linux-sg2042/drivers/w1/masters/omap_hdq.c

643 lines
16 KiB
C

/*
* drivers/w1/masters/omap_hdq.c
*
* Copyright (C) 2007,2012 Texas Instruments, Inc.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/sched.h>
#include <linux/pm_runtime.h>
#include "../w1.h"
#include "../w1_int.h"
#define MOD_NAME "OMAP_HDQ:"
#define OMAP_HDQ_REVISION 0x00
#define OMAP_HDQ_TX_DATA 0x04
#define OMAP_HDQ_RX_DATA 0x08
#define OMAP_HDQ_CTRL_STATUS 0x0c
#define OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK (1<<6)
#define OMAP_HDQ_CTRL_STATUS_CLOCKENABLE (1<<5)
#define OMAP_HDQ_CTRL_STATUS_GO (1<<4)
#define OMAP_HDQ_CTRL_STATUS_INITIALIZATION (1<<2)
#define OMAP_HDQ_CTRL_STATUS_DIR (1<<1)
#define OMAP_HDQ_CTRL_STATUS_MODE (1<<0)
#define OMAP_HDQ_INT_STATUS 0x10
#define OMAP_HDQ_INT_STATUS_TXCOMPLETE (1<<2)
#define OMAP_HDQ_INT_STATUS_RXCOMPLETE (1<<1)
#define OMAP_HDQ_INT_STATUS_TIMEOUT (1<<0)
#define OMAP_HDQ_SYSCONFIG 0x14
#define OMAP_HDQ_SYSCONFIG_SOFTRESET (1<<1)
#define OMAP_HDQ_SYSCONFIG_AUTOIDLE (1<<0)
#define OMAP_HDQ_SYSSTATUS 0x18
#define OMAP_HDQ_SYSSTATUS_RESETDONE (1<<0)
#define OMAP_HDQ_FLAG_CLEAR 0
#define OMAP_HDQ_FLAG_SET 1
#define OMAP_HDQ_TIMEOUT (HZ/5)
#define OMAP_HDQ_MAX_USER 4
static DECLARE_WAIT_QUEUE_HEAD(hdq_wait_queue);
static int w1_id;
struct hdq_data {
struct device *dev;
void __iomem *hdq_base;
/* lock status update */
struct mutex hdq_mutex;
int hdq_usecount;
u8 hdq_irqstatus;
/* device lock */
spinlock_t hdq_spinlock;
/*
* Used to control the call to omap_hdq_get and omap_hdq_put.
* HDQ Protocol: Write the CMD|REG_address first, followed by
* the data wrire or read.
*/
int init_trans;
};
static int omap_hdq_probe(struct platform_device *pdev);
static int omap_hdq_remove(struct platform_device *pdev);
static const struct of_device_id omap_hdq_dt_ids[] = {
{ .compatible = "ti,omap3-1w" },
{}
};
MODULE_DEVICE_TABLE(of, omap_hdq_dt_ids);
static struct platform_driver omap_hdq_driver = {
.probe = omap_hdq_probe,
.remove = omap_hdq_remove,
.driver = {
.name = "omap_hdq",
.of_match_table = omap_hdq_dt_ids,
},
};
static u8 omap_w1_read_byte(void *_hdq);
static void omap_w1_write_byte(void *_hdq, u8 byte);
static u8 omap_w1_reset_bus(void *_hdq);
static void omap_w1_search_bus(void *_hdq, struct w1_master *master_dev,
u8 search_type, w1_slave_found_callback slave_found);
static struct w1_bus_master omap_w1_master = {
.read_byte = omap_w1_read_byte,
.write_byte = omap_w1_write_byte,
.reset_bus = omap_w1_reset_bus,
.search = omap_w1_search_bus,
};
/* HDQ register I/O routines */
static inline u8 hdq_reg_in(struct hdq_data *hdq_data, u32 offset)
{
return __raw_readl(hdq_data->hdq_base + offset);
}
static inline void hdq_reg_out(struct hdq_data *hdq_data, u32 offset, u8 val)
{
__raw_writel(val, hdq_data->hdq_base + offset);
}
static inline u8 hdq_reg_merge(struct hdq_data *hdq_data, u32 offset,
u8 val, u8 mask)
{
u8 new_val = (__raw_readl(hdq_data->hdq_base + offset) & ~mask)
| (val & mask);
__raw_writel(new_val, hdq_data->hdq_base + offset);
return new_val;
}
/*
* Wait for one or more bits in flag change.
* HDQ_FLAG_SET: wait until any bit in the flag is set.
* HDQ_FLAG_CLEAR: wait until all bits in the flag are cleared.
* return 0 on success and -ETIMEDOUT in the case of timeout.
*/
static int hdq_wait_for_flag(struct hdq_data *hdq_data, u32 offset,
u8 flag, u8 flag_set, u8 *status)
{
int ret = 0;
unsigned long timeout = jiffies + OMAP_HDQ_TIMEOUT;
if (flag_set == OMAP_HDQ_FLAG_CLEAR) {
/* wait for the flag clear */
while (((*status = hdq_reg_in(hdq_data, offset)) & flag)
&& time_before(jiffies, timeout)) {
schedule_timeout_uninterruptible(1);
}
if (*status & flag)
ret = -ETIMEDOUT;
} else if (flag_set == OMAP_HDQ_FLAG_SET) {
/* wait for the flag set */
while (!((*status = hdq_reg_in(hdq_data, offset)) & flag)
&& time_before(jiffies, timeout)) {
schedule_timeout_uninterruptible(1);
}
if (!(*status & flag))
ret = -ETIMEDOUT;
} else
return -EINVAL;
return ret;
}
/* write out a byte and fill *status with HDQ_INT_STATUS */
static int hdq_write_byte(struct hdq_data *hdq_data, u8 val, u8 *status)
{
int ret;
u8 tmp_status;
unsigned long irqflags;
*status = 0;
spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags);
/* clear interrupt flags via a dummy read */
hdq_reg_in(hdq_data, OMAP_HDQ_INT_STATUS);
/* ISR loads it with new INT_STATUS */
hdq_data->hdq_irqstatus = 0;
spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags);
hdq_reg_out(hdq_data, OMAP_HDQ_TX_DATA, val);
/* set the GO bit */
hdq_reg_merge(hdq_data, OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_GO,
OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_GO);
/* wait for the TXCOMPLETE bit */
ret = wait_event_timeout(hdq_wait_queue,
hdq_data->hdq_irqstatus, OMAP_HDQ_TIMEOUT);
if (ret == 0) {
dev_dbg(hdq_data->dev, "TX wait elapsed\n");
ret = -ETIMEDOUT;
goto out;
}
*status = hdq_data->hdq_irqstatus;
/* check irqstatus */
if (!(*status & OMAP_HDQ_INT_STATUS_TXCOMPLETE)) {
dev_dbg(hdq_data->dev, "timeout waiting for"
" TXCOMPLETE/RXCOMPLETE, %x", *status);
ret = -ETIMEDOUT;
goto out;
}
/* wait for the GO bit return to zero */
ret = hdq_wait_for_flag(hdq_data, OMAP_HDQ_CTRL_STATUS,
OMAP_HDQ_CTRL_STATUS_GO,
OMAP_HDQ_FLAG_CLEAR, &tmp_status);
if (ret) {
dev_dbg(hdq_data->dev, "timeout waiting GO bit"
" return to zero, %x", tmp_status);
}
out:
return ret;
}
/* HDQ Interrupt service routine */
static irqreturn_t hdq_isr(int irq, void *_hdq)
{
struct hdq_data *hdq_data = _hdq;
unsigned long irqflags;
spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags);
hdq_data->hdq_irqstatus = hdq_reg_in(hdq_data, OMAP_HDQ_INT_STATUS);
spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags);
dev_dbg(hdq_data->dev, "hdq_isr: %x", hdq_data->hdq_irqstatus);
if (hdq_data->hdq_irqstatus &
(OMAP_HDQ_INT_STATUS_TXCOMPLETE | OMAP_HDQ_INT_STATUS_RXCOMPLETE
| OMAP_HDQ_INT_STATUS_TIMEOUT)) {
/* wake up sleeping process */
wake_up(&hdq_wait_queue);
}
return IRQ_HANDLED;
}
/* HDQ Mode: always return success */
static u8 omap_w1_reset_bus(void *_hdq)
{
return 0;
}
/* W1 search callback function */
static void omap_w1_search_bus(void *_hdq, struct w1_master *master_dev,
u8 search_type, w1_slave_found_callback slave_found)
{
u64 module_id, rn_le, cs, id;
if (w1_id)
module_id = w1_id;
else
module_id = 0x1;
rn_le = cpu_to_le64(module_id);
/*
* HDQ might not obey truly the 1-wire spec.
* So calculate CRC based on module parameter.
*/
cs = w1_calc_crc8((u8 *)&rn_le, 7);
id = (cs << 56) | module_id;
slave_found(master_dev, id);
}
static int _omap_hdq_reset(struct hdq_data *hdq_data)
{
int ret;
u8 tmp_status;
hdq_reg_out(hdq_data, OMAP_HDQ_SYSCONFIG, OMAP_HDQ_SYSCONFIG_SOFTRESET);
/*
* Select HDQ mode & enable clocks.
* It is observed that INT flags can't be cleared via a read and GO/INIT
* won't return to zero if interrupt is disabled. So we always enable
* interrupt.
*/
hdq_reg_out(hdq_data, OMAP_HDQ_CTRL_STATUS,
OMAP_HDQ_CTRL_STATUS_CLOCKENABLE |
OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK);
/* wait for reset to complete */
ret = hdq_wait_for_flag(hdq_data, OMAP_HDQ_SYSSTATUS,
OMAP_HDQ_SYSSTATUS_RESETDONE, OMAP_HDQ_FLAG_SET, &tmp_status);
if (ret)
dev_dbg(hdq_data->dev, "timeout waiting HDQ reset, %x",
tmp_status);
else {
hdq_reg_out(hdq_data, OMAP_HDQ_CTRL_STATUS,
OMAP_HDQ_CTRL_STATUS_CLOCKENABLE |
OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK);
hdq_reg_out(hdq_data, OMAP_HDQ_SYSCONFIG,
OMAP_HDQ_SYSCONFIG_AUTOIDLE);
}
return ret;
}
/* Issue break pulse to the device */
static int omap_hdq_break(struct hdq_data *hdq_data)
{
int ret = 0;
u8 tmp_status;
unsigned long irqflags;
ret = mutex_lock_interruptible(&hdq_data->hdq_mutex);
if (ret < 0) {
dev_dbg(hdq_data->dev, "Could not acquire mutex\n");
ret = -EINTR;
goto rtn;
}
spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags);
/* clear interrupt flags via a dummy read */
hdq_reg_in(hdq_data, OMAP_HDQ_INT_STATUS);
/* ISR loads it with new INT_STATUS */
hdq_data->hdq_irqstatus = 0;
spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags);
/* set the INIT and GO bit */
hdq_reg_merge(hdq_data, OMAP_HDQ_CTRL_STATUS,
OMAP_HDQ_CTRL_STATUS_INITIALIZATION | OMAP_HDQ_CTRL_STATUS_GO,
OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_INITIALIZATION |
OMAP_HDQ_CTRL_STATUS_GO);
/* wait for the TIMEOUT bit */
ret = wait_event_timeout(hdq_wait_queue,
hdq_data->hdq_irqstatus, OMAP_HDQ_TIMEOUT);
if (ret == 0) {
dev_dbg(hdq_data->dev, "break wait elapsed\n");
ret = -EINTR;
goto out;
}
tmp_status = hdq_data->hdq_irqstatus;
/* check irqstatus */
if (!(tmp_status & OMAP_HDQ_INT_STATUS_TIMEOUT)) {
dev_dbg(hdq_data->dev, "timeout waiting for TIMEOUT, %x",
tmp_status);
ret = -ETIMEDOUT;
goto out;
}
/*
* wait for both INIT and GO bits rerurn to zero.
* zero wait time expected for interrupt mode.
*/
ret = hdq_wait_for_flag(hdq_data, OMAP_HDQ_CTRL_STATUS,
OMAP_HDQ_CTRL_STATUS_INITIALIZATION |
OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_FLAG_CLEAR,
&tmp_status);
if (ret)
dev_dbg(hdq_data->dev, "timeout waiting INIT&GO bits"
" return to zero, %x", tmp_status);
out:
mutex_unlock(&hdq_data->hdq_mutex);
rtn:
return ret;
}
static int hdq_read_byte(struct hdq_data *hdq_data, u8 *val)
{
int ret = 0;
u8 status;
ret = mutex_lock_interruptible(&hdq_data->hdq_mutex);
if (ret < 0) {
ret = -EINTR;
goto rtn;
}
if (!hdq_data->hdq_usecount) {
ret = -EINVAL;
goto out;
}
if (!(hdq_data->hdq_irqstatus & OMAP_HDQ_INT_STATUS_RXCOMPLETE)) {
hdq_reg_merge(hdq_data, OMAP_HDQ_CTRL_STATUS,
OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_GO,
OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_GO);
/*
* The RX comes immediately after TX.
*/
wait_event_timeout(hdq_wait_queue,
(hdq_data->hdq_irqstatus
& OMAP_HDQ_INT_STATUS_RXCOMPLETE),
OMAP_HDQ_TIMEOUT);
hdq_reg_merge(hdq_data, OMAP_HDQ_CTRL_STATUS, 0,
OMAP_HDQ_CTRL_STATUS_DIR);
status = hdq_data->hdq_irqstatus;
/* check irqstatus */
if (!(status & OMAP_HDQ_INT_STATUS_RXCOMPLETE)) {
dev_dbg(hdq_data->dev, "timeout waiting for"
" RXCOMPLETE, %x", status);
ret = -ETIMEDOUT;
goto out;
}
}
/* the data is ready. Read it in! */
*val = hdq_reg_in(hdq_data, OMAP_HDQ_RX_DATA);
out:
mutex_unlock(&hdq_data->hdq_mutex);
rtn:
return ret;
}
/* Enable clocks and set the controller to HDQ mode */
static int omap_hdq_get(struct hdq_data *hdq_data)
{
int ret = 0;
ret = mutex_lock_interruptible(&hdq_data->hdq_mutex);
if (ret < 0) {
ret = -EINTR;
goto rtn;
}
if (OMAP_HDQ_MAX_USER == hdq_data->hdq_usecount) {
dev_dbg(hdq_data->dev, "attempt to exceed the max use count");
ret = -EINVAL;
goto out;
} else {
hdq_data->hdq_usecount++;
try_module_get(THIS_MODULE);
if (1 == hdq_data->hdq_usecount) {
pm_runtime_get_sync(hdq_data->dev);
/* make sure HDQ is out of reset */
if (!(hdq_reg_in(hdq_data, OMAP_HDQ_SYSSTATUS) &
OMAP_HDQ_SYSSTATUS_RESETDONE)) {
ret = _omap_hdq_reset(hdq_data);
if (ret)
/* back up the count */
hdq_data->hdq_usecount--;
} else {
/* select HDQ mode & enable clocks */
hdq_reg_out(hdq_data, OMAP_HDQ_CTRL_STATUS,
OMAP_HDQ_CTRL_STATUS_CLOCKENABLE |
OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK);
hdq_reg_out(hdq_data, OMAP_HDQ_SYSCONFIG,
OMAP_HDQ_SYSCONFIG_AUTOIDLE);
hdq_reg_in(hdq_data, OMAP_HDQ_INT_STATUS);
}
}
}
out:
mutex_unlock(&hdq_data->hdq_mutex);
rtn:
return ret;
}
/* Disable clocks to the module */
static int omap_hdq_put(struct hdq_data *hdq_data)
{
int ret = 0;
ret = mutex_lock_interruptible(&hdq_data->hdq_mutex);
if (ret < 0)
return -EINTR;
if (0 == hdq_data->hdq_usecount) {
dev_dbg(hdq_data->dev, "attempt to decrement use count"
" when it is zero");
ret = -EINVAL;
} else {
hdq_data->hdq_usecount--;
module_put(THIS_MODULE);
if (0 == hdq_data->hdq_usecount)
pm_runtime_put_sync(hdq_data->dev);
}
mutex_unlock(&hdq_data->hdq_mutex);
return ret;
}
/* Read a byte of data from the device */
static u8 omap_w1_read_byte(void *_hdq)
{
struct hdq_data *hdq_data = _hdq;
u8 val = 0;
int ret;
ret = hdq_read_byte(hdq_data, &val);
if (ret) {
ret = mutex_lock_interruptible(&hdq_data->hdq_mutex);
if (ret < 0) {
dev_dbg(hdq_data->dev, "Could not acquire mutex\n");
return -EINTR;
}
hdq_data->init_trans = 0;
mutex_unlock(&hdq_data->hdq_mutex);
omap_hdq_put(hdq_data);
return -1;
}
/* Write followed by a read, release the module */
if (hdq_data->init_trans) {
ret = mutex_lock_interruptible(&hdq_data->hdq_mutex);
if (ret < 0) {
dev_dbg(hdq_data->dev, "Could not acquire mutex\n");
return -EINTR;
}
hdq_data->init_trans = 0;
mutex_unlock(&hdq_data->hdq_mutex);
omap_hdq_put(hdq_data);
}
return val;
}
/* Write a byte of data to the device */
static void omap_w1_write_byte(void *_hdq, u8 byte)
{
struct hdq_data *hdq_data = _hdq;
int ret;
u8 status;
/* First write to initialize the transfer */
if (hdq_data->init_trans == 0)
omap_hdq_get(hdq_data);
ret = mutex_lock_interruptible(&hdq_data->hdq_mutex);
if (ret < 0) {
dev_dbg(hdq_data->dev, "Could not acquire mutex\n");
return;
}
hdq_data->init_trans++;
mutex_unlock(&hdq_data->hdq_mutex);
ret = hdq_write_byte(hdq_data, byte, &status);
if (ret < 0) {
dev_dbg(hdq_data->dev, "TX failure:Ctrl status %x\n", status);
return;
}
/* Second write, data transferred. Release the module */
if (hdq_data->init_trans > 1) {
omap_hdq_put(hdq_data);
ret = mutex_lock_interruptible(&hdq_data->hdq_mutex);
if (ret < 0) {
dev_dbg(hdq_data->dev, "Could not acquire mutex\n");
return;
}
hdq_data->init_trans = 0;
mutex_unlock(&hdq_data->hdq_mutex);
}
}
static int omap_hdq_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct hdq_data *hdq_data;
struct resource *res;
int ret, irq;
u8 rev;
hdq_data = devm_kzalloc(dev, sizeof(*hdq_data), GFP_KERNEL);
if (!hdq_data) {
dev_dbg(&pdev->dev, "unable to allocate memory\n");
return -ENOMEM;
}
hdq_data->dev = dev;
platform_set_drvdata(pdev, hdq_data);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
hdq_data->hdq_base = devm_ioremap_resource(dev, res);
if (IS_ERR(hdq_data->hdq_base))
return PTR_ERR(hdq_data->hdq_base);
hdq_data->hdq_usecount = 0;
mutex_init(&hdq_data->hdq_mutex);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
rev = hdq_reg_in(hdq_data, OMAP_HDQ_REVISION);
dev_info(&pdev->dev, "OMAP HDQ Hardware Rev %c.%c. Driver in %s mode\n",
(rev >> 4) + '0', (rev & 0x0f) + '0', "Interrupt");
spin_lock_init(&hdq_data->hdq_spinlock);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENXIO;
goto err_irq;
}
ret = devm_request_irq(dev, irq, hdq_isr, 0, "omap_hdq", hdq_data);
if (ret < 0) {
dev_dbg(&pdev->dev, "could not request irq\n");
goto err_irq;
}
omap_hdq_break(hdq_data);
pm_runtime_put_sync(&pdev->dev);
omap_w1_master.data = hdq_data;
ret = w1_add_master_device(&omap_w1_master);
if (ret) {
dev_dbg(&pdev->dev, "Failure in registering w1 master\n");
goto err_w1;
}
return 0;
err_irq:
pm_runtime_put_sync(&pdev->dev);
err_w1:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int omap_hdq_remove(struct platform_device *pdev)
{
struct hdq_data *hdq_data = platform_get_drvdata(pdev);
mutex_lock(&hdq_data->hdq_mutex);
if (hdq_data->hdq_usecount) {
dev_dbg(&pdev->dev, "removed when use count is not zero\n");
mutex_unlock(&hdq_data->hdq_mutex);
return -EBUSY;
}
mutex_unlock(&hdq_data->hdq_mutex);
/* remove module dependency */
pm_runtime_disable(&pdev->dev);
return 0;
}
module_platform_driver(omap_hdq_driver);
module_param(w1_id, int, S_IRUSR);
MODULE_PARM_DESC(w1_id, "1-wire id for the slave detection");
MODULE_AUTHOR("Texas Instruments");
MODULE_DESCRIPTION("HDQ driver Library");
MODULE_LICENSE("GPL");