFMON1_P - PFMON0_P));
|
|
val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P);
|
|
bfin_write_PFCNTR1(0);
|
|
} else {
|
|
mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0);
|
|
val |= hwc->config;
|
|
bfin_write_PFCNTR0(0);
|
|
}
|
|
|
|
bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val);
|
|
}
|
|
|
|
static void bfin_pfmon_disable_all(void)
|
|
{
|
|
bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR);
|
|
}
|
|
|
|
static void bfin_pfmon_enable_all(void)
|
|
{
|
|
bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR);
|
|
}
|
|
|
|
struct cpu_hw_events {
|
|
struct perf_event *events[MAX_HWEVENTS];
|
|
unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
|
|
};
|
|
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
|
|
|
|
static int hw_perf_cache_event(int config, int *evp)
|
|
{
|
|
unsigned long type, op, result;
|
|
int ev;
|
|
|
|
/* unpack config */
|
|
type = config & 0xff;
|
|
op = (config >> 8) & 0xff;
|
|
result = (config >> 16) & 0xff;
|
|
|
|
if (type >= PERF_COUNT_HW_CACHE_MAX ||
|
|
op >= PERF_COUNT_HW_CACHE_OP_MAX ||
|
|
result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return -EINVAL;
|
|
|
|
ev = cache_events[type][op][result];
|
|
if (ev == 0)
|
|
return -EOPNOTSUPP;
|
|
if (ev == -1)
|
|
return -EINVAL;
|
|
*evp = ev;
|
|
return 0;
|
|
}
|
|
|
|
static void bfin_perf_event_update(struct perf_event *event,
|
|
struct hw_perf_event *hwc, int idx)
|
|
{
|
|
u64 prev_raw_count, new_raw_count;
|
|
s64 delta;
|
|
int shift = 0;
|
|
|
|
/*
|
|
* Depending on the counter configuration, they may or may not
|
|
* be chained, in which case the previous counter value can be
|
|
* updated underneath us if the lower-half overflows.
|
|
*
|
|
* Our tactic to handle this is to first atomically read and
|
|
* exchange a new raw count - then add that new-prev delta
|
|
* count to the generic counter atomically.
|
|
*
|
|
* As there is no interrupt associated with the overflow events,
|
|
* this is the simplest approach for maintaining consistency.
|
|
*/
|
|
again:
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
new_raw_count = bfin_pfmon_read(idx);
|
|
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
goto again;
|
|
|
|
/*
|
|
* Now we have the new raw value and have updated the prev
|
|
* timestamp already. We can now calculate the elapsed delta
|
|
* (counter-)time and add that to the generic counter.
|
|
*
|
|
* Careful, not all hw sign-extends above the physical width
|
|
* of the count.
|
|
*/
|
|
delta = (new_raw_count << shift) - (prev_raw_count << shift);
|
|
delta >>= shift;
|
|
|
|
local64_add(delta, &event->count);
|
|
}
|
|
|
|
static void bfin_pmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
if (!(event->hw.state & PERF_HES_STOPPED)) {
|
|
bfin_pfmon_disable(hwc, idx);
|
|
cpuc->events[idx] = NULL;
|
|
event->hw.state |= PERF_HES_STOPPED;
|
|
}
|
|
|
|
if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
|
|
bfin_perf_event_update(event, &event->hw, idx);
|
|
event->hw.state |= PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static void bfin_pmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
if (WARN_ON_ONCE(idx == -1))
|
|
return;
|
|
|
|
if (flags & PERF_EF_RELOAD)
|
|
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
|
|
|
|
cpuc->events[idx] = event;
|
|
event->hw.state = 0;
|
|
bfin_pfmon_enable(hwc, idx);
|
|
}
|
|
|
|
static void bfin_pmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
bfin_pmu_stop(event, PERF_EF_UPDATE);
|
|
__clear_bit(event->hw.idx, cpuc->used_mask);
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
static int bfin_pmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
int ret = -EAGAIN;
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
if (__test_and_set_bit(idx, cpuc->used_mask)) {
|
|
idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS);
|
|
if (idx == MAX_HWEVENTS)
|
|
goto out;
|
|
|
|
__set_bit(idx, cpuc->used_mask);
|
|
hwc->idx = idx;
|
|
}
|
|
|
|
bfin_pfmon_disable(hwc, idx);
|
|
|
|
event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
|
|
if (flags & PERF_EF_START)
|
|
bfin_pmu_start(event, PERF_EF_RELOAD);
|
|
|
|
perf_event_update_userpage(event);
|
|
ret = 0;
|
|
out:
|
|
perf_pmu_enable(event->pmu);
|
|
return ret;
|
|
}
|
|
|
|
static void bfin_pmu_read(struct perf_event *event)
|
|
{
|
|
bfin_perf_event_update(event, &event->hw, event->hw.idx);
|
|
}
|
|
|
|
static int bfin_pmu_event_init(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int config = -1;
|
|
int ret;
|
|
|
|
if (attr->exclude_hv || attr->exclude_idle)
|
|
return -EPERM;
|
|
|
|
ret = 0;
|
|
switch (attr->type) {
|
|
case PERF_TYPE_RAW:
|
|
config = PFMON(0, attr->config & PFMON_MASK) |
|
|
PFCNT(0, !(attr->config & 0x100));
|
|
break;
|
|
case PERF_TYPE_HW_CACHE:
|
|
ret = hw_perf_cache_event(attr->config, &config);
|
|
break;
|
|
case PERF_TYPE_HARDWARE:
|
|
if (attr->config >= ARRAY_SIZE(event_map))
|
|
return -EINVAL;
|
|
|
|
config = event_map[attr->config];
|
|
break;
|
|
}
|
|
|
|
if (config == -1)
|
|
return -EINVAL;
|
|
|
|
if (!attr->exclude_kernel)
|
|
config |= PFCEN(0, PFCEN_ENABLE_SUPV);
|
|
if (!attr->exclude_user)
|
|
config |= PFCEN(0, PFCEN_ENABLE_USER);
|
|
|
|
hwc->config |= config;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void bfin_pmu_enable(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_event *event;
|
|
struct hw_perf_event *hwc;
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_HWEVENTS; ++i) {
|
|
event = cpuc->events[i];
|
|
if (!event)
|
|
continue;
|
|
hwc = &event->hw;
|
|
bfin_pfmon_enable(hwc, hwc->idx);
|
|
}
|
|
|
|
bfin_pfmon_enable_all();
|
|
}
|
|
|
|
static void bfin_pmu_disable(struct pmu *pmu)
|
|
{
|
|
bfin_pfmon_disable_all();
|
|
}
|
|
|
|
static struct pmu pmu = {
|
|
.pmu_enable = bfin_pmu_enable,
|
|
.pmu_disable = bfin_pmu_disable,
|
|
.event_init = bfin_pmu_event_init,
|
|
.add = bfin_pmu_add,
|
|
.del = bfin_pmu_del,
|
|
.start = bfin_pmu_start,
|
|
.stop = bfin_pmu_stop,
|
|
.read = bfin_pmu_read,
|
|
};
|
|
|
|
static void bfin_pmu_setup(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
memset(cpuhw, 0, sizeof(struct cpu_hw_events));
|
|
}
|
|
|
|
static int
|
|
bfin_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (long)hcpu;
|
|
|
|
switch (action & ~CPU_TASKS_FROZEN) {
|
|
case CPU_UP_PREPARE:
|
|
bfin_write_PFCTL(0);
|
|
bfin_pmu_setup(cpu);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static int __init bfin_pmu_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* All of the on-chip counters are "limited", in that they have
|
|
* no interrupts, and are therefore unable to do sampling without
|
|
* further work and timer assistance.
|
|
*/
|
|
pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
|
|
|
|
ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
|
|
if (!ret)
|
|
perf_cpu_notifier(bfin_pmu_notifier);
|
|
|
|
return ret;
|
|
}
|
|
early_initcall(bfin_pmu_init);
|